
CSE 332: Data Structures and
Parallelism

Fall 2022
Anjali Agarwal

Lecture 18: Graph Theory

11/9/2022 CSE 332 1

Announcements

• Upcoming lectures
– Intro to graphs
– Topological Sort
– Parallelism (3 lectures)
– Concurrency (2 lectures)

11/9/2022 CSE 332 2

Graphs
A formalism for representing binary relationships between
objects

–Graph G = (V,E)
–Set of vertices: V = {v1,v2,…,vn}
–Set of edges: E = {e1,e2,…,em}

A

B

C

V = {A, B, C, D}
E = {(C, B),(A, B),(B, A),(C, D)}

D

A

B

C

D

V = {A, B, C, D}
E = {{C, B},{A, B},{C, D}}

Directed Undirected

11/9/2022 CSE 332 3

Presenter
Presentation Notes
I’m not convinced this is really an ADT, but it is certainly an important structure.

Representation 1: Adjacency List
A list (array) of length |V| in which each entry stores a list
(linked list) of all adjacent vertices

Space requirements?

Best for what kinds of graphs?

Runtimes:
Iterate over vertices?
Iterate over edges?
Iterate edges adj. to vertex?
Existence of edge?

A

B

C

D A

B

C

D

11/9/2022 CSE 332 4

Presenter
Presentation Notes
Some operations: iterate over vertices iterate over edges iterate over vertices adj. to a vertex check whether an edge exists

Representation 2: Adjacency Matrix
A |V| x |V| matrix M in which an element M[u,v] is true
if and only if there is an edge from u to v

Space requirements?

Best for what kinds of graphs?

Runtimes:
Iterate over vertices?
Iterate over edges?
Iterate edges adj. to vertex?
Existence of edge?

A

B

C

D

A B C

A

B

C

D

D

11/9/2022 CSE 332 5

Presenter
Presentation Notes
Some operations: iterate over vertices iterate over edges iterate over vertices adj. to a vertex check whether an edge exists

Representing Undirected Graphs
What do these reps look like for an undirected graph?

A B C

A

B

C

D

D

A

B

C

D

A

B

C

D

Adjacency matrix:
Adjacency list:

11/9/2022 CSE 332 6

Presenter
Presentation Notes
Some operations: iterate over vertices iterate over edges iterate over vertices adj. to a vertex check whether an edge exists

|E| and |V|
• How many edges |E| in a directed graph with |V| vertices?

• How many edges |E| in a undirected graph with |V| vertices?

• How many edges |E| in a undirected, connected graph with
|V| vertices?

• Some (semi-standard) terminology:
– A graph is sparse if it has O(|V|) edges (upper bound).
– A graph is dense if it has Θ(|V|2) edges.

11/9/2022 CSE 332 7

Presenter
Presentation Notes
0 <= |E| <= |V| (|V| - 1)0 <= |E| <= |V| (|V| - 1) / 2|V| - 1 <= |E| <= |V| (|V| - 1)/2E.g. straight line graph, or treeSparse: Every vertex has an edge to 3 other verticesDense: Every vertex has an edge to ½ the other vertices

Directed Acyclic Graphs (DAGs)
• DAGs are directed

graphs with no
(directed) cycles.

main()

add()

access()

mult()

read()

11/9/2022 CSE 332 8

Presenter
Presentation Notes
And, in fact, if we weaken some of our tree requirements, we get a DAG!DAGs are a very common representation for dependence graphs. The DAG here shows the non-recursive call-graph from a program.

Topological Sort
• Given a directed graph, G = (V,E), output all the

vertices in V sorted so that no vertex is output before
any other vertex with an edge to it.

CSE 142 CSE 143

CSE 321

CSE 341

CSE 378

CSE 326

CSE 370

CSE 403

CSE 421

CSE 467

CSE 451

CSE 322

Is the output unique?

CSE 303 CSE 457What kind of input

graph is allowed?

11/9/2022 CSE 332 9

142
143
321
341
303
370
378
322
326
403
421
451
457
467

Presenter
Presentation Notes
A topological or topo-sort is just a valid sorting of these vertices when we define an edge as an ordering constraint/relationship.There are many other applications of topological sort. The classic example is getting a valid ordering of classes when edges represent prerequisitesWhat happens if I add an edge from “CSE 467” to “CSE 142”? This graph is no longer a DAG! In fact, we cannot topo-sort without a DAG!

Find valid topological sorts

0

11/9/2022 CSE 332 10

1

2

3

4

Presenter
Presentation Notes
Doesn’t have to be connectedApplications:Degree planning / schedulingScheduling tasks that have dependenciesCompiling with the call graph or makefile

Topological Sort: Take One
1. Label each vertex with its in-degree (# inbound edges)
2. While there are vertices remaining:

a. Choose a vertex v of in-degree zero; output v
b. Reduce the in-degree of all vertices adjacent to v
c. Remove v from the list of vertices

11/9/2022 CSE 332 11

0

1
2

3
4

0

1

2

3

4

[3]

[2, 3]

[4]

[4]

[]

In-degree

Presenter
Presentation Notes
That’s a bit less efficient than we can do. Let’s try this.How well does this run? Depends on how fast we can find a vertex with degree zero (let’s say |V|). How quickly can we find adjacent vertices? (|E|). So O(|E| + |V|^2) = O(|V|^2)

void topsort(){
labelEachVertexWithItsInDegree();
for (int counter=0; counter < NUM_VERTICES; counter++){

v = findNewVertexOfDegreeZero();
output(v);
for each w adjacent to v

w.indegree--;
mark_as_outputted(v);

}
}

11/9/2022 CSE 332 12

Runtime:

Presenter
Presentation Notes
We should never find a cycle – this is a DAGHow long does this take?O((V+E) + V(V + 1 + d_v * 1) = O(E + V^2) = O(V^2)Observation: The only new (eligible) vertices with indegree 0 are the ones adjacent to the vertex just processed.

Topological Sort: Take Two

1. Label each vertex with its in-degree
2. Initialize a queue Q to contain all in-degree zero vertices
3. While Q not empty

a. v = Q.dequeue; output v
b. For each vertex u adjacent to v:

• Reduce the in-degree of u
• If new in-degree u is zero, Q.enqueue(u)

11/9/2022 CSE 332 13

Presenter
Presentation Notes
Why use a queue?Some sense of stability (as discussed during the sorting)

Topological Sort: Take Two
1. Label each vertex with its in-

degree
2. Initialize a queue Q to contain all

in-degree zero vertices
3. While Q not empty

a. v = Q.dequeue; output v
b. For each vertex u adjacent to v:

• Reduce the in-degree of u
• If new in-degree u is zero,

Q.enqueue(u)

11/9/2022 CSE 332 14CSE 332

0

1

2

3

4

[3]

[2, 3]

[4]

[4]

[]

In-degree

0

1
2

3
4

Presenter
Presentation Notes
Why use a queue?Some sense of stability (as discussed during the sorting)

topsort(){
Queue q(NUM_VERTICES);
Vertex v, w;

labelEachVertexWithItsIn-degree();

q.makeEmpty();
for each vertex v
if (v.indegree == 0)
q.enqueue(v);

while (!q.isEmpty()){
v = q.dequeue();
output(v);
for each w adjacent to v
w.indegree--;
if (w.indegree == 0)
q.enqueue(w);

}
}

initialize the
queue

get a vertex with
indegree 0

insert new
eligible
vertices

11/9/2022 CSE 332 15
Runtime?

Presenter
Presentation Notes
Idea: Use a set data structure to keep track of eligible vertices (Queue or Stack).

Find a topological order for the following
graph

E

F

D

A

C

B
K

J
G

H
I

L

11/9/2022 CSE 332 16

Queue q(NUM_VERTICES);
labelEachVertexWithInDegree();

q.makeEmpty();
for each vertex v

if (v.indegree == 0)
q.enqueue(v);

while (!q.isEmpty()):
v = q.dequeue();
output(v);
for each w adjacent to v

w.indegree--;
if (w.indegree == 0)

q.enqueue(w);

When can we find a topological sort of
a directed graph?

1. If the graph has a cycle, there is no
topological sort

2. If the graph is acyclic, there is a topological
sort

In other words:
A directed graph has a topological sort if and only if it is acyclic.

11/9/2022 CSE 332 17

1. If a graph has a cycle, there is no
topological sort

• Suppose there is a cycle
(𝐴𝐴,𝐵𝐵,𝐶𝐶, … ,𝐹𝐹,𝐴𝐴)

• Then 𝐴𝐴 must come
before 𝐵𝐵 in any valid
topological sort

• But 𝐵𝐵 must also come
before 𝐴𝐴 in any valid
topological sort

• So there is no valid sort!

B

A

D

E

F

C

11/9/2022 CSE 332 18

2. If the graph is acyclic, there is a
topological sort

We won’t prove the entire statement. Instead…

Lemma: If a graph is acyclic, it has a vertex with in-degree 0
Proof:

– Pick a vertex v1, if it has in-degree 0 then done
– If not, let (v2, v1) be an edge, if v2 has in-degree 0 then

done
– If not, let (v3, v2) be an edge . . .
– If this process continues for more than |V| steps, we

have a repeated vertex, so we have a cycle

11/9/2022 CSE 332 19

Shortest Paths Problem

• Given a directed graph with edge costs and a
starting vertex s, find the minimum cost path
from s to every other vertex in the graph.

• Future results
– Dijkstra’s algorithm solves the shortest paths

problems if all costs are non-negative
– Bellman-Ford’s algorithm solves the shortest paths

problem if costs are allowed to be negative
• Project 3 implements, and parallelizes Bellman-Ford

11/9/2022 CSE 332 20

Example: Find the shortest path

5/23/2022 CSE 332 21

Example: Bus Routes in Downtown Seattle

If we’re at 3rd and Pine, how can we get to
1st and University using Metro?

How about 4th and Seneca?11/9/2022 CSE 332 22

Presenter
Presentation Notes
And here’s some directed graph examples

The Shortest Path Problem
Given a graph G, and vertices s and t in G, find the
shortest path from s to t.

Two cases: weighted and unweighted.
For a path p = v0 v1 v2 … vk

– unweighted length of path p = k (a.k.a. length)

– weighted length of path p = ∑i=0..k-1 ci,i+1 (a.k.a. cost)

We will assume the graph is directed

5/23/2022 CSE 332 23

Single Source Shortest Paths (SSSP)

Given a graph G and vertex s, find the shortest
paths from s to all vertices in G.

– How much harder is this than finding single shortest
path from s to t?

• Most algorithms will have to find the shortest path to
every vertex in the graph in the worst case

– Although may stop early in some cases

5/23/2022 CSE 332 24

	CSE 332: Data Structures and Parallelism
	Announcements
	Graphs
	Representation 1: Adjacency List
	Representation 2: Adjacency Matrix
	Representing Undirected Graphs
	|E| and |V|
	Directed Acyclic Graphs (DAGs)
	Topological Sort
	Find valid topological sorts
	Topological Sort: Take One
	Slide Number 12
	Topological Sort: Take Two
	Topological Sort: Take Two
	Slide Number 15
	Find a topological order for the following graph
	When can we find a topological sort of a directed graph?
	1. If a graph has a cycle, there is no topological sort
	2. If the graph is acyclic, there is a topological sort
	Shortest Paths Problem
	Example: Find the shortest path
	Example: Bus Routes in Downtown Seattle
	The Shortest Path Problem
	Single Source Shortest Paths (SSSP)

