

CSE 332: Data Structures and Parallelism

Spring 2022

Richard Anderson

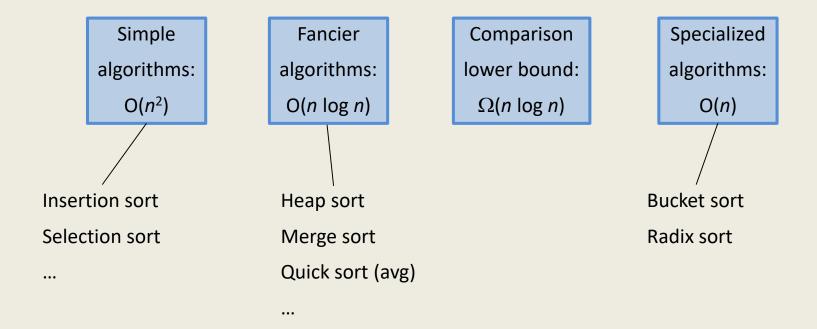
Lecture 15: Sorting III

Announcements

- Midterm, Friday, November 4
 - In class
 - Coverage: up to, and including QuickSort
- Review session,
 - Tuesday, Nov 1, CSE2 G01, 3 pm 5 pm

•

Sorting: The Big Picture



"Divide and Conquer"

- **Idea 1**: Divide array in half, *recursively* sort left and right halves, then *merge* two halves
 - → known as Mergesort
- Idea 2: Partition array into small items and large items, then recursively sort the two sets
 - → known as Quicksort
- Recurrences used to analyze runtime of recursive algorithms

Recurrences

General form:

$$T(N) = S(N) + \sum_{i} a_{i}T(f_{i}(N)); T(1) = c;$$

Important recurrences

$$T(N) = T(N-1) + f(N)$$

 $T(N) = T(aN) + cN, a < 1$
 $T(N) = aT(N/b) + N^c$

(for midterm, understand aT(N/a) + N)

Review

- $T(N) = T(N-1) + N^2$; T(0) = 0
 - Unroll to get a summation

- T(N) = T(N/2) + N; T(1) = 1
 - Unroll to get geometric sum
 - -T(N) = N + N/2 + N/4 + N/8 + ... + 4 + 2 + 1 = 2N-1

$$T(N) = 4 T(N/4) + N; T(1) = 1$$

Quicksort

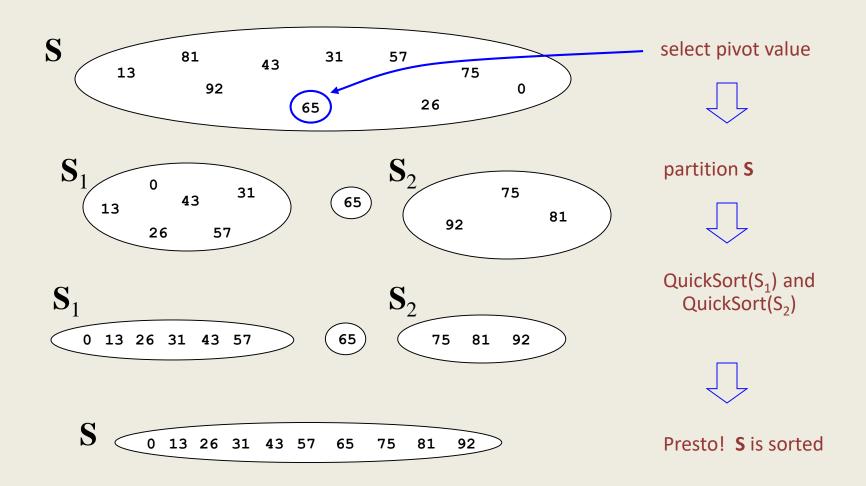
Quicksort uses a divide and conquer strategy, but does not require the O(N) extra space that MergeSort does.

Here's the idea for sorting array **S**:

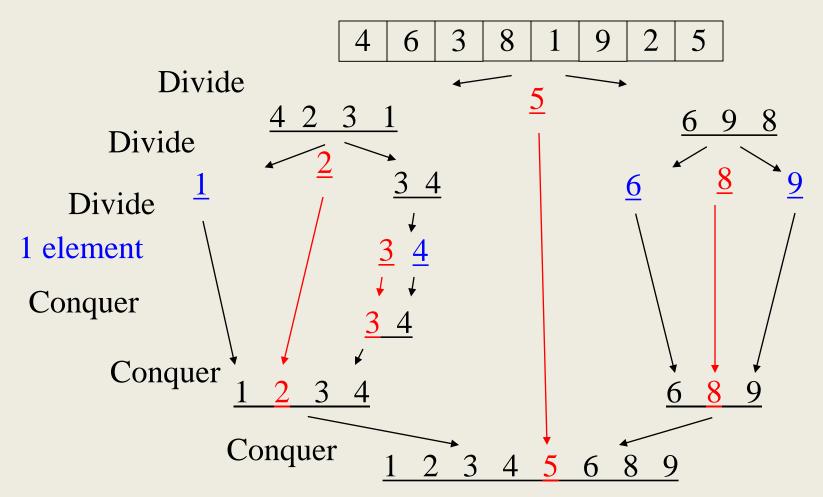
- 1. Pick an element v in **S**. This is the **pivot** value.
- 2. Partition $S-\{v\}$ into two disjoint subsets, S_1 and S_2 such that:
 - elements in S_1 are all $\leq v$
 - elements in S_2 are all $\geq v$
- 3. Return concatenation of QuickSort(S_1), v, QuickSort(S_2)

Recursion ends if Quicksort() receives an array of length 0 or 1.

The steps of Quicksort



Quicksort Example



Pivot Picking and Partitioning

The tricky parts are:

Picking the pivot

- Goal: pick a pivot value so that $|S_1|$ and $|S_2|$ are roughly equal in size.

Partitioning

- Preferably in-place
- Dealing with duplicates

Picking the pivot

- Choose the first element in the subarray
- Choose a value that might be close to the middle
 - Median of three
- Choose a random element

Quicksort Partitioning

- Partition the array into left and right sub-arrays such that:
 - elements in left sub-array are ≤ pivot
 - elements in right sub-array are ≥ pivot
- Can be done in-place with another "two pointer method"
 - Sounds like mergesort, but here we are partitioning, not sorting...
 - ...and we can do it in-place.
- Lots of work has been invested in engineering quicksort

Quicksort Pseudocode

Putting the pieces together:

```
Quicksort(A[], left, right) {
   if (left < right) {
     medianOf3Pivot(A, left, right);
     pivotIndex = Partition(A, left+1, right-1);

     Quicksort(A, left, pivotIndex - 1);
     Quicksort(A, pivotIndex + 1, right);
   }
}</pre>
```

Important Tweak

Insertion sort is actually better than quicksort on small arrays. Thus, a better version of quicksort:

```
Quicksort(A[], left, right) {
  if (right - left \geq CUTOFF) {
    medianOf3Pivot(A, left, right);
    pivotIndex = Partition(A, left+1, right-1);

    Quicksort(A, left, pivotIndex - 1);
    Quicksort(A, pivotIndex + 1, right);

} else {
    InsertionSort(A, left, right);
}
```

CUTOFF = 16 is reasonable.

Quicksort run time

What is the best case behavior?

Worst case run time

- What is the bad case for partitioning?
- Design a bad case input (assume first element is chosen as pivot)

Average case performance

- Assume all permutations of the data are equally likely
 - Or equivalently, a random pivot is chosen

The math gets messy, but doable

$$T(n) = cn + \frac{1}{n} \sum_{i=0}^{n-1} (T(i) + T(n-1-i))$$

Properties of Quicksort

- O(N²) worst case performance, but
 O(N log N) average case performance.
- Pure quicksort not good for small arrays.
- Iterative version uses a stack
- "In-place," but uses auxiliary storage because of recursive calls.
- Used by Java for sorting arrays of primitive types.

How fast can we sort?

Heapsort and Mergesort have $O(N \log N)$ worst case running time.

These algorithms, along with Quicksort, also have O(N log N) average case running time.

Can we do any better?

Permutations

- Suppose you are given N elements
 - Assume no duplicates
- How many possible orderings can you get?
 - Example: a, b, c (N = 3)

Permutations

- How many possible orderings can you get?
 - Example: a, b, c (N = 3)
 - (a b c), (a c b), (b a c), (b c a), (c a b), (c b a)
 - 6 orderings = $3 \cdot 2 \cdot 1 = 3!$ (i.e., "3 factorial")

For N elements

- N choices for the first position, (N-1) choices for the second position, ..., (2) choices, 1 choice
- $-N(N-1)(N-2)\cdots(2)(1)=N!$ possible orderings

Sorting Model

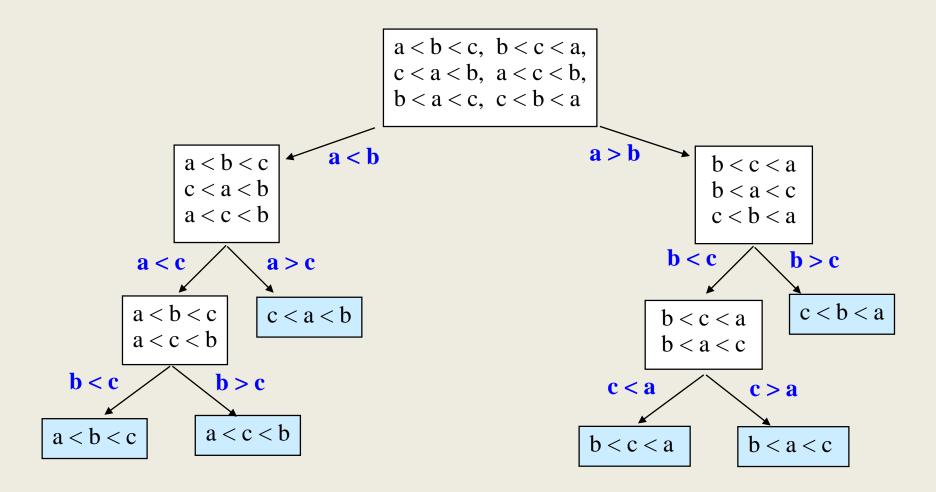
Recall our basic sorting assumption:

We can only compare two elements at a time.

These comparisons prune the space of possible orderings.

We can represent these concepts in a...

Decision Tree



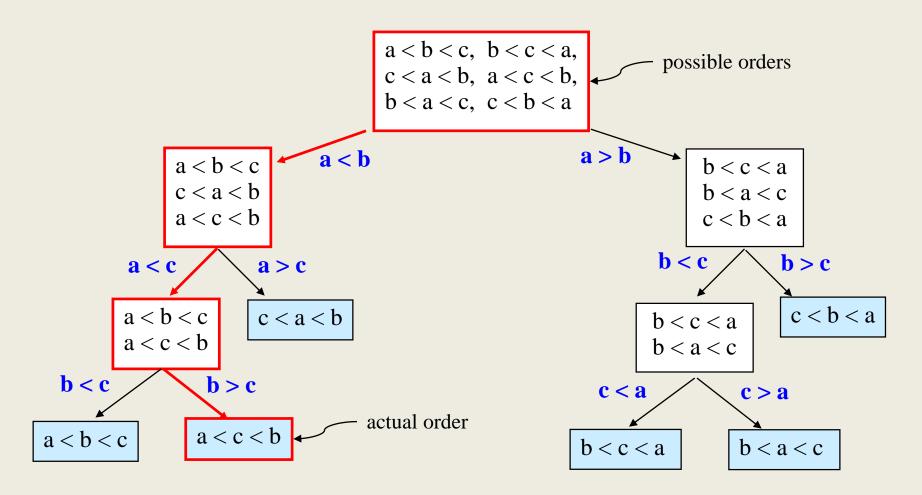
The leaves contain all the possible orderings of a, b, c.

Decision Trees

- A Decision Tree is a Binary Tree such that:
 - Each node = a set of orderings
 - i.e., the remaining solution space
 - Each edge = 1 comparison
 - Each leaf = 1 unique ordering
 - How many leaves for N distinct elements?

 Only 1 leaf has the ordering that is the desired correctly sorted arrangement

Decision Tree Example

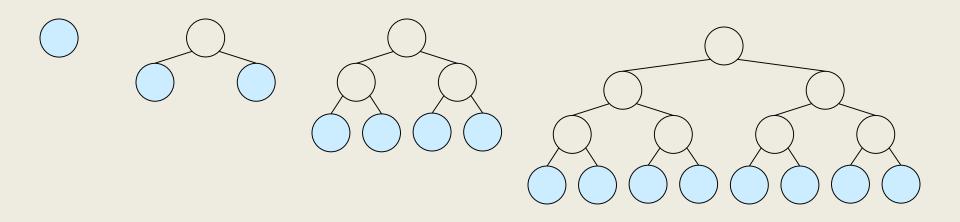


Decision Trees and Sorting

- Every comparison based sorting algorithm corresponds to a decision tree
 - Finds correct leaf by choosing edges to follow
 - i.e., by making comparisons
- We will focus on worst case run time
- Observations:
 - Worst case run time ≥ max number of comparisons
 - Max number of comparisons
 - = length of the longest path in the decision tree
 - = tree height

How many leaves on a tree?

Suppose you have a binary tree of height h. How many leaves in a perfect tree?



We can prune a perfect tree to make any binary tree of same height. Can # of leaves increase?

10/31/2022 CSE 332 28

Lower bound on Height

- A binary tree of height h has at most 2^h leaves
 - Can prove by induction
- A decision tree has N! leaves. What is its minimum height?

Lower bound on log(n!)

$$n! = n \cdot (n-1) \cdot (n-2) \cdots 4 \cdot 3 \cdot 2 \cdot 1$$

$$\geq n \cdot (n-1) \cdot (n-2) \cdots \frac{n}{2}$$

$$\geq \frac{n}{2} \cdot \frac{n}{2} \cdot \frac{n}{2} \cdots \frac{n}{2}$$

$$\geq \left(\frac{n}{2}\right)^{n/2}$$

$$\log n! \ge \log \left(\frac{n}{2}\right)^{n/2} = \frac{n}{2} \log \frac{n}{2}$$

$\Omega(N \log N)$

Worst case run time of any comparison-based sorting algorithm is $\Omega(N \log N)$.

Can also show that average case run time is also $\Omega(N \log N)$.

Can we do better if we don't use comparisons?

Can we sort in O(n)?

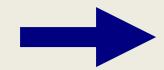
Suppose keys are integers between 0 and 1000

BucketSort (aka BinSort)

If all values to be sorted are integers between 1 and B, create an array count of size B, increment counts while traversing the input, and finally output the result.

Example B=5. Input = (5,1,3,4,3,2,1,1,5,4,5)

count array					
1					
2					
3					
4					
5 0/31/2022	2				



Running time to sort n items?

CSE 332 33

What about our Ω (n log n) bound?

Dependence on B

What if B is very large (e.g., 2^{64})?

Fixing impracticality: RadixSort

- RadixSort: generalization of BucketSort for large integer keys
- Origins go back to the 1890 census.
- Radix = "The base of a number system"
 - We'll use 10 for convenience, but could be anything

• <u>Idea</u>:

- BucketSort on one digit at a time
- After kth sort, the last k digits are sorted
- Set number of buckets: B = radix.

Radix Sort Example

Input: 478, 537, 9, 721, 3, 38, 123, 67

BucketSort on 1's

0	1	2	3	4	5	6	7	8	9

BucketSort on 10's

0	1	2	3	4	5	6	7	8	9

BucketSort on 100's

0	1	2	3	4	5	6	7	8	9

Output:

Radix Sort Example (1st pass)

Bucket sort

Input data

123

by 1's digit

After 1st pass

This example uses B=10 and base 10 digits for simplicity of demonstration. Larger bucket counts should be used in an actual implementation.

Radix Sort Example (2nd pass)

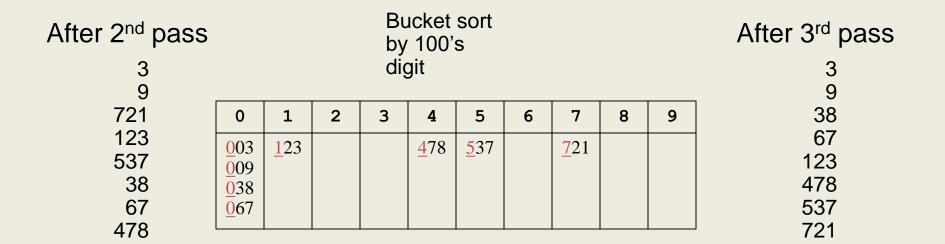
After 1st pass

Bucket sort by 10's digit

0	1	2	3	4	5	6	7	8	9
<u>0</u> 3 <u>0</u> 9		7 <u>2</u> 1 1 <u>2</u> 3	5 <u>3</u> 7 <u>3</u> 8			<u>6</u> 7	4 <u>7</u> 8		

After 2nd pass

Radix Sort Example (3rd pass)



Invariant: after k passes the low order k digits are sorted.

Radixsort: Complexity

In our examples, we had:

- Input size, N
- Number of buckets, B = 10
- Maximum value, M < 10³
- Number of passes, P =

How much work per pass?

Total time?

Choosing the Radix

Run time is roughly proportional to:

$$P(B+N) = \log_B M(B+N)$$

Can show that this is minimized when:

$$B \log_e B \approx N$$

In theory, then, the best base (radix) depends only on N.

For fast computation, prefer $B = 2^b$. Then best b is:

$$b + \log_2 b \approx \log_2 N$$

Example:

- -N = 1 million (i.e., $^{\sim}2^{20}$) 64 bit numbers, $M = 2^{64}$
- $-\log_2 N \approx 20 \rightarrow b = 16$
- $-B = 2^{16} = 65,536$ and $P = \log_{(2^{16})} 2^{64} = 4$.

In practice, memory word sizes, space, other architectural considerations, are important in choosing the radix.

Sorting Summary

$O(N^2)$ average, worst case:

Selection Sort, Bubblesort, Insertion Sort

O(N log N) average case:

- Heapsort: In-place, not stable.
- BST Sort: O(N) extra space (including tree pointers, possibly poor memory locality), stable.
- Mergesort: O(N) extra space, stable.
- **Quicksort**: claimed fastest in practice, but $O(N^2)$ worst case. Recursion/stack requirement. Not stable.

$\Omega(N \log N)$ worst and average case:

Any comparison-based sorting algorithm

O(N)

 Radix Sort: fast and stable. Not comparison based. Not in-place. Poor memory locality can undercut performance.