
1

CSE 332: Data Structures and 
Parallelism

Fall 2022

Anjali Agarwal

Lecture 18: Graph Theory

11/9/2022 CSE 332 1

Announcements

• Upcoming lectures

– Intro to graphs

– Topological Sort

– Parallelism (3 lectures)

– Concurrency (2 lectures)
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Graphs
A formalism for representing binary relationships between 
objects

–Graph G = (V,E)

–Set of vertices:  V = {v1,v2,…,vn}

–Set of edges: E = {e1,e2,…,em} 
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What’s the data structure?

Common query:  which edges are adjacent to a vertex
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Representation 2: Adjacency List

A list (array) of length |V| in which each entry stores a list 

(linked list) of all adjacent vertices

Space requirements?

Best for what kinds of graphs?

Runtimes:
Iterate over vertices?
Iterate over edges?
Iterate edges adj. to vertex?
Existence of edge?
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Representation 1: Adjacency Matrix

A |V| x |V| matrix M in which an element M[u,v] is true 

if and only if there is an edge from u to v

Space requirements?

Best for what kinds of graphs?

Runtimes:
Iterate over vertices?
Iterate over edges?
Iterate edges adj. to vertex?
Existence of edge?
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Representing Undirected Graphs

What do these reps look like for an undirected graph?
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Adjacency matrix:

Adjacency list:
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Some Applications:

Bus Routes in Downtown Seattle

If we’re at 3rd and Pine, how can we get to

1st and University using Metro?  

How about 4th and Seneca?11/9/2022 CSE 332 8

Directed Acyclic Graphs (DAGs)

• DAGs are directed 

graphs with no 

(directed) cycles.

main()

add()

access()

mult()

read()
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|E| and |V|
• How many edges |E| in a graph with |V| vertices?

• What if the graph is directed?

• What if it is undirected and connected?

• Some (semi-standard) terminology:

– A graph is sparse if it has O(|V|) edges (upper bound).

– A graph is dense if it has (|V|2) edges.
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Application: Topological Sort
• Given a graph, G = (V,E), output all the vertices in V

sorted so that no vertex is output before any other 
vertex with an edge to it.
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Is the output unique?

CSE 303 CSE 457

What kind of input

graph is allowed?11/9/2022 CSE 332 11

Topological Sort: Take One

1. Label each vertex with its in-degree (# inbound edges)

2. While there are vertices remaining:

a. Choose a vertex v of in-degree zero; output v

b. Reduce the in-degree of all vertices adjacent to v

c. Remove v from the list of vertices

Runtime:
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void topsort(){

Vertex v, w;

labelEachVertexWithItsInDegree();

for (int counter=0; counter < NUM_VERTICES; counter++){

v = findNewVertexOfDegreeZero();

v.topologicalNum = counter;

for each w adjacent to v

w.indegree--;

}

}
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Topological Sort: Take Two

1. Label each vertex with its in-degree

2. Initialize a queue Q to contain all in-degree zero 
vertices

3. While Q not empty
a. v = Q.dequeue; output v

b. Reduce the in-degree of all vertices adjacent to v

c. If new in-degree of any such vertex u is zero
Q.enqueue(u)

Runtime:
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topsort(){

Queue q(NUM_VERTICES);  

Vertex v, w;

labelEachVertexWithItsIn-degree();

q.makeEmpty();

for each vertex v

if (v.indegree == 0)

q.enqueue(v);

while (!q.isEmpty()){

v = q.dequeue();

v.topologicalNum = ++counter;

for each w adjacent to v

if (--w.indegree == 0)

q.enqueue(w);

}

}

initialize the
queue

get a vertex with
indegree 0

insert new
eligible
vertices
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Find a topological order for the following 
graph
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If a graph has a cycle, there is no 
topological sort

• Consider the first vertex 
on the cycle in the 
topological sort

• It must have an 
incoming edge B
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Lemma: If a graph is acyclic, it has a vertex 
with in degree 0

• Proof:  

– Pick a vertex v1, if it has in-degree 0 then done

– If not, let (v2, v1) be an edge, if v2 has in-degree 0 then 
done

– If not, let (v3, v2) be an edge . . .

– If this process continues for more than n steps, we have a 
repeated vertex, so we have a cycle
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Shortest Paths Problem

• Given a directed graph with edge costs and a 
starting vertex s,  find the minimum cost path 
from s to every other vertex in the graph.

• Future results

– Dijkstra’s algorithm solves the shortest paths 
problems if all costs are non-negative

– Bellman-Ford’s algorithm solves the shortest paths 
problem if costs are allowed to be negative

• Project 3 implements, and parallelizes Bellman-Ford
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Find the shortest path
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The Shortest Path Problem
Given a graph G, and vertices s and t in G, find the 
shortest path from s to t.

Two cases: weighted and unweighted.
For a path p = v0 v1 v2 … vk

– unweighted length of path p = k (a.k.a. length)

– weighted length of path p = i=0..k-1 ci,i+1    (a.k.a. cost)

We will assume the graph is directed
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Single Source Shortest Paths (SSSP)

Given a graph G and vertex s, find the shortest 
paths from s to all vertices in G.

– How much harder is this than finding single shortest 
path from s to t?

• Most algorithms will have to find the shortest path to 
every vertex in the graph in the worst case

– Although may stop early in some cases
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