
CSE 332: Data Structures and 
Parallelism

Fall 2022

Richard Anderson

Lecture 19: Introduction to Parallelism

11/14/2022 CSE 332 1



Course Schedule

• Lectures 1- 16:  Traditional Data Structures

• Lectures 17-18:  Intro to Graphs

• Lectures 19-21:  Parallelism

• Lectures 22-23: Concurrency

• Lectures 24-27: Graph Algorithms

• Lectures 28-29: Theory of NP-Completeness

11/14/2022 CSE 332 2



Announcements  

• Read parallel computing notes by Dan 

Grossman 2.1-3.4

• Midterm 

– Stats: Median – 72, Mean 70.8, SD 15.7

• Projects 

– Project 3 – Parallel Implementation of 

Bellman-Ford algorithm

11/14/2022 CSE 332 3



Sequential Summation

• Sum up N numbers in an array

– Complexity?  

11/14/2022 CSE 332 4



Parallel Sum

• Sum up N numbers in an array

– with two processors

11/14/2022 CSE 332 5



Parallel Sum

• Sum up N numbers in an array

– with ten processors

11/14/2022 CSE 332 6



Parallel Sum

• Sum up N numbers in an array

– with N processors?

11/14/2022 CSE 332 7



Parallel Sum

• Sum up N numbers in an array

• Complexity?

• How many processors?

• Faster with infinite processors?

+ + + + + + + +

+ + + +

+ +

+

+ + + + + + + + + + + + + + + +

11/14/2022 CSE 332 8



Parallel Algorithms

• So far, we have assumed:

One thing happens at a time

• What if we want to implement algorithms 
with multiple “processors”

– How do we model parallel computing

– How do we program parallel computers

11/14/2022 CSE 332 9



Parallel Computation

• There is nothing new about parallel computation

• Hardware design and architecture have always 
been about parallelism
– Parallelism has been central to computer performance

• Parallel algorithms have been an area of study 
since the late 1970s

• Hardware trends
– Multiple cores in processors

– Can no longer make components smaller to make 
them faster – need to make more of them

11/14/2022 CSE 332 10



Who Implements Parallelism

• User

• Application

• Operating System

• Programming Language, Compiler

• Algorithm

• Processor Hardware

11/14/2022 CSE 332 11



Parallelism vs. Concurrency

Parallelism:
Use extra resources to 

solve a problem faster

resources

work

Concurrency:
Manage access to shared      

resources 

requests

resource

11/14/2022 CSE 332 12



Shared Memory with Threads
Old story: A running program has

– One program counter (current statement executing)

– One call stack (with each stack frame holding local variables) 

– Objects in the heap created by memory allocation (i.e., new) 

• (nothing to do with data structure called a heap)
– Static fields

New story:

– A set of threads, each with its own program counter & call stack

• No access to another thread’s local variables
– Threads can share static fields / objects

• To communicate, write values to some shared 
location that  another thread reads from

11/14/2022 CSE 332 13



Old Story: one call stack, one pc 

14

…

Heap for all objects 
and static fields• Call stack with local variables

• pc determines current statement
• local variables are numbers/null 
or heap references

pc=0x…

…

11/14/2022 CSE 332 14



New Story: Shared Memory with Threads 

…

Heap for all objects 
and static fields, shared
by all threads

Threads, each with own unshared
call stack and “program counter” 

pc=0x…

…

pc=0x…

…

pc=0x…

…

11/14/2022 CSE 332 15



Other models
We will focus on shared memory, but you should know several other 

models exist and have their own advantages (see notes)

• Synchronous Shared Memory:  Processors execute same instructions 
and access shared memory

• Message-passing: Each thread has its own collection of objects.  
Communication is via explicitly sending/receiving messages

• Dataflow: Programmers write programs in terms of a DAG. 

A node executes after all of its predecessors in the graph

• Data parallelism: Have primitives for things like “apply function to 
every element of an array in parallel”

11/14/2022 CSE 332 16



Our Needs

To write a shared-memory parallel program, need new primitives from a 
programming language or library

• Ways to create and run multiple things at once

– Let’s call these things threads

• Ways for threads to share memory

– Often just have threads with references to the same objects

• Ways for threads to coordinate (a.k.a. synchronize)

– For now, a way for one thread to wait for another to finish

– Other primitives when we study concurrency

11/14/2022 CSE 332 17



Threads vs. Processors

What happens if you start 5 threads on a machine with only 4 
processors?

11/14/2022 CSE 332 18



Threads vs. Processors

For sum operation:  
– with 3 processors available, 

using 4 threads would take 50% more time than 3 threads

11/14/2022 CSE 332 19



Fork-Join Parallelism
1. Define thread

– Java:  define subclass of java.lang.Thread, override run

2. Fork:  instantiate a thread and start executing
– Java:  create thread object, call start()

3. Join:  wait for thread to terminate
– Java:  call join() method, which returns when thread finishes

Above uses basic thread library build into Java

Later we’ll introduce a better ForkJoin Java library designed for  parallel 
programming

11/14/2022 CSE 332 20



Sum with Threads
For starters:  have 4 threads simultaneously sum one quarter of the array

ans0         ans1        ans2         ans3

+                                                     

ans

– Create 4 thread objects, each given one quarter of the array

– Call start() on each thread object to run it in parallel

– Wait for threads to finish using join()

– Add together their 4 answers for the final result

11/14/2022 CSE 332 21



Part 1: define thread class
class SumThread extends java.lang.Thread {

int lo; // fields, passed to constructor
int hi; // so threads know what to do.
int[] arr;

int ans = 0; // result

SumThread(int[] a, int l, int h) { 
lo=l; hi=h; arr=a;

}

public void run() { //override must have this type
for(int i=lo; i < hi; i++)
ans += arr[i];

}
}

Because we must override a no-arguments/no-result run, 

we use fields to communicate across threads
11/14/2022 CSE 332 22



Part 2:  sum routine

int sum(int[] arr){// can be a static method
int len = arr.length;
int ans = 0;
SumThread[] ts = new SumThread[4];
for(int i=0; i < 4; i++){// do parallel computations
ts[i] = new SumThread(arr,i*len/4,(i+1)*len/4);
ts[i].start(); 

}
for(int i=0; i < 4; i++) { // combine results
ts[i].join(); // wait for helper to finish!
ans += ts[i].ans;

}
return ans;

}

11/14/2022 CSE 332 23



Parameterizing by number of threads

11/14/2022 CSE 332 24

int sum(int[] arr, int numTs){
int ans = 0;
SumThread[] ts = new SumThread[numTs];
for(int i=0; i < numTs; i++){
ts[i] = new SumThread(arr,(i*arr.length)/numTs,

((i+1)*arr.length)/numTs);
ts[i].start();
}
for(int i=0; i < numTs; i++) { 
ts[i].join(); 
ans += ts[i].ans;

}
return ans;

}



Recall:  Parallel Sum

• Sum up N numbers in an array

• Let’s implement this with threads...

+ + + + + + + +

+ + + +

+ +

+

+ + + + + + + + + + + + + + + +

11/14/2022 CSE 332 25



Code looks something like this (using Java Threads)

The key is to do the result-combining in parallel as well
– And using recursive divide-and-conquer makes this natural

– Easier to write and more efficient asymptotically!

class SumThread extends java.lang.Thread {
int lo; int hi; int[] arr; // fields to know what to do
int ans = 0; // result
SumThread(int[] a, int l, int h) { … }
public void run(){ // override
if(hi – lo < SEQUENTIAL_CUTOFF)
for(int i=lo; i < hi; i++)
ans += arr[i];

else {
SumThread left = new SumThread(arr,lo,(hi+lo)/2);
SumThread right= new SumThread(arr,(hi+lo)/2,hi);
left.start();
right.start();
left.join(); // don’t move this up a line – why?
right.join();
ans = left.ans + right.ans;

}
}

}
int sum(int[] arr){ // just make one thread!

SumThread t = new SumThread(arr,0,arr.length);
t.run();
return t.ans;

}11/14/2022 CSE 332 26



Thread: sum range [0,10)

Thread: sum range [0,5)

Thread: sum range [0,2) 

Thread: sum range [0,1) (return arr[0])

Thread: sum range [1,2) (return arr[1])

add results from two helper threads

Thread: sum range [2,5)

Thread: sum range [2,3) (return arr[2])

Thread: sum range [3,5)

Thread: sum range [3,4) (return arr[3])

Thread: sum range [4,5) (return arr[4])

add results from two helper threads

add results from two helper threads

add results from two helper threads

Thread: sum range [5,10)

Thread: sum range [5,7)

Thread: sum range [5,6) (return arr[5])

Thread: sum range [6,7) (return arr[6])

add results from two helper threads

Thread: sum range [7,10)

Thread: sum range [7,8) (return arr[7])

Thread: sum range [8,10)

Thread: sum range [8,9) (return arr[8])

Thread: sum range [9,10) (return arr[9])

add results from two helper threads

add results from two helper threads

add results from two helper threads

Recursive problem decomposition

11/14/2022 CSE 332 27



Divide-and-conquer
Same approach useful for many problems beyond sum

– If you have enough processors, total time O(log n)

– Next lecture: study reality of P << n processors

• Will write all our parallel algorithms in this style

– But using a special fork-join library engineered for this style

• Takes care of scheduling the computation well
– Often relies on operations being associative (like +)

+ + + + + + + +

+ + + +

+ +

+
11/14/2022 CSE 332 28



Thread Overhead

Creating and managing threads incurs 

cost  

Two optimizations:
1. Use a sequential cutoff, typically around 500-1000

• Eliminates lots of tiny threads

2. Do not create two recursive threads; create one thread and 

do the other piece of work “yourself”

• Cuts the number of threads created by another 

2x

11/14/2022 CSE 332 29



Half the threads!

// wasteful: don’t
SumThread left = …
SumThread right = …

left.start();
right.start();

left.join(); 
right.join();
ans=left.ans+right.ans;

// better: do!!
SumThread left = …
SumThread right = …

left.start();
right.run();

left.join();
// no right.join needed
ans=left.ans+right.ans;

order of last 4 lines

Is critical – why?

Note: run is a 

normal function call!

execution won’t 

continue until we 

are done with run

11/14/2022 CSE 332 30



Better Java Thread Library
• Even with all this care, Java’s threads are too “heavyweight”

– Constant factors, especially space overhead

– Creating 20,000 Java threads just a bad idea 

• The ForkJoin Framework is designed to meet the needs of divide-
and-conquer fork-join parallelism

– In the Java 8 standard libraries

– Section will focus on pragmatics/logistics

– Similar libraries available for other languages 

• C/C++: Cilk (inventors), Intel’s Thread Building 
Blocks

• C#: Task Parallel Library

• …

11/14/2022 CSE 332 31



Different terms, same basic idea
To use the ForkJoin Framework:

• A little standard set-up code (e.g., create a ForkJoinPool)

Don’t subclass Thread Do subclass RecursiveTask<V>

Don’t override run Do override compute

Do not use an ans field Do return a V from compute

Don’t call start Do call fork

Don’t just call join Do call join (which returns answer)

Don’t call run to hand-optimize Do call compute to hand-optimize

Don’t have a topmost call to run Do create a pool and call invoke

See the web page for (linked in to project 3 description):

“A Beginner’s Introduction to the ForkJoin Framework”

11/14/2022 CSE 332 32



Fork Join Framework Version: (missing imports)
class SumArray extends RecursiveTask<Integer> {
int lo; int hi; int[] arr; // fields to know what to do
SumArray(int[] a, int l, int h) { … }
protected Integer compute(){// return answer
if(hi – lo < SEQUENTIAL_CUTOFF) {
int ans = 0; // local var, not a field
for(int i=lo; i < hi; i++)
ans += arr[i];

return ans;
} else {
SumArray left = new SumArray(arr,lo,(hi+lo)/2);
SumArray right= new SumArray(arr,(hi+lo)/2,hi);
left.fork(); // fork a thread and calls compute
int rightAns = right.compute();//call compute directly
int leftAns = left.join(); // get result from left
return leftAns + rightAns;

}
}

}
static final ForkJoinPool fjPool = new ForkJoinPool();
int sum(int[] arr){
return fjPool.invoke(new SumArray(arr,0,arr.length));

// invoke returns the value compute returns
}

11/14/2022 CSE 332 33


