
1

CSE 332: Data Structures and
Parallelism

Fall 2022

Anjali Agarwal

Lecture 18: Graph Theory

11/9/2022 CSE 332 1

Announcements

• Upcoming lectures

– Intro to graphs

– Topological Sort

– Parallelism (3 lectures)

– Concurrency (2 lectures)

11/9/2022 CSE 332 2

Graphs
A formalism for representing binary relationships between
objects

–Graph G = (V,E)

–Set of vertices: V = {v1,v2,…,vn}

–Set of edges: E = {e1,e2,…,em}

A

B

C

V = {A, B, C, D}

E = {(C, B),(A, B),(B, A),(C, D)}

D

A

B

C

D

V = {A, B, C, D}

E = {{C, B},{A, B},{C, D}}

Directed Undirected

11/9/2022 CSE 332 3

What’s the data structure?

Common query: which edges are adjacent to a vertex

11/9/2022 CSE 332 4

Representation 2: Adjacency List

A list (array) of length |V| in which each entry stores a list

(linked list) of all adjacent vertices

Space requirements?

Best for what kinds of graphs?

Runtimes:
Iterate over vertices?
Iterate over edges?
Iterate edges adj. to vertex?
Existence of edge?

A

B

C

D
A

B

C

D

11/9/2022 CSE 332 5

Representation 1: Adjacency Matrix

A |V| x |V| matrix M in which an element M[u,v] is true

if and only if there is an edge from u to v

Space requirements?

Best for what kinds of graphs?

Runtimes:
Iterate over vertices?
Iterate over edges?
Iterate edges adj. to vertex?
Existence of edge?

A

B

C

D

A B C

A

B

C

D

D

11/9/2022 CSE 332 6

2

Representing Undirected Graphs

What do these reps look like for an undirected graph?

A B C

A

B

C

D

D

A

B

C

D

A

B

C

D

Adjacency matrix:

Adjacency list:

11/9/2022 CSE 332 7

Some Applications:

Bus Routes in Downtown Seattle

If we’re at 3rd and Pine, how can we get to

1st and University using Metro?

How about 4th and Seneca?11/9/2022 CSE 332 8

Directed Acyclic Graphs (DAGs)

• DAGs are directed

graphs with no

(directed) cycles.

main()

add()

access()

mult()

read()

11/9/2022 CSE 332 9

|E| and |V|
• How many edges |E| in a graph with |V| vertices?

• What if the graph is directed?

• What if it is undirected and connected?

• Some (semi-standard) terminology:

– A graph is sparse if it has O(|V|) edges (upper bound).

– A graph is dense if it has (|V|2) edges.

11/9/2022 CSE 332 10

Application: Topological Sort
• Given a graph, G = (V,E), output all the vertices in V

sorted so that no vertex is output before any other
vertex with an edge to it.

CSE 142 CSE 143

CSE 321

CSE 341

CSE 378

CSE 326

CSE 370

CSE 403

CSE 421

CSE 467

CSE 451

CSE 322

Is the output unique?

CSE 303 CSE 457

What kind of input

graph is allowed?11/9/2022 CSE 332 11

Topological Sort: Take One

1. Label each vertex with its in-degree (# inbound edges)

2. While there are vertices remaining:

a. Choose a vertex v of in-degree zero; output v

b. Reduce the in-degree of all vertices adjacent to v

c. Remove v from the list of vertices

Runtime:

11/9/2022 CSE 332 12

3

CSE 142 CSE 143

CSE 321

CSE 341

CSE 378

CSE 326

CSE 370

CSE 403

CSE 421

CSE 467

CSE 451

CSE 322

CSE 303 CSE 457

142
143
321
341
378
370
322
326

303
403
421
451
457
467

11/9/2022 CSE 332 13

void topsort(){

Vertex v, w;

labelEachVertexWithItsInDegree();

for (int counter=0; counter < NUM_VERTICES; counter++){

v = findNewVertexOfDegreeZero();

v.topologicalNum = counter;

for each w adjacent to v

w.indegree--;

}

}

11/9/2022 CSE 332 14

Topological Sort: Take Two

1. Label each vertex with its in-degree

2. Initialize a queue Q to contain all in-degree zero
vertices

3. While Q not empty
a. v = Q.dequeue; output v

b. Reduce the in-degree of all vertices adjacent to v

c. If new in-degree of any such vertex u is zero
Q.enqueue(u)

Runtime:

11/9/2022 CSE 332 15

topsort(){

Queue q(NUM_VERTICES);

Vertex v, w;

labelEachVertexWithItsIn-degree();

q.makeEmpty();

for each vertex v

if (v.indegree == 0)

q.enqueue(v);

while (!q.isEmpty()){

v = q.dequeue();

v.topologicalNum = ++counter;

for each w adjacent to v

if (--w.indegree == 0)

q.enqueue(w);

}

}

initialize the
queue

get a vertex with
indegree 0

insert new
eligible
vertices

11/9/2022 CSE 332 16

Find a topological order for the following
graph

E

F

D

A

C

B

K

J
G

H
I

L

11/9/2022 CSE 332 17

If a graph has a cycle, there is no
topological sort

• Consider the first vertex
on the cycle in the
topological sort

• It must have an
incoming edge B

A

D

E

F

C

11/9/2022 CSE 332 18

4

Lemma: If a graph is acyclic, it has a vertex
with in degree 0

• Proof:

– Pick a vertex v1, if it has in-degree 0 then done

– If not, let (v2, v1) be an edge, if v2 has in-degree 0 then
done

– If not, let (v3, v2) be an edge . . .

– If this process continues for more than n steps, we have a
repeated vertex, so we have a cycle

11/9/2022 CSE 332 19

Shortest Paths Problem

• Given a directed graph with edge costs and a
starting vertex s, find the minimum cost path
from s to every other vertex in the graph.

• Future results

– Dijkstra’s algorithm solves the shortest paths
problems if all costs are non-negative

– Bellman-Ford’s algorithm solves the shortest paths
problem if costs are allowed to be negative

• Project 3 implements, and parallelizes Bellman-Ford

11/9/2022 CSE 332 20

Find the shortest path

5/23/2022 CSE 332 21

The Shortest Path Problem
Given a graph G, and vertices s and t in G, find the
shortest path from s to t.

Two cases: weighted and unweighted.
For a path p = v0 v1 v2 … vk

– unweighted length of path p = k (a.k.a. length)

– weighted length of path p = i=0..k-1 ci,i+1 (a.k.a. cost)

We will assume the graph is directed

5/23/2022 CSE 332 22

Single Source Shortest Paths (SSSP)

Given a graph G and vertex s, find the shortest
paths from s to all vertices in G.

– How much harder is this than finding single shortest
path from s to t?

• Most algorithms will have to find the shortest path to
every vertex in the graph in the worst case

– Although may stop early in some cases

5/23/2022 CSE 332 23

