

CSE 332: Data Structures and Parallelism

Spring 2022 Richard Anderson Lecture 16: Sorting IV

Announcements

- Midterm, Friday, November 4
- Next week
 - Graph Theory
 - Graph Theory
 - Veterans Day

Sorting: The Big Picture

How fast can we sort?

Heapsort and Mergesort have O(N log N) worst case running time.

These algorithms, along with Quicksort, also have O(N log N) **average** case running time.

Can we do any better?

Permutations

- How many possible orderings can you get?
 - Example: a, b, c (N = 3)
 - (a b c), (a c b), (b a c), (b c a), (c a b), (c b a)
 - 6 orderings = 3•2•1 = 3! (i.e., "3 factorial")
- For *N* elements
 - N choices for the first position, (N-1) choices for the second position, ..., (2) choices, 1 choice
 - $N(N-1)(N-2)\cdots(2)(1) = N!$ possible orderings

Sorting Model

Recall our basic sorting assumption:

We can only compare two elements at a time.

These comparisons prune the space of possible orderings.

We can represent these concepts in a...

The leaves contain all the possible orderings of a, b, c.

CSE 332

Decision Trees

- A Decision Tree is a Binary Tree such that:
 - Each node = a set of orderings
 - i.e., the remaining solution space
 - Each edge = 1 comparison
 - Each leaf = 1 unique ordering
 - How many leaves for N distinct elements?
- Conceptual Tool
- Only 1 leaf has the ordering that is the desired correctly sorted arrangement

Decision Tree Example

Decision Trees and Sorting

- Every comparison based sorting algorithm corresponds to a decision tree
 - Finds correct leaf by choosing edges to follow
 - i.e., by making comparisons
- We will focus on worst case run time
- Observations:
 - Worst case run time \geq max number of comparisons
 - Max number of comparisons
 = length of the longest path in the decision tree
 = tree height

How many leaves on a tree?

Suppose you have a binary tree of height *h*. How many leaves in a perfect tree?

We can prune a perfect tree to make any binary tree of same height. Can # of leaves increase?

Lower bound on Height

- A binary tree of height h has at most 2^h leaves
- A decision tree has N! leaves. What is its minimum height?

Lower bound on log(n!)

$$n! = n \cdot (n-1) \cdot (n-2) \cdots 4 \cdot 3 \cdot 2 \cdot 1$$

$$\geq n \cdot (n-1) \cdot (n-2) \cdots \frac{n}{2}$$

$$\geq \frac{n}{2} \cdot \frac{n}{2} \cdot \frac{n}{2} \cdots \frac{n}{2}$$

$$\geq \left(\frac{n}{2}\right)^{n/2}$$

$$\log n! \ge \log \left(\frac{n}{2}\right)^{n/2} = \frac{n}{2}\log \frac{n}{2}$$

$\Omega(N \log N)$

Worst case run time of any comparison-based sorting algorithm is $\Omega(N \log N)$.

Can also show that **average case** run time is also $\Omega(N \log N)$.

Can we do better if we don't use comparisons?

Can we sort in O(n)?

• Suppose keys are integers between 0 and 1000

BucketSort (aka BinSort)

If all values to be sorted are integers between 1 and *B*, create an array **count** of size *B*, **increment** counts while traversing the input, and finally output the result.

What about our $\Omega(n \log n)$ bound?

Dependence on B

What if **B** is very large (e.g., 2⁶⁴)?

Definition

• A sort is said to be stable if the order of elements with equal key is preserved.

Fixing impracticality: RadixSort

- RadixSort: generalization of BucketSort for large integer keys
- Origins go back to the 1890 census.
- Radix = "The base of a number system"
 - We'll use 10 for convenience, but could be anything
- <u>Idea</u>:
 - BucketSort on one digit at a time
 - After kth sort, the last k digits are sorted
 - Set number of buckets: B = radix.

Radix Sort Example

Input: 478, 537, 9, 721, 3, 38, 123, 67

Radix Sort Example (1st pass)

Bucket sort by 1's digit

This example uses B=10 and base 10 digits for simplicity of demonstration. Larger bucket counts should be used in an actual implementation.

Radix Sort Example (2nd pass)

Radix Sort Example (3rd pass)

Invariant: after k passes the low order k digits are sorted.

Radix Sort Complexity

In our examples, we had:

- Input size, N
- Number of buckets, B = 10
- Maximum value, $M < 10^3$
- Number of passes, P =

How much work per pass?

Total time?

Sorting Summary

O(N²) average, worst case:

- Selection Sort, Bubblesort, Insertion Sort

O(N log N) average case:

- Heapsort: In-place, not stable.
- BST Sort: O(N) extra space (including tree pointers, possibly poor memory locality), stable.
- **Mergesort**: O(N) extra space, stable.
- **Quicksort**: claimed fastest in practice, but $O(N^2)$ worst case. Recursion/stack requirement. Not stable.

$\Omega(N \log N)$ worst and average case:

Any comparison-based sorting algorithm

O(N)

- Radix Sort: fast and stable. Not comparison based. Not in-place.