CSE 332: Data Structures and Parallelism

Spring 2022
Richard Anderson
Lecture 21: Parallel Algorithms

Announcements

- Read parallel computing notes by Dan Grossman 3.5-5.4

Fecen

- Last lectures
- simple parallel programs
- fork-join/thread programming
- common patterns: reduce, map
- analysis tools (task graph, work, span, parallelism)
- Now
- Amdahl's Law
- useful building blocks: prefix, pack
- parallel quicksort, merge sort

Analyzing Parallel Programs

Let $\mathbf{T}_{\mathbf{P}}$ be the running time on \mathbf{P} processors

Two key measures of run-time:

- Work: How long it would take 1 processor $=\mathrm{T}_{1}$
- Span: How long it would take infinity processors $=T_{\infty}$
- The hypothetical ideal for parallelization
- This is the longest "dependence chain" in the computation
- Example: $O(\log n)$ for summing an array
- Also called "critical path length" or "computational depth"

Task Graph

A parallel program can be modelled as a directed acyclic graph

Work $-\mathrm{T}_{1}$, sum of times of all of the nodes
Span - T_{∞}, longest path

Parallel Speed-up

- Speed-up on \mathbf{P} processors: $\mathbf{T}_{\mathbf{1}} / \mathbf{T}_{\mathbf{P}}$
- If speed-up is \mathbf{P}, we call it perfect linear speed-up
- e.g., doubling \mathbf{P} halves running time
- hard to achieve in practice
- Parallelism is the maximum possible speed-up: $\mathbf{T}_{\mathbf{1}} / \mathbf{T}_{\infty}$
- if you had infinite processors

Estimating T_{p}

- How to estimate T_{p} ?
- Lower bounds on T_{p}

$$
\begin{aligned}
& T_{p} \geq T_{\infty} \\
& T_{p} \geq T_{1} / P
\end{aligned}
$$

- which one is the tighter (higher) lower bound?
- The ForkJoin Java Framework achieves the following asymptotic time bound:

$$
T_{P} \text { is } O\left(T_{\infty}+T_{1} / P\right)
$$

- this bound is optimal

Amdahl's Law

- Most programs have

1. parts that parallelize well
2. parts that don't parallelize at all

- The latter become bottlenecks

Amdahl's Law

- Let $T_{1}=1$ unit of time
- Let $S=$ proportion that can't be parallelized

$$
1=T_{1}=S+(1-S)
$$

- Suppose we get perfect linear speedup on the parallel portion:

$$
T_{p}=
$$

- So the overall speed-up on P processors is (Amdahl's Law):

$$
\begin{aligned}
& \mathrm{T}_{1} / \mathrm{T}_{\mathrm{P}}= \\
& \mathrm{T}_{1} / \mathrm{T}_{\infty}=
\end{aligned}
$$

- If $1 / 3$ of your program is parallelizable, max speedup is:

Take Aways

- Parallel algorithms can be a big win
- Many fit standard patterns that are easy to implement
- Can't just rely on more processors to make things faster (Amdahl's Law)

Parallelizable?

- Prefix-sum:

- output $[j]=\sum_{i=0}^{j} \operatorname{input}[i]$

Parallel prefix-sum

- The parallel-prefix algorithm does two passes
- Each pass has $O(n)$ work and $O(\log n)$ span
- So in total there is $O(n)$ work and $O(\log n)$ span
- So like with array summing, parallelism is $n / \log n$
- First pass builds a tree bottom-up: the "up" pass
- Second pass traverses the tree top-down: the "down" pass

Parallel Prefix: The Up Pass

We build want to build a binary tree where

- Root has sum of the range $[x, y)$
- If a node has sum of [lo,hi) and hi>lo,
- Left child has sum of [lo,middle)
- Right child has sum of [middle,hi)
- A leaf has sum of $[i, i+1)$, which is simply input[$i]$

It is critical that we actually create the tree as we will need it for the down pass

- We do not need an actual linked structure
- We could use an array as we did with heaps

Analysis of first step: Work =
Span =

The algorithm, part 1

1. Propagate 'sum' up: Build a binary tree where

- Root has sum of input[0]..input[n-1]
- Each node has sum of input[lo] . .input[hi-1]
- Build up from leaves; parent.sum=left.sum+right.sum
- A leaf's sum is just it's value; input[i]

This is an easy fork-join computation: combine results by actually building a binary tree with all the sums of ranges

- Tree built bottom-up in parallel
- Could be more clever; ex. Use an array as tree representation like we did for heaps

Analysis of first step: $O(n)$ work, $O(\log n)$ span

Do an initial pass to gather information, enabling us to do a second pass to get the answer

First we'll gather the 'sum' for each recursive block

input | 6 | 4 | 16 | 10 | 16 | 14 | 2 | 8 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

The algorithm, part 2

2. Propagate 'fromleft' down:

- Root given a fromLeft of 0
- Node takes its fromLeft value and
- Passes its left child the same fromLeft
- Passes its right child its fromLeft plus its left child's sum (as stored in part 1)
- At the leaf for array position \mathbf{i}, output[i]=fromLeft+input[i]
This is an easy fork-join computation: traverse the tree built in step 1 and produce no result (the leaves assign to output)
- Invariant: fromLeft is sum of elements left of the node's range

Analysis of first step: $O(n)$ work, $O(\log n)$ span Analysis of second step: $O(n)$ work, $O(\log n)$ span
Total for algorithm: $O(n)$ work, $O(\log n)$ span

Using 'sum', get the sum of everything to the left of this range (call it 'fromleft'); propagate down from root

input

6	4	16	10	16	14	2	8

output

First Pass: Sum

2nd Pass: Use Sum for Prefix-Sum

A nodes computation

sum $=$ left.sum + right.sum

left.fromLeft $=$ fromLeft
right.fromLeft = fromLeft + left.sum

Parallel Prefix, Generalized

- Prefix-sum is another common pattern (prefix problems)
- maximum element to the left of i
- is there an element to the left of i satisfying some property?
- count of elements to the left of i satisfying some property
- ...
- We can solve all of these problems in the same way

Pack

- Pack:
output

- Output array of elements satisfying test, in original order

Parallel Pack?

-Pack
input

test: $\mathrm{X}<8$?
output

-Determining which elements to include is easy
-Determining where each element goes in output is hard

- seems to depend on previous results

Parallel Pack

1. map test input, output $[0,1]$ bit vector

Parallel Pack

1. map test input, output $[0,1]$ bit vector

2. transform bit vector into array of indices into result array
pos

Parallel Pack

1. map test input, output $[0,1]$ bit vector
input

2. prefix-sum on bit vector

3. map input to corresponding positions in output
output

- if (test[i] == 1) output[pos[i]] = input[i]

Parallel Pack Analysis

- Parallel Pack

1. map:	$O($	$)$ span
2. sum-prefix:	O() span
3. map:	$O($	$)$ span

- Total: O() span

