
CSE 332: Data Structures and
Parallelism

Spring 2022

Richard Anderson

Lecture 16: Sorting IV

11/2/2022 CSE 332 1

Announcements

• Midterm, Friday, November 4

• Next week

– Graph Theory

– Graph Theory

– Veterans Day

11/2/2022 CSE 332 2

Sorting: The Big Picture

Simple

algorithms:

O(n2)

Fancier

algorithms:

O(n log n)

Comparison

lower bound:

(n log n)

Specialized

algorithms:

O(n)

Insertion sort

Selection sort

…

Heap sort

Merge sort

Quick sort (avg)

…

Bucket sort

Radix sort

11/2/2022 CSE 332 3

How fast can we sort?

Heapsort and Mergesort have O(N log N) worst case
running time.

These algorithms, along with Quicksort, also have
O(N log N) average case running time.

Can we do any better?

411/2/2022 CSE 332

Permutations
• How many possible orderings can you get?

– Example: a, b, c (N = 3)

– (a b c), (a c b), (b a c), (b c a), (c a b), (c b a)

– 6 orderings = 3•2•1 = 3! (i.e., “3 factorial”)

• For N elements

– N choices for the first position, (N-1) choices for the
second position, …, (2) choices, 1 choice

– N(N-1)(N-2)(2)(1)= N! possible orderings

511/2/2022 CSE 332

Sorting Model

Recall our basic sorting assumption:

We can only compare

two elements at a time.

These comparisons prune the space of possible
orderings.

We can represent these concepts in a…

611/2/2022 CSE 332

Decision Tree

11/2/2022 CSE 332 7

a < b < c, b < c < a,
c < a < b, a < c < b,
b < a < c, c < b < a

a < b < c
c < a < b
a < c < b

b < c < a
b < a < c
c < b < a

a < b < c
a < c < b

c < a < b

a < b < c a < c < b

b < c < a
b < a < c

c < b < a

b < c < a b < a < c

a < b a > b

a > ca < c

b < c b > c

b < c b > c

c < a c > a

The leaves contain all the possible orderings of a, b, c.

Decision Trees

• A Decision Tree is a Binary Tree such that:
– Each node = a set of orderings

• i.e., the remaining solution space

– Each edge = 1 comparison

– Each leaf = 1 unique ordering

– How many leaves for N distinct elements?

• Conceptual Tool

• Only 1 leaf has the ordering that is the desired
correctly sorted arrangement

11/2/2022 CSE 332 8

Decision Tree Example

9

a < b < c, b < c < a,
c < a < b, a < c < b,
b < a < c, c < b < a

a < b < c
c < a < b
a < c < b

b < c < a
b < a < c
c < b < a

a < b < c
a < c < b

c < a < b

a < b < c a < c < b

b < c < a
b < a < c

c < b < a

b < c < a b < a < c

a < b a > b

a > ca < c

b < c b > c

b < c b > c

c < a c > a

possible orders

actual order

11/2/2022 CSE 332

Suppose the order is: a < c < b

Decision Trees and Sorting

• Every comparison based sorting algorithm
corresponds to a decision tree
– Finds correct leaf by choosing edges to follow

• i.e., by making comparisons

• We will focus on worst case run time

• Observations:
– Worst case run time  max number of comparisons

– Max number of comparisons
= length of the longest path in the decision tree
= tree height

1011/2/2022 CSE 332

How many leaves on a tree?

Suppose you have a binary tree of height h. How many
leaves in a perfect tree?

We can prune a perfect tree to make any binary tree of
same height. Can # of leaves increase?

1111/2/2022 CSE 332

Lower bound on Height

• A binary tree of height h has at most 2h leaves

• A decision tree has N! leaves. What is its minimum
height?

1211/2/2022 CSE 332

Lower bound on log(n!)

11/2/2022 CSE 332 13

(N log N)

Worst case run time of any comparison-based sorting
algorithm is (N log N) .

Can also show that average case run time is also
(N log N) .

Can we do better if we don’t use comparisons?

1411/2/2022 CSE 332

Can we sort in O(n)?

• Suppose keys are integers between 0 and 1000

1511/2/2022 CSE 332

BucketSort (aka BinSort)

If all values to be sorted are integers between 1 and B,
create an array count of size B, increment counts while
traversing the input, and finally output the result.

Example B=5. Input = (5,1,3,4,3,2,1,1,5,4,5)

11/2/2022 CSE 332 16

count array

1

2

3

4

5

Running time to sort n items?

What about our (n log n) bound?

1711/2/2022 CSE 332

Dependence on B

What if B is very large (e.g., 264)?

11/2/2022 CSE 332 18

Definition

• A sort is said to be stable if the order of
elements with equal key is preserved.

11/2/2022 CSE 332 19

Fixing impracticality: RadixSort

• RadixSort: generalization of BucketSort for large
integer keys

• Origins go back to the 1890 census.

• Radix = “The base of a number system”
– We’ll use 10 for convenience, but could be anything

• Idea:
– BucketSort on one digit at a time
– After kth sort, the last k digits are sorted
– Set number of buckets: B = radix.

2011/2/2022 CSE 332

Radix Sort Example

21

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

Input: 478, 537, 9, 721, 3, 38, 123, 67

BucketSort
on 1’s

0 1 2 3 4 5 6 7 8 9

BucketSort
on 10’s

BucketSort
on 100’s

Output:
11/2/2022 CSE 332

Radix Sort Example (1st pass)

22

67
123

38
3

721
9

537
478

Bucket sort
by 1’s digit

0 1

721

2 3

3
123

4 5 6 7

537
67

8

478
38

9

9

Input data

This example uses B=10 and base 10
digits for simplicity of demonstration.
Larger bucket counts should be used
in an actual implementation.

721
3

123
537

67
478

38
9

After 1st pass

11/2/2022 CSE 332

Radix Sort Example (2nd pass)

23

Bucket sort
by 10’s
digit

0

03
09

1 2

721
123

3

537
38

4 5 6

67

7

478

8 9

721
3

123
537

67
478

38
9

After 1st pass After 2nd pass

3
9

721
123
537

38
67

478

11/2/2022 CSE 332

Radix Sort Example (3rd pass)

24

Bucket sort
by 100’s
digit

0

003
009
038
067

1

123

2 3 4

478

5

537

6 7

721

8 9

After 2nd pass

3
9

721
123
537

38
67

478

After 3rd pass

3
9

38
67

123
478
537
721

Invariant: after k passes the low order k digits are sorted.

11/2/2022 CSE 332

Radix Sort Complexity

11/2/2022 CSE 332 25

In our examples, we had:
– Input size, N
– Number of buckets, B = 10
– Maximum value, M < 103

– Number of passes, P =

How much work per pass?

Total time?

Sorting Summary
O(N2) average, worst case:

– Selection Sort, Bubblesort, Insertion Sort
O(N log N) average case:

– Heapsort: In-place, not stable.
– BST Sort: O(N) extra space (including tree pointers, possibly poor

memory locality), stable.
– Mergesort: O(N) extra space, stable.
– Quicksort: claimed fastest in practice, but O(N2) worst case.

Recursion/stack requirement. Not stable.
(N log N) worst and average case:

– Any comparison-based sorting algorithm
O(N)

– Radix Sort: fast and stable. Not comparison based. Not in-place.

2611/2/2022 CSE 332

