

- How many edges |E| in a graph with |V| vertices?
- · What if the graph is directed?
- · What if it is undirected and connected?
- Some (semi-standard) terminology:

 A graph is *sparse* if it has O(|V|) edges (upper bound).
 A graph is *dense* if it has O(|V|²) edges.

Lemma: If a graph is acyclic, it has a vertex with in degree 0

- Proof:
 - Pick a vertex $v_{1^{\prime}}$ if it has in-degree 0 then done
 - If not, let (v_2, v_1) be an edge, if v_2 has in-degree 0 then done
 - If not, let (v_3, v_2) be an edge . . .
 - If this process continues for more than n steps, we have a repeated vertex, so we have a cycle

Shortest Paths Problem

- Given a directed graph with edge costs and a starting vertex s, find the minimum cost path from s to every other vertex in the graph.
- Future results
 - Dijkstra's algorithm solves the shortest paths problems if all costs are non-negative
 - Bellman-Ford's algorithm solves the shortest paths problem if costs are allowed to be negative
 - Project 3 implements, and parallelizes Bellman-Ford

<section-header><text><list-item><list-item><list-item><list-item><list-item>

4