CSE 332: Data Structures and Parallelism

Fall 2022
Anjali Agarwal
Lecture 18: Graph Theory

Announcements

- Upcoming lectures
- Intro to graphs
- Topological Sort
- Parallelism (3 lectures)
- Concurrency (2 lectures)

Graphs

A formalism for representing binary relationships between objects

$$
- \text { Graph } G=(\mathrm{V}, \mathrm{E})
$$

-Set of vertices: $\mathrm{V}=\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{n}}\right\}$
-Set of edges: $\mathbf{E}=\left\{\mathbf{e}_{1}, \mathbf{e}_{2}, \ldots, \mathbf{e}_{\mathrm{m}}\right\}$

Directed
Undirected

$$
\begin{aligned}
V & =\{A, B, C, D\} \\
E & =\{(C, B),(A, B),(B, A),(C, D)\} \\
& 11 / 9 / 2022
\end{aligned}
$$

Representation 1: Adjacency List

A list (array) of length $|\mathrm{V}|$ in which each entry stores a list (linked list) of all adjacent vertices

Runtimes: Iterate over vertices? $O(|V|)$ Iterate over edges? $O(|V|+|E|)$

Space requirements? $O(|V|+|E|)$ Iterate edges adj. to vertex? $\mathrm{O}\left(\mathrm{d}_{\mathrm{v}}\right)$ Existence of edge? $O\left(d_{v}\right)$

Best for what kinds of graphs? sparse

Representation 2: Adjacency Matrix

$\mathrm{A}|\mathrm{V}| \mathbf{x}|\mathrm{V}|$ matrix M in which an element $\mathrm{m}[\mathrm{u}, \mathrm{v}]$ is true if and only if there is an edge from u to v

Runtimes: Iterate over vertices? $\mathrm{O}(|\mathrm{V}|)$ Iterate over edges? o($\left.|\mathrm{V}|^{2}\right)$ Iterate edges adj. to vertex? O(|⿲|) Existence of edge? O(1)

DENSE

Representing Undirected Graphs

What do these reps look like for an undirected graph?

$|\mathrm{E}|$ and |V|

- How many edges $|\mathrm{E}|$ in a directed graph with $|\mathrm{V}|$ vertices?

$$
0 \leq|E| \leq|V|(|V|-1)
$$

- How many edges |E| in a undirected graph with |V| vertices?

$$
0 \leq|E| \leq \frac{|v|(|V|-1)}{2}
$$

- How many edges $|\mathbb{E}|$ in a undirected, connected graph with |V| vertices?

$$
|v|-1 \leq|E| \leq \frac{|v|(|v|-1)}{2}
$$

$$
\begin{aligned}
& \text { egg. each vertex } \\
& \text { has outgoing } \\
& \downarrow \text { edges }
\end{aligned}
$$

- Some (semi-standard) terminology:
- A graph is sparse if it has $\mathrm{O}(|\mathrm{V}|)$ edges (upper bound). - A graph is dense if it has $\Theta\left(|\mathrm{V}|^{2}\right)$ edges.
\& egg. each remex is neighbors

Directed Acyclic Graphs (DAGs)

- DAGs are directed graphs with no (directed) cycles.

Topological Sort

- Given a directed graph, $G=(\mathrm{V}, \mathrm{E})$, output all the vertices in V sorted so that no vertex is output before any other vertex with an edge to it.

Is the output unique?

Find valid topological sorts

$$
\begin{array}{lllll}
0 & 1 & 2 & 3 & 4 \\
0 & 1 & 3 & 2 & 4
\end{array}
$$

$$
10234
$$

$$
10324
$$

$$
12034
$$

Topological Sort: Take One

1. Label each vertex with its in-degree (\# inbound edges)
2. While there are vertices remaining:
a. Choose a vertex v of in-degree zero; output v
b. Reduce the in-degree of all vertices adjacent to v
c. Remove v from the list of vertices

```
    void topsort(){
        labelEachVertexWithItsInDegree(); O(|V|+|E|)
        for (int counter=0; counter < NUM_VERTICES; counter++) {
|V) na|vl' }~v=\mathrm{ findNewVertexOfDegreeZero(); O(IVI)
            scan fop to output(v); O(1)
    from
                    w.indegree--; ] O(dv)
                mark_as_outputted(v);
    }
                                40(1)
}
```

Runtime:

$$
\begin{aligned}
& O(|V|+|E|+|V|(|V|+d v)) \\
= & O\left(|V|+|E|+|V|^{2}+|E|\right) \quad \text { since }|V| d v=|E| \\
= & O\left(|V|^{2}+|E|\right)=O\left(|V|^{2}\right)
\end{aligned}
$$

Topological Sort: Take Two

1. Label each vertex with its in-degree
2. Initialize a queue Q to contain all in-degree zero vertices
3. While Q not empty
a. $\quad v=$ Q.dequeue; output v
b. For each vertex u adjacent to v :

- Reduce the in-degree of u
- If new in-degree u is zero, Q.enqueue (u)

Better way to identify
next 0-degree

* Relies on insight that the
only ones' whose in-degree changes are the neighbors of u.
*Doesn't have
to be a queue
(stack, $\underset{\text { ole t, etc all }}{ }$

Topological Sort: Take Two

1. Label each vertex with its indegree
2. Initialize a queue Q to contain all in-degree zero vertices
3. While Q not empty
a. $\quad v=$ Q.dequeue; output v
b. For each vertex u adjacent to v :

- Reduce the in-degree of u
- If new in-degree u is zero, Q.enqueue (u)
$Q:[\infty, x, \psi, 3, y]$
0123

```
topsort(){
    Queue q(NUM_VERTICES);
    Vertex v, w;
    labelEachVertexWithItsIn-degree(); O(N| + |E|)
    l}\begin{array}{l}{\mathrm{ q.makeEmpty(); }}\\{\mathrm{ for each vertex v }}\\{\mathrm{ if (v.indegree == 0)}}\end{array}]\quadO(|v|)\quad\begin{array}{c}{\mathrm{ initialize the}}\\{\mathrm{ queue }}
            q.enqueue(v);
        while (!q.isEmpty()){}||
        get a vertex with
        indegree 0
            output(v);< O(1)
        for each w adjacent to v
    O(1)[\begin{array}{l}{\mathrm{ w.indegree--; }}\\{\mathrm{ if (w.indegree == 0)}}\end{array}]O(dv)[\begin{array}{c}{\mathrm{ eligible }}\\{\mathrm{ vertices }}\end{array}]
    }
}
```

$\underset{11 / 9 / 2022}{\text { Runtime? } \quad O(|V|+|E|+|V|+|V| \cdot d v)=O(|E|+|V|) .{ }_{\text {CSE } 332} \quad O}$

Find a topological order for the following graph

```
Queue q(NUM_VERTICES);
```

labelEachVertexWithInDegree();
q.makeEmpty();
for each vertex v
if (v.indegree $==0$)
q.enqueue (v) ;
while (!q.isEmpty()):
$\mathrm{v}=\mathrm{q}$. dequeue();
output(v);
for each w adjacent to v
w.indegree--;
if (w.indegree $==0$)
q.enqueue (w) ;

When can we find a topological sort of a directed graph?

1. If the graph has a cycle, there is no topological sort
2. If the graph is acyclic, there is a topological sort

In other words:
A directed graph has a topological sort if and only if it is acyclic.

1. If a graph has a cycle, there is no topological sort

- Suppose there is a cycle (A, B, C, \ldots, F, A)
- Then A must come before B in any valid topological sort
- But B must also come before A in any valid topological sort

- So there is no valid sort!

2. If the graph is acyclic, there is a topological sort

We won't prove the entire statement. Instead...

Lemma: If a graph is acyclic, it has a vertex with in-degree 0 Proof:

- Pick a vertex v_{1}, if it has in-degree 0 then done
- If not, let (v_{2}, v_{1}) be an edge, if v_{2} has in-degree 0 then done
- If not, let $\left(v_{3}, v_{2}\right)$ be an edge . . .
- If this process continues for more than |V| steps, we have a repeated vertex, so we have a cycle

Shortest Paths Problem

- Given a directed graph with edge costs and a starting vertex s, find the minimum cost path from s to every other vertex in the graph.
- Future results
- Dijkstra's algorithm solves the shortest paths problems if all costs are non-negative
- Bellman-Ford's algorithm solves the shortest paths problem if costs are allowed to be negative
- Project 3 implements, and parallelizes Bellman-Ford

Example: Find the shortest path

Example: Bus Routes in Downtown Seattle

If we're at $3^{\text {rd }}$ and Pine, how can we get to $1^{\text {st }}$ and University using Metro?

The Shortest Path Problem

Given a graph G, and vertices s and t in G, find the shortest path from s to t.

Two cases: weighted and unweighted.
For a path $p=v_{0} v_{1} v_{2} \ldots v_{k}$

- unweighted length of path $p=k \quad$ (a.k.a. length)
- weighted length of path $p=\sum_{i=0 . k-1} c_{i, i+1}$ (a.k.a. cost)

We will assume the graph is directed

Single Source Shortest Paths (SSSP)

Given a graph G and vertex s, find the shortest paths from s to all vertices in G.

- How much harder is this than finding single shortest path from stot? not much!
- Most algorithms will have to find the shortest path to every vertex in the graph in the worst case
- Although may stop early in some cases

