

Graphs

A formalism for representing binary relationships between objects
-Graph G $=(\mathbf{V}, \mathbf{E})$
-Set of vertices: $\mathrm{v}=\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{n}}\right\}$
-Set of edges: $\mathbf{E}=\left\{\mathbf{e}_{1}, \mathbf{e}_{2}, \ldots, \mathbf{e}_{\mathrm{m}}\right\}$

Directed

$v=\{A, B, C, D\}$
$E=\{(C, B),(A, B),(B, A),(C, D)\}$

Undirected

$\mathrm{v}=\{\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}\}$
$E=\{\{C, B\},\{A, B\},\{C, D\}\}$

Announcements

- Upcoming lectures
- Intro to graphs
- Topological Sort
- Parallelism (3 lectures)
- Concurrency (2 lectures)

What's the data structure?

Common query: which edges are adjacent to a vertex

Representation 2: Adjacency List

A list (array) of length $|\mathrm{V}|$ in which each entry stores a list (linked list) of all adjacent vertices

Runtimes:

Iterate over vertices?
Iterate over edges?
Iterate edges adj. to vertex?
Existence of edge?

Space requirements? Best for what kinds of graphs?

Representation 1: Adjacency Matrix

A $|V| \mathbf{x}|V|$ matrix M in which an element $\mathbf{M}[\mathbf{u}, \mathrm{v}]$ is true if and only if there is an edge from u to v

Runtimes:

Iterate over vertices?
Iterate over edges?
Iterate edges adj. to vertex?
Existence of edge?
Space requirements?
Best for what kinds of graphs?

Representing Undirected Graphs

What do these reps look like for an undirected graph?

Directed Acyclic Graphs (DAGs)

- DAGs are directed graphs with no (directed) cycles.

Application: Topological Sort

- Given a graph, $G=(\mathbf{V}, \mathbf{E})$, output all the vertices in \mathbf{V} sorted so that no vertex is output before any other
vertex with an edge to it.

$|E|$ and $|V|$

- How many edges $|\mathrm{E}|$ in a graph with $|\mathrm{V}|$ vertices?
- What if the graph is directed?
- What if it is undirected and connected?
- Some (semi-standard) terminology:
- A graph is sparse if it has $\mathrm{O}(|\mathrm{V}|)$ edges (upper bound).
- A graph is dense if it has $\Theta\left(|\mathrm{V}|^{2}\right)$ edges.

Topological Sort: Take Two

1. Label each vertex with its in-degree
2. Initialize a queue Q to contain all in-degree zero vertices
3. While Q not empty
a. $\quad v=Q$.dequeue; output v
b. Reduce the in-degree of all vertices adjacent to v
c. If new in-degree of any such vertex u is zero Q.enqueue (u)

Runtime

11/9/2022 CSE 332
topsort() \{
Queue q (NUM_VERTICES);
Vertex v, w;
labelEachVertexWithItsIn-degree();
q.makeEmpty() ;
for each vertex v
if (v.indegree $==0$)
q. enqueue (v) :
while (!q.isEmpty()) \{
v = q. dequeue() ;
v.topologicalNum $=++$ counter
for each w adjacent to v
if (--w.indegree $==0$) q. enqueue (w) ;
\}
\}
eligible
vertices
\}

Find a topological order for the following graph

11/9/2022
CSE 332
If a graph has a cycle, there is no topological sort

- Consider the first vertex on the cycle in the topological sort
- It must have an incoming edge

Lemma: If a graph is acyclic, it has a vertex with in degree 0

- Proof:
- Pick a vertex v_{1}, if it has in-degree 0 then done
- If not, let $\left(v_{2}, v_{1}\right)$ be an edge, if v_{2} has in-degree 0 then done
- If not, let $\left(v_{3}, v_{2}\right)$ be an edge . . .
- If this process continues for more than n steps, we have a repeated vertex, so we have a cycle

Shortest Paths Problem

- Given a directed graph with edge costs and a starting vertex s, find the minimum cost path from s to every other vertex in the graph.
- Future results
- Dijkstra's algorithm solves the shortest paths problems if all costs are non-negative
- Bellman-Ford's algorithm solves the shortest paths problem if costs are allowed to be negative
- Project 3 implements, and parallelizes Bellman-Ford
\qquad

The Shortest Path Problem

Given a graph G, and vertices s and t in G, find the shortest path from s to t.

Two cases: weighted and unweighted.
For a path $p=v_{0} v_{1} v_{2} \ldots v_{k}$

- unweighted length of path $p=k \quad$ (a.k.a. length)
- weighted length of path $p=\sum_{i=0.0-1-1} c_{i, i+1}$ (a.k.a. cost)

We will assume the graph is directed

Single Source Shortest Paths (SSSP)

Given a graph G and vertex s, find the shortest paths from s to all vertices in G.

- How much harder is this than finding single shortest path from sto t?
- Most algorithms will have to find the shortest path to every vertex in the graph in the worst case
- Although may stop early in some cases

