

Permutations

- How many possible orderings can you get?
- Example: a, b, c ($N=3$)
- (abc), (a c b), (bac), (b c a), (c ab), (c ba)
-6 orderings $=3 \cdot 2 \cdot 1=3$! (i.e., " 3 factorial")
- For N elements
- N choices for the first position, $(N-1)$ choices for the second position, ..., (2) choices, 1 choice
- $N(N-1)(N-2) \cdots(2)(1)=N$! possible orderings

Announcements

- Midterm, Friday, November 4
- Next week
- Graph Theory
- Graph Theory
- Veterans Day

11/2/2022

How fast can we sort?

Heapsort and Mergesort have $\mathrm{O}(N \log N)$ worst case running time.

These algorithms, along with Quicksort, also have $\mathrm{O}(N \log N)$ average case running time.

Can we do any better?

Sorting Model

Recall our basic sorting assumption:

We can only compare two elements at a time.

These comparisons prune the space of possible orderings.

We can represent these concepts in a...

How many leaves on a tree?

Suppose you have a binary tree of height h. How many leaves in a perfect tree?

We can prune a perfect tree to make any binary tree of same height. Can \# of leaves increase?

Decision Trees

- A Decision Tree is a Binary Tree such that:
- Each node = a set of orderings
- i.e., the remaining solution space
- Each edge = 1 comparison
- Each leaf $=1$ unique ordering
- How many leaves for N distinct elements?
- Conceptual Tool
- Only 1 leaf has the ordering that is the desired correctly sorted arrangement

Decision Trees and Sorting

- Every comparison based sorting algorithm corresponds to a decision tree
- Finds correct leaf by choosing edges to follow
- i.e., by making comparisons
- We will focus on worst case run time
- Observations:
- Worst case run time \geq max number of comparisons
- Max number of comparisons
$=$ length of the longest path in the decision tree
$=$ tree height

11/2/2022

10

Lower bound on Height

- A binary tree of height h has at most 2^{h} leaves
- A decision tree has N ! leaves. What is its minimum height?

Lower bound on $\log (\mathrm{n}!)$

$$
\begin{aligned}
n! & =n \cdot(n-1) \cdot(n-2) \cdots 4 \cdot 3 \cdot 2 \cdot 1 \\
& \geq n \cdot(n-1) \cdot(n-2) \cdots \frac{n}{2} \\
& \geq \frac{n}{2} \cdot \frac{n}{2} \cdot \frac{n}{2} \cdots \frac{n}{2} \\
& \geq\left(\frac{n}{2}\right)^{n / 2}
\end{aligned}
$$

$\log n!\geq \log \left(\frac{n}{2}\right)^{n / 2}=\frac{n}{2} \log \frac{n}{2}$

$\Omega(N \log N)$

Worst case run time of any comparison-based sorting algorithm is $\Omega(N \log N)$.

Can also show that average case run time is also $\Omega(N \log N)$.

Can we do better if we don't use comparisons?

Can we sort in $\mathrm{O}(\mathrm{n})$?

- Suppose keys are integers between 0 and 1000

BucketSort (aka BinSort)

If all values to be sorted are integers between 1 and B, create an array count of size B, increment counts while traversing the input, and finally output the result.

Example $B=5$. Input $=(5,1,3,4,3,2,1,1,5,4,5)$

count array	
1	
2	
3	
4	
5^{2022}	

Running time to sort \mathbf{n} items?
CEE 332

What about our $\Omega(n \log n)$ bound?

Dependence on B

What if B is very large (e.g., 2^{64})?

Definition

- A sort is said to be stable if the order of elements with equal key is preserved.

Fixing impracticality: RadixSort

- RadixSort: generalization of BucketSort for large integer keys
- Origins go back to the 1890 census.
- Radix = "The base of a number system"
- We'll use 10 for convenience, but could be anything
- Idea:
- BucketSort on one digit at a time
- After ${ }^{\text {th }}$ sort, the last k digits are sorted
- Set number of buckets: $B=$ radix.

Radix Sort Example (3 ${ }^{\text {rd }}$ pass)

Invariant: after k passes the low order k digits are sorted.

Radix Sort Complexity

In our examples, we had:

- Input size, N
- Number of buckets, $B=10$
- Maximum value, $\mathrm{M}<10^{3}$
- Number of passes, $\mathrm{P}=$

How much work per pass?

Total time?

11/2/2022
CSE 332

Sorting Summary

$O\left(N^{2}\right)$ average, worst case:

- Selection Sort, Bubblesort, Insertion Sort
$O(N \log N)$ average case:
- Heapsort: In-place, not stable.
- BST Sort: $O(N)$ extra space (including tree pointers, possibly poor memory locality), stable.
- Mergesort: $O(N)$ extra space, stable.
- Quicksort: claimed fastest in practice, but $O\left(N^{2}\right)$ worst case. Recursion/stack requirement. Not stable.
$\Omega(N \log N)$ worst and average case:
- Any comparison-based sorting algorithm
$O(N)$
- Radix Sort: fast and stable. Not comparison based. Not in-place.

