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Announcements

• Upcoming lectures
– Intro to graphs
– Topological Sort
– Parallelism (3 lectures)
– Concurrency (2 lectures)

• Shift in lecture order to provide background 
for Project 3
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Graphs
A formalism for representing relationships between objects

–Graph G = (V,E)
–Set of vertices:
V = {v1,v2,…,vn}

–Set of edges:
E = {e1,e2,…,em} 
where each ei connects one

– vertex to another (vj,vk)

For directed edges, (vj,vk) and (vk,vj) are distinct.
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B

C

V = {A, B, C, D}
E = {(C, B), 

(A, B), 
(B, A)
(C, D)}

D
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Refer to the picture to say vertices are circles and edges are arrows



Graphs
Notation

– |V| = number of vertices
– |E| = number of edges

v is adjacent to u if (u,v)∈ E
–neighbor of = adjacent to
–Order matters for directed edges

It is possible to have an edge (v,v), 
called a loop.  
–We will assume graphs without loops.

V = {A, B, C, D}

E = {(C, B), 

(A, B), 

(B, A)

(C, D)}
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Directed Graphs
In directed graphs (a.k.a., digraphs), edges have a direction:

Thus, (u,v)∈ E does not imply (v,u)∈ E.
I.e., v adjacent to u does not imply u adjacent to v.

In-degree of a vertex: number of inbound edges.
Out-degree of a vertex : number of outbound edges.

or
2 edges 
here
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Undirected Graphs
In undirected graphs, edges have no specific direction (edges 
are always two-way):

Thus, (u,v)∈ E does imply (v,u)∈ E.  Only one of these 
edges needs to be in the set; the other is implicit.

Degree of a vertex: number of edges containing that vertex.  
(Same as number of adjacent  vertices.)

A

B

C

D
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Examples of Graphs
• For each, what are the vertices and edges?  

Are they directed or undirected?

• The internet

• Facebook

• Highway map

• Airline routes

• Call graph of a program
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The question is intentionally ambiguous

Then give internet and call graph example

(2 interpretations of internet)



Weighted Graphs

20

30

35

60

Mukilteo

Edmonds

Seattle

Bremerton

Bainbridge

Kingston

Clinton

Each edge has an associated weight or cost.
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Paths and Cycles
• A path is a list of vertices {w1, w2, …, wq} such that     

(wi, wi+1) ∈ E for all 1 ≤ i < q
• A cycle is a path that begins and ends at the same node

Dallas

Seattle

San Francisco

Chicago

Salt Lake City

P = {Seattle, Salt Lake City, Chicago, 
Dallas, San Francisco, Seattle}11/7/2022 CSE 332 9
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Emphasize intuition



Path Length and Cost
• Path length: the number of edges in the path
• Path cost: the sum of the costs of each edge

Seattle

San Francisco
Dallas

Chicago

Salt Lake City

3.5

2 2

2.5

3

2
2.5

2.5

For path P:
length(P) = 5
cost(P) = 11.5

How would you ensure that length(p)=cost(p) for all p?
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Simple Paths and Cycles
A simple path repeats no vertices (except that the first can 
also be the last):

–P = {Seattle, Salt Lake City, San Francisco, Dallas}
–P = {Seattle, Salt Lake City, Dallas, San Francisco, Seattle}

A cycle is a path that starts and ends at the same node:
–P = {Seattle, Salt Lake City, Dallas, San Francisco, Seattle}
–P = {Seattle, Salt Lake City, Seattle, San Francisco, Seattle}

A simple cycle is a cycle that is also a simple path (in 
undirected graphs, no edge can be repeated).
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Cycles in undirected graphs can’t repeat an edge. Why would we say that?



Paths/Cycles in Directed Graphs

Consider this directed graph:

Is there a path from A to D?
Does the graph contain any cycles?

A

B

C

D
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Undirected Graph Connectivity
• Undirected graphs are connected if there is a path between 

any two vertices:

• A complete undirected graph has an edge between every 
pair of vertices:

• (Complete = fully connected)

Connected graph Disconnected graph
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Directed graphs are strongly connected
if there is a path from any one vertex to 
any other.

Directed graphs are weakly connected
if there is a path between any two vertices,
ignoring direction.

A complete directed graph has a directed 
edge between every pair of vertices.
(Again, complete = fully connected.)

Directed Graph Connectivity

11/7/2022 CSE 332 14

Presenter
Presentation Notes
Can a directed graph which is strongly connected be acyclic?
NO. (Except the trivial one node case.) There must be a path from A to B and a path from B to A; so, there must be a cycle.
What about a weakly connected directed graph?
YES! See the one on the slide.

There are also further definitions of these; for example, the concept of biconnectivity showed up in my satisfiability research:

Does the graph have two distinct paths between any two vertices.



Trees as Graphs

A tree is a graph that is:
– undirected
– acyclic
– connected A

B

D E

C

F

HG
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We won’t always require the constraint that the tree be directed.

In fact, if it’s not directed, we can just pick a root and hang everything from that node (making the edges directed); so, it’s not a big deal.



Rooted Trees
We are more accustomed to:
Rooted trees (a tree node that is “special”)
Directed edges from parents to children (parent closer to root).

A

B

D E

C

F

HG

A

B

D E

C

F

HG

A

B

D E

C

F

HG

A rooted tree (root indicated in red) 
drawn two ways

Rooted tree with directed 
edges from parents to children.
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Directed Acyclic Graphs (DAGs)
• DAGs are directed 

graphs with no 
(directed) cycles.

main()

add()

access()

mult()

read()
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DAGs are a very common representation for dependence graphs.  The DAG here shows the non-recursive call-graph from a program.



What’s the data structure?
Common query:  which vertices are neighbors of a vertex
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Representation 1: Adjacency List
A list (array) of length |V| in which each entry stores a list 
(linked list) of all adjacent vertices

Space requirements?

Best for what kinds of graphs?

Runtimes:
Iterate over vertices?
Iterate over edges?
Iterate edges adj. to vertex v?
Existence of edge (u,v)?

A

B

C

D A

B

C

D

11/7/2022 CSE 332 19

Presenter
Presentation Notes
Some operations:
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Representation 2: Adjacency Matrix
A |V| x |V| matrix M in which an element M[u,v] is true 
if and only if there is an edge from u to v

Space requirements?

Best for what kinds of graphs?

Runtimes:
Iterate over vertices?
Iterate over edges?
Iterate edges adj. to vertex?
Existence of edge?

A

B

C

D

A B C

A

B

C

D

D
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Representing Undirected Graphs
What do these reps look like for an undirected graph?

A B C

A

B

C

D

D

A

B

C

D

A

B

C

D

Adjacency matrix:
Adjacency list:
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Some Applications:
Bus Routes in Downtown Seattle

If we’re at 3rd and Pine, how can we get to
1st and University using Metro?  

How about 4th and Seneca?11/7/2022 CSE 332 22
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