CSE 332: Data Structures and
Parallelism

Fall 2022
Richard Anderson

Lecture 19: Introduction to Parallelism

Course Schedule

Lectures 1- 16: Traditional Data Structures
Lectures 17-18: Intro to Graphs

Lectures 19-21: Parallelism

Lectures 22-23: Concurrency
Lectures 24-27: Graph Algorithms
Lectures 28-29: Theory of NP-Completeness

Announcements

* Read parallel computing notes by Dan
Grossman 2.1-3.4
* Midterm
— Stats: Median — 72, Mean 70.8, SD 15.7
* Projects

— Project 3 — Parallel Implementation of
Bellman-Ford algorithm

Sequential Summation

* Sum up N numbers in an array
— Complexity?

Parallel Sum

* Sum up N numbers in an array
— with two processors

Parallel Sum

* Sum up N numbers in an array
— with ten processors

Parallel Sum

* Sum up N numbers in an array
—with N processors?

Parallel Sum
* Sum up N numbers in an array

COOTTTIT I T T ITTTTITT]
AVAVAVAVAVAvAY SV
—

~ ~, ~,— ™~
\+/ \+/
.
+ Complexity?

* How many processors?
+ Faster with infinite processors?

Parallel Algorithms

* So far, we have assumed:
One thing happens at a time

* What if we want to implement algorithms
with multiple “processors”
— How do we model parallel computing
— How do we program parallel computers

Parallel Computation

* There is nothing new about parallel computation
* Hardware design and architecture have always
been about parallelism
— Parallelism has been central to computer performance
Parallel algorithms have been an area of study
since the late 1970s
* Hardware trends

— Multiple cores in processors

— Can no longer make components smaller to make
them faster — need to make more of them

Who Implements Parallelism

* User

« Application

* Operating System

* Programming Language, Compiler
 Algorithm

* Processor Hardware

Parallelism vs. Concurrency

Parallelism: Concurrency:
Use extra resources to Manage access to shared
solve a problem faster resources
work QY?
@5 resource

Shared Memory with Threads

Old story: A running program has
— One program counter (current statement executing)
— One call stack (with each stack frame holding local variables)
— Objects in the heap created by memory allocation (i.e., new)
* (nothing to do with data structure called a heap)
— Static fields

New story:
— Aset of threads, each with its own program counter & call stack
* No access to another thread’s local variables
— Threads can share static fields / objects
« To communicate, write values to some shared
location that another thread reads from

Old Story: one call stack, one pc

Heap for all objects

« Call stack with local variables and static fields

* pc determines current statement
« local variables are numbers/null /
or heap references

1/14/2022 SE 332 14

New Story: Shared Memory with Threads

Heap for all objects
and static fields, shared

. by all threads
Threads, each with own unshared /

call stack and “program counter” ¥

Other models

We will focus on shared memory, but you should know several other
models exist and have their own advantages (see notes)

* Synchronous Shared Memory: Processors execute same instructions
and access shared memory

* Message-passing: Each thread has its own collection of objects.
Communication is via explicitly sending/receiving messages

* Dataflow: Programmers write programs in terms of a DAG.
A node executes after all of its predecessors in the graph

* Data parallelism: Have primitives for things like “apply function to
every element of an array in parallel”

Our Needs

To write a shared-memory parallel program, need new primitives from a
programming language or library

* Ways to create and run multiple things at once
— Let’s call these things threads

* Ways for threads to share memory
— Often just have threads with references to the same objects

* Ways for threads to coordinate (a.k.a. synchronize)
— For now, a way for one thread to wait for another to finish
— Other primitives when we study concurrency

Threads vs. Processors

What happens if you start 5 threads on a machine with only 4
processors?

Threads vs. Processors

For sum operation:

— with 3 processors available,
using 4 threads would take 50% more time than 3 threads

1/14/2022

Fork-Join Parallelism
1. Define thread

— Java: define subclass of java.lang. Thread, override run

2. Fork: instantiate a thread and start executing
— Java: create thread object, call start ()

3. Join: wait for thread to terminate
— Java: call join () method, which returns when thread finishes

Above uses basic thread library build into Java
Later we'll introduce a better ForkJoin Java library designed for parallel
programming

1/14/2022 CsE332

Sum with Threads

For starters: have 4 threads simultaneously sum one quarter of the array

1 T JL Im]
T T T T
ans0 &si\ /uﬂ/MSB
ans

— Create 4 thread objects, each given one quarter of the array
Call start () on each thread object to run it in parallel

Wait for threads to finish using join ()

Add together their 4 answers for the final result

1/14/2022

Part 1: define thread class

class SumThread extends java.lang.Thread {
int lo; // fields, passed to constructor
int hi; // so threads know what to do.
int[] arr;
int ans = 0; // result

SumThread (int[] a, int 1, int h) {
lo=1; hi=h; arr=a;
}

public void run(//override must have this type
for (int i=lo; i < hi; i++)
ans += arr[i];

Because we must override a no-arguments/no-result run,
we use fields to communicate across threads
£ 332

1/14/2022 csi

Part 2: sum routine

int sum(int[] arr){// can be a static method

int len = arr.length;

int ans = 0;

SumThread[] ts = new SumThread[4];

for(int i=0; i < 4; i++){// do parallel computations
ts[i] = new SumThread(arr,i*len/4, (i+l)*len/4);
ts[i] .start() ;

}

for (int i=0; i < 4; i++) { // combine results
ts[i].join(); // wait for helper to finish!
ans += ts[i].ans;

}
return ans;

1/14/2022 CsE 332 23

Parameterizing by number of threads

int sum(int[] arr, int numTs) {
int ans = 0;
SumThread[] ts = new SumThread[numTs];
for (int i=0; i < numTs; i++) {
ts[i] = new SumThread(arr, (i*arr.length)/numTs,
((i+1) *arr.length) /numTs) ;
ts[i] .start() ;
}

for (int i=0; i < numTs; i++) {
ts[i].join() ;
ans += ts[i].ans;

}

return ans;

1/14/2022 CsE332 2%

Recall: Parallel Sum

* Sum ug N numbers in an arrax

iR R

~ ~,— ~,
~, ~ /
_ . —

* Let's implement this with threads...

1/14/2022

Code looks something like this (using Java Threads)

class SumThread extends java.lang.Thread {
int lo; int hi; int[] arr; // fields to know what to do
int ans = 0; // result
SumThread (int[] a, int 1, int h) { .. }
public void run(){ // override
if (hi - lo < SEQUENTIAL CUTOFF)
for(int i=lo; i < hi; i++)
ans += arr[i];
else {
SumThread left = new SumThread(arr,lo, (hi+lo)/2);
SumThread right= new SumThread(arr, (hi+lo)/2,hi);
left.start() ;
right.start();
left.join(); // don’t move this up a line - why?
right.join() ;
ans = left.ans + right.ans;
}
) }
int sum(int[] arr){ // just make one thread!
SumThread t = new SumThread(arr,0,arr.length) ;
t.run() ;
return t.ans;
ha/1472022 cse332

Thread: sum range [00) Recursive problem decomposition

Thread: sum range [0.,5)
Thread: sum range [0,2)
Thread: sum range [0,1) (return arr[0])
Thread: sum range [1,2) (return arr[1])
add results from two helper threads
Thread: sum range [2,5)
Thread: sum range [2,3) (return arr[2])
Thread: sum range [3,5)
Thread: sum range [3,4) (return arr(3])
Thread: sum range [4,5) (return arr[4])
add results from two helper threads.
add results from two helper threads
add results from two helper threads
Thread: sum range [5,10)
Thread: sum range [5,7)
Thread: sum range [5.6) (return arr[5])
Thread: sum range [6.7) (return arr[6])
add results from two helper threads
Thread: sum range [7,10)
Thread: sum range (7,8) (return arr(7])
Thread: sum range [8,10)
Thread: sum range [8,9) (return arr(8])
Thread: sum range [9,10) (return arr[9])
add results from two helper threads
add results from two helper threads
add results from two helper threads

1/14/2022 CsE332

Divide-and-conquer
Same approach useful for many problems beyond sum
— If you have enough processors, total time O(1og n)
— Next lecture: study reality of P << n processors

* Will write all our parallel algorithms in this style
— But using a special fork-join library engineered for this style
* Takes care of scheduling the computation well
— Often relies on operations being associative (like +)

ERNNERNNEN NN RN NN AR RN RN NN
wwgeyygywwwwwwww

~,— ~,
\+/ \+/
_— .

1/14/2022 CsE332 28

Thread Overhead

Creating and managing threads incurs
cost
Two optimizations:
1. Use a sequential cutoff, typically around 500-1000
» Eliminates lots of tiny threads

2. Do not create two recursive threads; create one thread and
do the other piece of work “yourself’

» Cuts the number of threads created by another
2x

1/14/2022 CsE 332 29

Half the threads! order of last 4 lines
Is critical — why?

// wasteful: don’t // better: do!!
SumThread left SumThread left
SumThread right SumThread right

run isa

left.start(); left.start();

right.start() ; right.run() ; normalfunction call
execution won’t

continue until we

are done with run

left.join() ; left.join() ;
right.join(); // no right.join needed
ans=left.ans+right.ans; ans=left.ans+right.ans;

Better Java Thread Library

< Even with all this care, Java’s threads are too “heavyweight”
— Constant factors, especially space overhead
— Creating 20,000 Java threads just a bad idea ®

« The ForkJoin Framework is designed to meet the needs of divide-
and-conquer fork-join parallelism

— Inthe Java 8 standard libraries
— Section will focus on pragmatics/logistics
— Similar libraries available for other languages
» C/C++: Cilk (inventors), Intel's Thread Building
Blocks
« C#: Task Parallel Library

11/14/2022 CsE332 3

Different terms, same basic idea

To use the ForkJoin Framework:
« Alittle standard set-up code (e.g., create a ForkJoinPool)

Don'’t subclass Thread
Don’t override run

Do subclass RecursiveTask<V>
Do override compute

Do not use an ans field
Don’t call start

Do return a V from compute

Do call fork

Do call join (which returns answer)
Don’t call run to hand-optimize Do call compute to hand-optimize

Don't just call join

Don’t have a topmost call to run Do create a pool and call invoke

See the web page for (linked in to project 3 description):
“A Beginner’s Introduction to the ForkJoin Framework”

4/2022 CsE332

Fork Join Framework Version: (missing imports)

class SumArray extends RecursiveTask<Integer> {

int lo; int hi; int[] arr; // fields to know what to do

SumArray (int[] a, int 1, int h) { ..}

protected Integer compute(){// return answer

if (hi - lo < SEQUENTIAL CUTOFF) {

int ans = 0; local var, not a field
for(int i=lo; i < hi; i++)

ans += arr[i];
return ans;
else {
SumArray left = new SumArray(arr,lo, (hi+lo)/2);
SumArray right= new SumArray(arr, (hi+lo)/2,hi);
left.fork(); // fork a thread and calls compute
int rightAns = right.compute () ;//call compute directly
int leftAns = left.join(); get result from left
return leftAns + rightAns;

}
) }
static final ForkJoinPool fjPool = new ForkJoinPool () ;
int sum(int[] arr){
return fjPool.invoke (new SumArray (arr,0,arr.length)) ;
// invoke returns the value compute returns

11/14/2022 CsE332 33

