
CSE 332: Data Structures and
Parallelism

Spring 2022
Richard Anderson

Lecture 20: Analysis of Fork-Join
Programs

11/16/2022 CSE 332 1

Announcements

• Read parallel computing notes by Dan

Grossman 2.1-4.3

• Bring laptop to section this week with

IntelliJ set up

– Work on fork-join parallelism for most of

section

11/16/2022 CSE 332 2

Midterm Problems

11/16/2022 CSE 332 3

Shared Memory with Threads

…

Heap for all objects
and static fields, shared
by all threads

Threads, each with own unshared
call stack and “program counter”

pc=0x…

…

pc=0x…

…

pc=0x…

…

11/16/2022 CSE 332 4

Threads and Processors

• Simple model
– Threads are either running or idle
– Processors select idle threads and execute them for “a while”

• Scheduling of threads is outside of the scope of this course
– Many different approaches
– Programmer has limited control on scheduling

11/16/2022 CSE 332 5

T6T5T4T3T2T1

P2P1 P3

Fork-Join Parallelism
1. Define thread

– Java: define subclass of java.lang.Thread,

– Override run implement operation of the thread

2. Fork: instantiate a thread and start executing
– Java: create thread object, call start()

3. Join: wait for thread to terminate
– Java: call join() method, which returns when thread finishes

Above uses basic thread library build into Java

Later we’ll introduce a better ForkJoin Java library designed for parallel
programming

11/16/2022 CSE 332 6

Sum with Threads
For starters: have two threads simultaneously sum half of the array

– Create two thread objects, each given half of the array

– Call start() on each thread object to run it in parallel

– Wait for threads to finish using join()

– Add together their answers for the final result

Ans

11/16/2022 CSE 332 7

Part 1: define thread class

class SumThread extends java.lang.Thread {

int lo; // fields, passed to constructor
int hi; // so threads know what to do.
int[] arr;

int ans = 0; // result

SumThread(int[] a, int l, int h) {
lo=l; hi=h; arr=a;

}

public void run() {
for(int i=lo; i < hi; i++)
ans += arr[i];

}
}

Because we must override a no-arguments/no-result run,
we use fields to communicate across threads

11/16/2022 CSE 332 8

Part 2: sum routine

int sum(int[] arr){
int len = arr.length;

SumThread ts1 = new SumThread(arr,0,len/2);
SumThread ts2 = new SumThread(arr,len/2,len);

ts1.start();
ts2.start();

ts1.join();
ts2.join();

return ts1.ans + ts2.ans;
}

11/16/2022 CSE 332 9

Parameterizing by number of threads

11/16/2022 CSE 332 10

int sum(int[] arr, int numTs){
int ans = 0;
SumThread[] ts = new SumThread[numTs];
for(int i=0; i < numTs; i++){
ts[i] = new SumThread(arr,(i*arr.length)/numTs,

((i+1)*arr.length)/numTs);
ts[i].start();
}
for(int i=0; i < numTs; i++) {
ts[i].join();
ans += ts[i].ans;

}
return ans;

}

Recall: Parallel Sum

• Sum up N numbers in an array

• Let’s implement this with threads...

+ + + + + + + +

+ + + +

+ +

+

+ + + + + + + + + + + + + + + +

11/16/2022 CSE 332 11

Code looks something like this (using Java Threads)

The key is to do the result-combining in parallel as well
– And using recursive divide-and-conquer makes this natural

– Easier to write and more efficient asymptotically!

class SumThread extends java.lang.Thread {
int lo; int hi; int[] arr; // fields to know what to do
int ans = 0; // result
SumThread(int[] a, int l, int h) { … }
public void run(){ // override
if(hi – lo < SEQUENTIAL_CUTOFF)
for(int i=lo; i < hi; i++)
ans += arr[i];

else {
SumThread left = new SumThread(arr,lo,(hi+lo)/2);
SumThread right= new SumThread(arr,(hi+lo)/2,hi);
left.start();
right.start();
left.join(); // don’t move this up a line – why?
right.join();
ans = left.ans + right.ans;

}
}

}
int sum(int[] arr){ // just make one thread!

SumThread t = new SumThread(arr,0,arr.length);
t.run();
return t.ans;

}11/16/2022 CSE 332 12

Thread: sum range [0,10)

Thread: sum range [0,5)

Thread: sum range [0,2)

Thread: sum range [0,1) (return arr[0])

Thread: sum range [1,2) (return arr[1])

add results from two helper threads

Thread: sum range [2,5)

Thread: sum range [2,3) (return arr[2])

Thread: sum range [3,5)

Thread: sum range [3,4) (return arr[3])

Thread: sum range [4,5) (return arr[4])

add results from two helper threads

add results from two helper threads

add results from two helper threads

Thread: sum range [5,10)

Thread: sum range [5,7)

Thread: sum range [5,6) (return arr[5])

Thread: sum range [6,7) (return arr[6])

add results from two helper threads

Thread: sum range [7,10)

Thread: sum range [7,8) (return arr[7])

Thread: sum range [8,10)

Thread: sum range [8,9) (return arr[8])

Thread: sum range [9,10) (return arr[9])

add results from two helper threads

add results from two helper threads

add results from two helper threads

Recursive problem decomposition

11/16/2022 CSE 332 13

Divide-and-conquer
Same approach useful for many problems beyond sum

– If you have enough processors, total time O(log n)

– Next lecture: study reality of P << n processors

• Will write all our parallel algorithms in this style

– But using a special fork-join library engineered for this style

• Takes care of scheduling the computation well
– Often relies on operations being associative (like +)

+ + + + + + + +

+ + + +

+ +

+
11/16/2022 CSE 332 14

Thread Overhead

Creating and managing threads incurs

cost

Two optimizations:
1. Use a sequential cutoff, typically around 500-1000

• Eliminates lots of tiny threads

2. Do not create two recursive threads; create one thread and

do the other piece of work “yourself”

• Cuts the number of threads created by another

2x

11/16/2022 CSE 332 15

Half the threads!

// wasteful: don’t
SumThread left = …
SumThread right = …

left.start();
right.start();

left.join();
right.join();
ans=left.ans+right.ans;

// better: do!!
SumThread left = …
SumThread right = …

left.start();
right.run();

left.join();
// no right.join needed
ans=left.ans+right.ans;

order of last 4 lines

Is critical – why?

Note: run is a

normal function call!

execution won’t

continue until we

are done with run

11/16/2022 CSE 332 16

Better Java Thread Library
• Even with all this care, Java’s threads are too “heavyweight”

– Constant factors, especially space overhead

– Creating 20,000 Java threads just a bad idea

• The ForkJoin Framework is designed to meet the needs of divide-
and-conquer fork-join parallelism

– In the Java 8 standard libraries

– Section will focus on pragmatics/logistics

– Similar libraries available for other languages

• C/C++: Cilk (inventors), Intel’s Thread Building
Blocks

• C#: Task Parallel Library

• …

11/16/2022 CSE 332 17

Different terms, same basic idea
To use the ForkJoin Framework:

• A little standard set-up code (e.g., create a ForkJoinPool)

Don’t subclass Thread Do subclass RecursiveTask<V>

Don’t override run Do override compute

Do not use an ans field Do return a V from compute

Don’t call start Do call fork

Don’t just call join Do call join (which returns answer)

Don’t call run to hand-optimize Do call compute to hand-optimize

Don’t have a topmost call to run Do create a pool and call invoke

See the web page for (linked from Handouts page on course website):

“A Beginner’s Introduction to the ForkJoin Framework”

11/16/2022 CSE 332 18

Fork Join Framework Version: (missing imports)
class SumArray extends RecursiveTask<Integer> {
int lo; int hi; int[] arr; // fields to know what to do
SumArray(int[] a, int l, int h) { … }
protected Integer compute(){// return answer
if(hi – lo < SEQUENTIAL_CUTOFF) {
int ans = 0; // local var, not a field
for(int i=lo; i < hi; i++)
ans += arr[i];

return ans;
} else {
SumArray left = new SumArray(arr,lo,(hi+lo)/2);
SumArray right= new SumArray(arr,(hi+lo)/2,hi);
left.fork(); // fork a thread and calls compute
int rightAns = right.compute();//call compute directly
int leftAns = left.join(); // get result from left
return leftAns + rightAns;

}
}

}
static final ForkJoinPool fjPool = new ForkJoinPool();
int sum(int[] arr){
return fjPool.invoke(new SumArray(arr,0,arr.length));

// invoke returns the value compute returns
}

11/16/2022 CSE 332 19

Parallel Sum

• Sum up N numbers in an array

+ + + + + + + +

+ + + +

+ +

+

+ + + + + + + + + + + + + + + +

11/16/2022 CSE 332 20

Parallel Max?

+ + + + + + + +

+ + + +

+ +

+

+ + + + + + + + + + + + + + + +

11/16/2022 CSE 332 21

Reductions

• Same trick works for many tasks, e.g.,
– is there an element satisfying some property (e.g., prime)

– left-most element satisfying some property (e.g., first prime)

– counts: number of strings that start with a vowel

– are these elements in sorted order?

• Called a reduction, or reduce operation

– reduce a collection of data items to a single item

• result can be more than a single value, e.g., produce

histogram from a set of test scores

• Very common parallel programming pattern

11/16/2022 CSE 332 22

Parallel Vector Scaling

• Multiply every element in the array by 2

11/16/2022 CSE 332 23

Maps
• A map operates on each element of a collection of

data to produce a new collection of the same size

– each element is processed independently of the others, e.g.

• vector scaling

• vector addition

• test property of each element (is it prime)

• uppercase to lowercase

• ...

• Another common parallel programming

pattern

11/16/2022 CSE 332 24

Maps in ForkJoin Framework

• Even though there is no result-combining, it still helps with
load balancing to create many small tasks
– Maybe not for vector-add but for more compute-intensive maps

– The forking is O(log n) whereas theoretically other approaches
to vector-add is O(1)

class VecAdd extends RecursiveAction {
int lo; int hi; int[] res; int[] arr1; int[] arr2;
VecAdd(int l,int h,int[] r,int[] a1,int[] a2){ … }
protected void compute(){
if(hi – lo < SEQUENTIAL_CUTOFF) {
for(int i=lo; i < hi; i++)
res[i] = arr1[i] + arr2[i];

} else {
int mid = (hi+lo)/2;
VecAdd left = new VecAdd(lo,mid,res,arr1,arr2);
VecAdd right= new VecAdd(mid,hi,res,arr1,arr2);
left.fork();
right.compute();
left.join();

}
}

}
static final ForkJoinPool fjPool = new ForkJoinPool();
int[] add(int[] arr1, int[] arr2){
assert (arr1.length == arr2.length);
int[] ans = new int[arr1.length];
fjPool.invoke(new VecAdd(0,arr.length,ans,arr1,arr2);
return ans;

}
11/16/2022 CSE 332 25

Maps and Reductions
Maps and reductions: the “workhorses” of parallel

programming

– By far the most important and common patterns

– Learn to recognize when an algorithm can be written in terms

of maps and reductions

– makes parallel programming easy (plug and play)

11/16/2022 CSE 332 26

Distributed Map Reduce

• You may have heard of Google’s map/reduce

– or open-source version called Hadoop

– powers much of Google’s infrastructure

• Idea: maps/reductions using many machines

– same principles, applied to distributed computing

– system takes care of distributing data, fault-tolerance

– you just write code to handle one element, reduce a collection

• Co-developed by Jeff Dean (UW alum!)

11/16/2022 CSE 332 27

Maps and Reductions on Trees

• Max value in a min-heap

• How to parallelize?

• Is this a map or a reduce?

• Complexity?

996040

1520

10

50 700

85

65

11/16/2022 CSE 332 28

Analyzing Parallel Programs

Let TP be the running time on P processors

Two key measures of run-time:

• Work: How long it would take 1 processor = T1

• Span: How long it would take infinity processors = T

– The hypothetical ideal for parallelization

– This is the longest “dependence chain” in the computation

– Example: O(log n) for summing an array

– Also called “critical path length” or “computational depth”

11/16/2022 CSE 332 29

The DAG
• Fork-join programs can be modeled with a DAG

– nodes: pieces of work

– edges: order dependencies

What’s T1 (work):

What’s T (span):

A fork creates two children

• new thread

• continuation of current thread

A join makes a node with two
incoming edges

• terminated thread

• continuation of current thread

11/16/2022 CSE 332 30

Divide and Conquer Algorithms

Our fork and join frequently look like this:

base cases

divide

combine
results

In this context, the span (T) is:

•The longest dependence-chain; longest ‘branch’ in parallel ‘tree’

•Example: O(log n) for summing an array; we halve the data down to our
cut-off, then add back together; O(log n) steps, O(1) time for each

•Also called “critical path length” or “computational depth”
11/16/2022 CSE 332 31

Parallel Speed-up
• Speed-up on P processors: T1 / TP

• If speed-up is P, we call it perfect linear speed-up

– e.g., doubling P halves running time

– hard to achieve in practice

• Parallelism is the maximum possible speed-up: T1 / T

– if you had infinite processors

11/16/2022 CSE 332 32

Estimating Tp

• How to estimate TP (e.g., P = 4)?

• Lower bounds on TP (ignoring memory, caching...)

1. T

2. T1 / P

– which one is the tighter (higher) lower bound?

• The ForkJoin Java Framework achieves the following
expected time asymptotic bound:

TP ϵ O(T + T1 / P)
– this bound is optimal

11/16/2022 CSE 332 33

Amdahl’s Law

• Most programs have

1. parts that parallelize well

2. parts that don’t parallelize at all

• The latter become bottlenecks

11/16/2022 CSE 332 34

Amdahl’s Law

• Let T1 = 1 unit of time

• Let S = proportion that can’t be parallelized

1 = T1 = S + (1 – S)
• Suppose we get perfect linear speedup on the parallel portion:

TP =

• So the overall speed-up on P processors is (Amdahl’s Law):

T1 / T P =

T1 / T =

• If 1/3 of your program is parallelizable, max speedup is:

11/16/2022 CSE 332 35

Pretty Bad News

• Suppose 25% of your program is sequential.
– Then a billion processors won’t give you more than a 4x speedup!

• What portion of your program must be parallelizable to get
10x speedup on a 1000 core GPU?

– 10 <= 1 / (S + (1-S)/1000)

• Motivates minimizing sequential portions of your programs

11/16/2022 CSE 332 36

Take Aways

• Parallel algorithms can be a big win

• Many fit standard patterns that are easy to implement

• Can’t just rely on more processors to make things faster
(Amdahl’s Law)

11/16/2022 CSE 332 37

