CSE 332: Data Structures and Parallelism

Fall 2022

Richard Anderson
Anjali Agarwal
Lecture 17: Intro to Graph Theory

Graphs

A formalism for representing relationships between objects

$$
- \text { Graph } G=(\mathbf{V}, E)
$$

-Set of vertices:
$\mathrm{v}=\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{n}}\right\}$
-Set of edges:
$E=\left\{e_{1}, e_{2}, \ldots, e_{m}\right\}$
where each e_{i} connects one

- vertex to another ($\mathrm{v}_{\mathrm{j}}, \mathrm{v}_{\mathrm{k}}$)

$\mathrm{v}=\{\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}\}$ $\mathrm{E}=\mathrm{f}(\mathrm{C}, \mathrm{B})$,
(A, B),
(B, A)
(C, D) \}
For directed edges, $\left(\mathbf{v}_{\mathbf{j}}, \mathbf{v}_{\mathbf{k}}\right)$ and ($\left.\mathbf{v}_{\mathbf{k}}, \mathbf{v}_{\mathbf{j}}\right)$ are distinct. CSE 332

Examples of Graphs

- For each, what are the vertices and edges?
- The web
- Facebook
- Highway map
- Airline routes
- Call graph of a program
- ...

Announcements

- Upcoming lectures
- Intro to graphs
- Topological Sort
- Parallelism (3 lectures)
- Concurrency (2 lectures)
- Shift in lecture order to provide background for Project 3

Undirected Graphs

In undirected graphs, edges have no specific direction (edges are always two-way):

Thus, $(\mathbf{u}, \mathrm{v}) \in \mathbf{E}$ does imply $(\mathrm{v}, \mathrm{u}) \in \mathbf{E}$. Only one of these edges needs to be in the set; the other is implicit.

Degree of a vertex: number of edges containing that vertex. (Same as number of adjacent vertices.)

Weighted Graphs

Each edge has an associated weight or cost.

Paths and Cycles

- A path is a list of vertices $\left\{\mathbf{w}_{1}, \mathbf{w}_{2}, \ldots, \mathbf{w}_{q}\right\}$ such that $\left(\mathbf{w}_{\mathrm{i}}, \mathbf{w}_{\mathrm{i}+1}\right) \in \mathrm{E}$ for all $\mathbf{1 \leq i}<\mathbf{q}$
- A cycle is a path that begins and ends at the same node

$P=\{$ Seattle, Salt Lake City, Chicago,
Dallas, San Francisco, Seattle\}

Simple Paths and Cycles

A simple path repeats no vertices (except that the first can also be the last):
$-P=\{$ Seattle, Salt Lake City, San Francisco, Dallas $\}$
-P = \{Seattle, Salt Lake City, Dallas, San Francisco, Seattle $\}$
A cycle is a path that starts and ends at the same node: $-P=\{$ Seattle, Salt Lake City, Dallas, San Francisco, Seattle $\}$
$-P=\{$ Seattle, Salt Lake City, Seattle, San Francisco, Seattle $\}$
A simple cycle is a cycle that is also a simple path (in undirected graphs, no edge can be repeated).

Paths/Cycles in Directed Graphs

Consider this directed graph:

Is there a path from A to D ? Does the graph contain any cycles?

Undirected Graph Connectivity

- Undirected graphs are connected if there is a path between any two vertices:

Connected graph

- A complete undirected graph has an edge between every pair of vertices:
- (Complete = fully connected)

Disconnected graph

Trees as Graphs

A tree is a graph that is:

- acyclic
- connected

What's the data structure?

Common query: which edges are adjacent to a vertex

- DAGs are directed graphs with no (directed) cycles.

Directed Graph Connectivity

Directed graphs are strongly connected if there is a path from any one vertex to any other.

Directed graphs are weakly connected if there is a path between any two vertices, ignoring direction.

A complete directed graph has a directed edge between every pair of vertices. (Again, complete $=$ fully connected.)

Directed Acyclic Graphs (DAGs)

Representation 2: Adjacency List

A list (array) of length $|\mathrm{V}|$ in which each entry stores a list (linked list) of all adjacent vertices

Runtimes:
Iterate over vertices?
Iterate over edges?
Iterate edges adj. to vertex?
Existence of edge?

Space requirements? Best for what kinds of graphs?

Representation 1: Adjacency Matrix

A $|V| \mathbf{x}|V|$ matrix \mathbf{M} in which an element $\mathbf{M}[\mathbf{u}, \mathrm{v}]$ is true if and only if there is an edge from u to v

Runtimes:
Iterate over vertices?
Iterate over edges?
Iterate edges adj. to vertex?
Existence of edge?

Space requirements? Best for what kinds of graphs?

Representing Undirected Graphs

What do these reps look like for an undirected graph?

Some Applications:
Bus Routes in Downtown Seattle

If we're at $3^{\text {rd }}$ and Pine, how can we get to $1^{\text {st }}$ and University using Metro?
11/7/2022 How about $4^{\text {th }}$ 3 and Seneca?

