CSE 332: Data Structures and Parallelism

Fall 2022
Richard Anderson
Anjali Agarwal
Lecture 17: Intro to Graph Theory

Announcements

- Upcoming lectures
- Intro to graphs
- Topological Sort
- Parallelism (3 lectures)
- Concurrency (2 lectures)
- Shift in lecture order to provide background for Project 3

Graphs

A formalism for representing relationships between objects
-Graph G = (V, E)
-Set of vertices:
$\mathrm{V}=\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{n}}\right\}$
-Set of edges:
$E=\left\{e_{1}, e_{2}, \ldots, e_{m}\right\}$
where each e_{i} connects one

- vertex to another ($\mathrm{v}_{\mathrm{j}}, \mathrm{v}_{\mathrm{k}}$)

$$
\begin{aligned}
\mathrm{V}= & \{\mathrm{A}, \mathrm{~B}, \mathrm{C}, \mathrm{D}\} \\
\mathrm{E}= & \{(\mathrm{C}, \mathrm{~B}), \\
& (\mathrm{A}, \mathrm{~B}), \\
& (\mathrm{B}, \mathrm{~A}) \\
& (C, D)\}
\end{aligned}
$$

For directed edges, $\left(\mathbf{v}_{\mathbf{j}}, \mathbf{v}_{\mathbf{k}}\right)$ and $\left(\mathbf{v}_{\mathbf{k}}, \mathbf{v}_{\mathbf{j}}\right)$ are distinct.

Graphs

Notation

- |V| = number of vertices
- $|\mathrm{E}|=$ number of edges

v is adjacent to u if $(\mathbf{u}, \mathrm{v}) \in \mathbf{E}$
-neighbor of = adjacent to
-Order matters for directed edges
It is possible to have an edge (v, v), called a loop.
-We will assume graphs without loops.

$$
\begin{aligned}
V= & \{A, B, C, D\} \\
E= & \{(C, B), \\
& (A, B), \\
& (B, A) \\
& (C, D)\}
\end{aligned}
$$

Directed Graphs

In directed graphs (a.k.a., digraphs), edges have a direction:

Thus, $(u, v) \in E$ does not imply $(v, u) \in E$. l.e., v adjacent to u does not imply u adjacent to v.

In-degree of a vertex: number of inbound edges. Out-degree of a vertex : number of outbound edges.

Undirected Graphs

In undirected graphs, edges have no specific direction (edges are always two-way):

Thus, $(u, v) \in E$ does imply $(v, u) \in E$. Only one of these edges needs to be in the set; the other is implicit.

Degree of a vertex: number of edges containing that vertex. (Same as number of adjacent vertices.)

Examples of Graphs

- For each, what are the vertices and edges? Are they directed or undirected?
- The internet
- Facebook
- Highway map
- Airline routes
- Call graph of a program

Weighted Graphs

Each edge has an associated weight or cost.

Kingston $\bigcirc{ }^{30} \bigcirc$ Edmonds

Paths and Cycles

- A path is a list of vertices $\left\{w_{1}, w_{2}, \ldots, w_{q}\right\}$ such that $\left(w_{i}, w_{i+1}\right) \in E$ for all $1 \leq i<q$
- A cycle is a path that begins and ends at the same node

P = \{Seattle, Salt Lake City, Chicago,
11/7Dallas, San Francisco, Seattle\}

Path Length and Cost

- Path length: the number of edges in the path
- Path cost: the sum of the costs of each edge

How would you ensure that length $(p)=\operatorname{cost}(p)$ for all p ?

Simple Paths and Cycles

A simple path repeats no vertices (except that the first can also be the last):
-P = \{Seattle, Salt Lake City, San Francisco, Dallas\}
$-P=\{$ Seattle, Salt Lake City, Dallas, San Francisco, Seattle $\}$
A cycle is a path that starts and ends at the same node:
$-P=\{$ Seattle, Salt Lake City, Dallas, San Francisco, Seattle $\}$
-P = \{Seattle, Salt Lake City, Seattle, San Francisco, Seattle $\}$
A simple cycle is a cycle that is also a simple path (in undirected graphs, no edge can be repeated).

Paths/Cycles in Directed Graphs

Consider this directed graph:

Is there a path from A to D ?
Does the graph contain any cycles?

Undirected Graph Connectivity

- Undirected graphs are connected if there is a path between any two vertices:

Connected graph

Disconnected graph

- A complete undirected graph has an edge between every pair of vertices:
- $($ Complete $=$ fully connected $)$

Directed Graph Connectivity

Directed graphs are strongly connected if there is a path from any one vertex to any other.

Directed graphs are weakly connected if there is a path between any two vertices, ignoring direction.

A complete directed graph has a directed edge between every pair of vertices. (Again, complete = fully connected.)

Trees as Graphs

A tree is a graph that is:

\author{

- undirected
 - acyclic
 - connected
}

Rooted Trees

We are more accustomed to:
Rooted trees (a tree node that is "special")
Directed edges from parents to children (parent closer to root).

A rooted tree (root indicated in red)

Rooted tree with directed
edges from parents to children.

Directed Acyclic Graphs (DAGs)

- DAGs are directed graphs with no (directed) cycles.

What's the data structure?

Common query: which vertices are neighbors of a vertex

Representation 1: Adjacency List

A list (array) of length $|\mathrm{V}|$ in which each entry stores a list (linked list) of all adjacent vertices

Runtimes:

Iterate over vertices?
Iterate over edges?
Iterate edges adj. to vertex v?
Existence of edge (u, v) ?

Representation 2: Adjacency Matrix

$A|V| x|V|$ matrix M in which an element $M[u, v]$ is true if and only if there is an edge from u to v

Runtimes:

Iterate over vertices?
Iterate over edges?
Iterate edges adj. to vertex? Existence of edge?

Representing Undirected Graphs

 What do these reps look like for an undirected graph?

Some Applications: Bus Routes in Downtown Seattle

If we're at $3^{\text {rd }}$ and Pine, how can we get to $1^{\text {st }}$ and University using Metro?

