
CSE 332: Data Structures and
Parallelism

Spring 2022

Richard Anderson

Lecture 15: Sorting III

10/31/2022 CSE 332 1

Announcements

• Midterm, Friday, November 4

– In class

– Coverage: up to, and including QuickSort

• Review session,

– Tuesday, Nov 1, CSE2 G01, 3 pm – 5 pm

•

10/31/2022 CSE 332 2

Sorting: The Big Picture

Simple

algorithms:

O(n2)

Fancier

algorithms:

O(n log n)

Comparison

lower bound:

(n log n)

Specialized

algorithms:

O(n)

Insertion sort

Selection sort

…

Heap sort

Merge sort

Quick sort (avg)

…

Bucket sort

Radix sort

10/31/2022 CSE 332 3

“Divide and Conquer”

• Idea 1: Divide array in half, recursively sort left and right
halves, then merge two halves
 known as Mergesort

• Idea 2 : Partition array into small items and large items, then
recursively sort the two sets
 known as Quicksort

• Recurrences used to analyze runtime of recursive algorithms

10/31/2022 CSE 332 4

Recurrences

General form:

T(N) = S(N) + i aiT(fi(N)); T(1) = c;

Important recurrences
T(N) = T(N-1) + f(N)
T(N) = T(aN) + cN, a < 1
T(N) = aT(N/b) + Nc

(for midterm, understand aT(N/a) + N)

10/31/2022 CSE 332 5

Review

• T(N) = T(N-1) + N2; T(0) = 0

– Unroll to get a summation

• T(N) = T(N/2) + N; T(1) = 1

– Unroll to get geometric sum

– T(N) = N + N/2 + N/4 + N/8 + . . . + 4 + 2 + 1 = 2N-1

10/31/2022 CSE 332 6

T(N) = 4 T(N/4) + N; T(1) = 1

10/31/2022 CSE 332 7

Quicksort

Quicksort uses a divide and conquer strategy, but does
not require the O(N) extra space that MergeSort
does.

Here’s the idea for sorting array S:
1. Pick an element v in S. This is the pivot value.
2. Partition S-{v} into two disjoint subsets, S1 and S2 such

that:
• elements in S1 are all  v
• elements in S2 are all  v

3. Return concatenation of QuickSort(S1), v, QuickSort(S2)

Recursion ends if Quicksort() receives an array of length 0 or 1.

10/31/2022 CSE 332 8

The steps of Quicksort

13
81

92

43

65

31 57

26

75
0

S select pivot value

13
81

92

43 65
31

5726

75
0

S1 S2
partition S

13 4331 57260

S1

81 927565

S2

QuickSort(S1) and
QuickSort(S2)

13 4331 57260 65 81 9275S Presto! S is sorted

10/31/2022 CSE 332 9

Quicksort Example

4 2 3 1 6 9 8

1 93 4 6

1 2 3 4 6 8 9

1 2 3 4 5 6 8 9

Conquer

Conquer

Conquer

Divide

Divide

Divide

1 element

4 6 3 8 1 9 2 5

5

8
2

43

3 4

10/31/2022 CSE 332 10

Pivot Picking and Partitioning

The tricky parts are:

• Picking the pivot
– Goal: pick a pivot value so that |S1| and |S2| are

roughly equal in size.

• Partitioning
– Preferably in-place

– Dealing with duplicates

10/31/2022 CSE 332 11

Picking the pivot

• Choose the first element in the subarray

• Choose a value that might be close to the
middle

– Median of three

• Choose a random element

10/31/2022 CSE 332 12

Quicksort Partitioning

• Partition the array into left and right sub-arrays such that:

– elements in left sub-array are  pivot

– elements in right sub-array are  pivot

• Can be done in-place with another “two pointer method”

– Sounds like mergesort, but here we are partitioning, not
sorting…

– …and we can do it in-place.

• Lots of work has been invested in engineering
quicksort

10/31/2022 CSE 332 13

Quicksort Pseudocode

Quicksort(A[], left, right) {

if (left < right) {

medianOf3Pivot(A, left, right);

pivotIndex = Partition(A, left+1, right-1);

Quicksort(A, left, pivotIndex – 1);

Quicksort(A, pivotIndex + 1, right);

}

}

Putting the pieces together:

10/31/2022 CSE 332 14

Important Tweak

Quicksort(A[], left, right) {

if (right – left ≥ CUTOFF) {

medianOf3Pivot(A, left, right);

pivotIndex = Partition(A, left+1, right-1);

Quicksort(A, left, pivotIndex – 1);

Quicksort(A, pivotIndex + 1, right);

} else {

InsertionSort(A, left, right);

}

}

CUTOFF = 16 is reasonable.

Insertion sort is actually better than quicksort on
small arrays. Thus, a better version of quicksort:

10/31/2022 CSE 332 15

Quicksort run time

• What is the best case behavior?

10/31/2022 CSE 332 16

Worst case run time

• What is the bad case for partitioning?

• Design a bad case input (assume first element
is chosen as pivot)

10/31/2022 CSE 332 17

Average case performance

• Assume all permutations of the data are
equally likely

– Or equivalently, a random pivot is chosen

• The math gets messy, but doable

𝑇 𝑛 = 𝑐𝑛 +
1

𝑛
෍

𝑖=0

𝑛−1

(𝑇 𝑖 + 𝑇 𝑛 − 1 − 𝑖)

10/31/2022 CSE 332 18

Properties of Quicksort

• O(N2) worst case performance, but

O(N log N) average case performance.

• Pure quicksort not good for small arrays.

• Iterative version uses a stack

• “In-place,” but uses auxiliary storage because of
recursive calls.

• Used by Java for sorting arrays of primitive types.

10/31/2022 CSE 332 19

How fast can we sort?

Heapsort and Mergesort have O(N log N) worst case
running time.

These algorithms, along with Quicksort, also have O(N
log N) average case running time.

Can we do any better?

2010/31/2022 CSE 332

Permutations

• Suppose you are given N elements

– Assume no duplicates

• How many possible orderings can you get?

– Example: a, b, c (N = 3)

2110/31/2022 CSE 332

Permutations
• How many possible orderings can you get?

– Example: a, b, c (N = 3)

– (a b c), (a c b), (b a c), (b c a), (c a b), (c b a)

– 6 orderings = 3•2•1 = 3! (i.e., “3 factorial”)

• For N elements

– N choices for the first position, (N-1) choices for the
second position, …, (2) choices, 1 choice

– N(N-1)(N-2)(2)(1)= N! possible orderings

2210/31/2022 CSE 332

Sorting Model

Recall our basic sorting assumption:

We can only compare

two elements at a time.

These comparisons prune the space of possible
orderings.

We can represent these concepts in a…

2310/31/2022 CSE 332

Decision Tree

24

a < b < c, b < c < a,
c < a < b, a < c < b,
b < a < c, c < b < a

a < b < c
c < a < b
a < c < b

b < c < a
b < a < c
c < b < a

a < b < c
a < c < b

c < a < b

a < b < c a < c < b

b < c < a
b < a < c

c < b < a

b < c < a b < a < c

a < b a > b

a > ca < c

b < c b > c

b < c b > c

c < a c > a

The leaves contain all the possible orderings of a, b, c.
10/31/2022 CSE 332

Decision Trees

• A Decision Tree is a Binary Tree such that:
– Each node = a set of orderings

• i.e., the remaining solution space

– Each edge = 1 comparison

– Each leaf = 1 unique ordering

– How many leaves for N distinct elements?

• Only 1 leaf has the ordering that is the desired
correctly sorted arrangement

2510/31/2022 CSE 332

Decision Tree Example

26

a < b < c, b < c < a,
c < a < b, a < c < b,
b < a < c, c < b < a

a < b < c
c < a < b
a < c < b

b < c < a
b < a < c
c < b < a

a < b < c
a < c < b

c < a < b

a < b < c a < c < b

b < c < a
b < a < c

c < b < a

b < c < a b < a < c

a < b a > b

a > ca < c

b < c b > c

b < c b > c

c < a c > a

possible orders

actual order

10/31/2022 CSE 332

Decision Trees and Sorting

• Every comparison based sorting algorithm
corresponds to a decision tree
– Finds correct leaf by choosing edges to follow

• i.e., by making comparisons

• We will focus on worst case run time

• Observations:
– Worst case run time  max number of comparisons

– Max number of comparisons
= length of the longest path in the decision tree
= tree height

2710/31/2022 CSE 332

How many leaves on a tree?

Suppose you have a binary tree of height h. How many
leaves in a perfect tree?

We can prune a perfect tree to make any binary tree of
same height. Can # of leaves increase?

2810/31/2022 CSE 332

Lower bound on Height

• A binary tree of height h has at most 2h leaves

– Can prove by induction

• A decision tree has N! leaves. What is its minimum
height?

2910/31/2022 CSE 332

Lower bound on log(n!)

10/31/2022 CSE 332 30

(N log N)

Worst case run time of any comparison-based sorting
algorithm is (N log N) .

Can also show that average case run time is also
(N log N) .

Can we do better if we don’t use comparisons?

3110/31/2022 CSE 332

Can we sort in O(n)?

• Suppose keys are integers between 0 and 1000

3210/31/2022 CSE 332

BucketSort (aka BinSort)
If all values to be sorted are integers between 1 and
B, create an array count of size B, increment counts
while traversing the input, and finally output the
result.

Example B=5. Input = (5,1,3,4,3,2,1,1,5,4,5)

33

count array

1

2

3

4

5

Running time to sort n items?

10/31/2022 CSE 332

What about our (n log n) bound?

3410/31/2022 CSE 332

Dependence on B

What if B is very large (e.g., 264)?

3510/31/2022 CSE 332

Fixing impracticality: RadixSort

• RadixSort: generalization of BucketSort for large
integer keys

• Origins go back to the 1890 census.

• Radix = “The base of a number system”
– We’ll use 10 for convenience, but could be anything

• Idea:
– BucketSort on one digit at a time
– After kth sort, the last k digits are sorted
– Set number of buckets: B = radix.

3610/31/2022 CSE 332

Radix Sort Example

37

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

Input: 478, 537, 9, 721, 3, 38, 123, 67

BucketSort
on 1’s

0 1 2 3 4 5 6 7 8 9

BucketSort
on 10’s

BucketSort
on 100’s

Output:
10/31/2022 CSE 332

Radix Sort Example (1st pass)

38

67
123
38

3
721

9
537
478

Bucket sort
by 1’s digit

0 1

721

2 3

3
123

4 5 6 7

537
67

8

478
38

9

9

Input data

This example uses B=10 and base 10
digits for simplicity of demonstration.
Larger bucket counts should be used
in an actual implementation.

721
3

123
537

67
478
38

9

After 1st pass

10/31/2022 CSE 332

Radix Sort Example (2nd pass)

39

Bucket sort
by 10’s
digit

0

03
09

1 2

721
123

3

537
38

4 5 6

67

7

478

8 9

721
3

123
537

67
478

38
9

After 1st pass After 2nd pass

3
9

721
123
537
38
67

478

10/31/2022 CSE 332

Radix Sort Example (3rd pass)

40

Bucket sort
by 100’s
digit

0

003
009
038
067

1

123

2 3 4

478

5

537

6 7

721

8 9

After 2nd pass

3
9

721
123
537
38
67

478

After 3rd pass

3
9

38
67

123
478
537
721

Invariant: after k passes the low order k digits are sorted.

10/31/2022 CSE 332

Radixsort: Complexity

In our examples, we had:
– Input size, N
– Number of buckets, B = 10
– Maximum value, M < 103

– Number of passes, P =

How much work per pass?

Total time?

4110/31/2022 CSE 332

Choosing the Radix
Run time is roughly proportional to:

P(B+N) = logBM(B+N)

Can show that this is minimized when:

B logeB ≈ N

In theory, then, the best base (radix) depends only on N.

For fast computation, prefer B = 2b. Then best b is:

b + log2b ≈ log2N

Example:

– N = 1 million (i.e., ~220) 64 bit numbers, M = 264

– log2N ≈ 20 → b = 16

– B = 216 = 65,536 and P = log(216) 264 = 4.

In practice, memory word sizes, space, other architectural
considerations, are important in choosing the radix.

4210/31/2022 CSE 332

Sorting Summary
O(N2) average, worst case:

– Selection Sort, Bubblesort, Insertion Sort
O(N log N) average case:

– Heapsort: In-place, not stable.
– BST Sort: O(N) extra space (including tree pointers, possibly poor

memory locality), stable.
– Mergesort: O(N) extra space, stable.
– Quicksort: claimed fastest in practice, but O(N2) worst case.

Recursion/stack requirement. Not stable.
(N log N) worst and average case:

– Any comparison-based sorting algorithm
O(N)

– Radix Sort: fast and stable. Not comparison based. Not in-place. Poor
memory locality can undercut performance.

4310/31/2022 CSE 332

