

CSE 332: Data Structures and Parallelism

Spring 2022 Richard Anderson Lecture 16: Sorting IV

11/2/2022 CSE 332

Announcements

- · Midterm, Friday, November 4
- · Next week
 - Graph Theory
 - Graph Theory
 - Veterans Day

1/2/2022

How fast can we sort?

Heapsort and Mergesort have $O(N \log N)$ worst case running time.

These algorithms, along with Quicksort, also have $O(N \log N)$ average case running time.

Can we do any better?

022 CSE 332 **4**

Permutations

- How many possible orderings can you get?
 - Example: a, b, c (N = 3)
 - (a b c), (a c b), (b a c), (b c a), (c a b), (c b a)
 - 6 orderings = 3•2•1 = 3! (i.e., "3 factorial")
- For N elements
 - N choices for the first position, (N-1) choices for the second position, ..., (2) choices, 1 choice
 - $-N(N-1)(N-2)\cdots(2)(1)=N!$ possible orderings

11/2/2022 CSE 332

Sorting Model

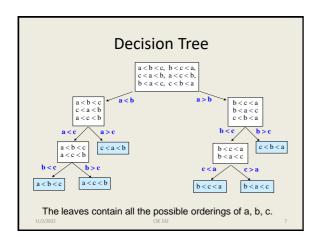
Recall our basic sorting assumption:

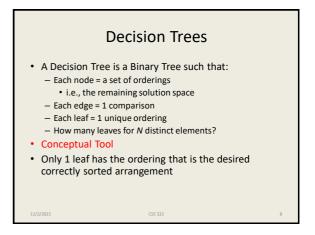
We can only compare two elements at a time.

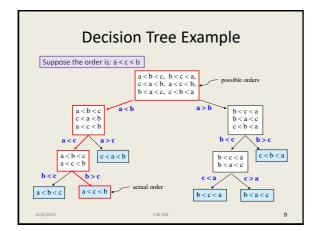
These comparisons prune the space of possible orderings.

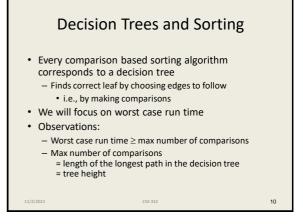
We can represent these concepts in a...

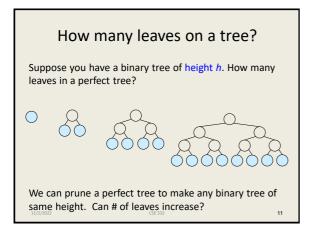
72022 CSE 332 **6**











Lower bound on Height • A binary tree of height h has at most 2^h leaves • A decision tree has N! leaves. What is its minimum height?

Lower bound on log(n!)

$$\begin{array}{rcl} n! & = & n \cdot (n-1) \cdot (n-2) \cdots 4 \cdot 3 \cdot 2 \cdot 1 \\ \\ & \geq & n \cdot (n-1) \cdot (n-2) \cdots \frac{n}{2} \\ \\ & \geq & \frac{n}{2} \cdot \frac{n}{2} \cdot \frac{n}{2} \cdots \frac{n}{2} \\ \\ & \geq & \left(\frac{n}{2}\right)^{n/2} \end{array}$$

$$\log n! \ge \log \left(\frac{n}{2}\right)^{n/2} = \frac{n}{2} \log \frac{n}{2}$$

11/2/2022 CSE 332

$\Omega(N \log N)$

Worst case run time of any comparison-based sorting algorithm is $\Omega(N \log N)$.

Can also show that average case run time is also $\Omega(N \log N)$.

Can we do better if we don't use comparisons?

/2022 CSE 3:

Can we sort in O(n)?

· Suppose keys are integers between 0 and 1000

11/2/2022 CSE 332 **15**

BucketSort (aka BinSort)

If all values to be sorted are integers between 1 and B, create an array count of size B, increment counts while traversing the input, and finally output the result.

Example B=5. Input = (5,1,3,4,3,2,1,1,5,4,5)

count array		
1		
2		
3		Running time to sort n items?
4		
5 ^{2/2022}		CSE 332

What about our $\Omega(n \log n)$ bound?

/2/2022 CSE 332 17

Dependence on B

What if *B* is very large (e.g., 2⁶⁴)?

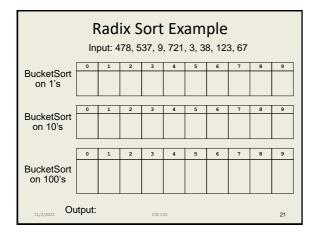
.....

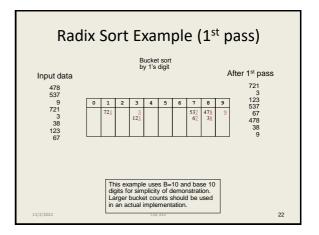
Definition

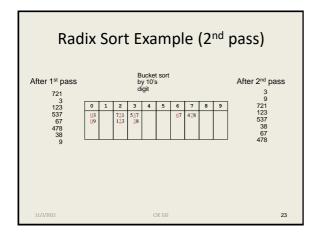
· A sort is said to be stable if the order of elements with equal key is preserved.

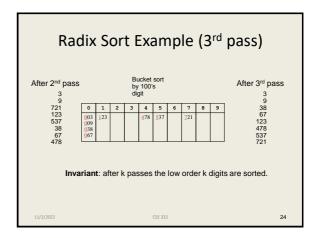
Fixing impracticality: RadixSort

- RadixSort: generalization of BucketSort for large integer keys
- · Origins go back to the 1890 census.
- Radix = "The base of a number system"
 - We'll use 10 for convenience, but could be anything
- <u>Idea</u>:
 - BucketSort on one digit at a time
 - After kth sort, the last k digits are sorted
 - Set number of buckets: B = radix.









Radix Sort Complexity

In our examples, we had:

- Input size, N
 Number of buckets, B = 10
- Maximum value, M < 10³
- Number of passes, P =

How much work per pass?

Total time?

CSE 332

Sorting Summary

O(N2) average, worst case:

- Selection Sort, Bubblesort, Insertion Sort

O(N log N) average case:

- Heapsort: In-place, not stable.
- BST Sort: O(N) extra space (including tree pointers, possibly poor memory locality), stable.
- Mergesort: O(N) extra space, stable.
- Quicksort: claimed fastest in practice, but O(N²) worst case.
 Recursion/stack requirement. Not stable.

 $\Omega(N \log N)$ worst and average case:

- Any comparison-based sorting algorithm
 O(N)
 - Radix Sort: fast and stable. Not comparison based. Not in-place.

CSE 332