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Announcements

• Midterm,  Friday,  November 4

– In class

– Coverage:  up to, and including QuickSort

• Review session,  

– Tuesday,  Nov 1, CSE2 G01, 3 pm – 5 pm

•
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Sorting: The Big Picture

Simple

algorithms:

O(n2)

Fancier

algorithms:

O(n log n)

Comparison

lower bound:

(n log n)

Specialized

algorithms:

O(n)

Insertion sort

Selection sort

…

Heap sort

Merge sort

Quick sort (avg)

…

Bucket sort

Radix sort

10/31/2022 CSE 332 3



“Divide and Conquer”

• Idea 1: Divide array in half, recursively sort left and right 
halves, then merge two halves 
 known as Mergesort

• Idea 2 : Partition array into small items and large items, then 
recursively sort the two sets 
 known as Quicksort

• Recurrences used to analyze runtime of recursive algorithms
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Recurrences

General form:

T(N) = S(N) + i aiT(fi(N));   T(1) = c;

Important recurrences
T(N) = T(N-1) + f(N)
T(N) = T(aN) + cN,   a < 1
T(N) = aT(N/b) + Nc

(for midterm,  understand aT(N/a) + N)
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Review

• T(N) = T(N-1) + N2;   T(0) = 0

– Unroll to get a summation

• T(N) = T(N/2) + N;   T(1) = 1

– Unroll to get geometric sum

– T(N) = N + N/2 + N/4 + N/8 + . . . + 4 + 2 + 1 = 2N-1
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T(N) = 4 T(N/4) + N;  T(1) = 1
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Quicksort

Quicksort uses a divide and conquer strategy, but does 
not require the O(N) extra space that MergeSort
does.

Here’s the idea for sorting array S:
1. Pick an element v in S.  This is the pivot value.
2. Partition S-{v} into two disjoint subsets, S1 and S2 such 

that:
• elements in S1 are all  v
• elements in S2 are all  v

3. Return concatenation of QuickSort(S1), v, QuickSort(S2)

Recursion ends if Quicksort( ) receives an array of length 0 or 1.
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The steps of Quicksort

13
81

92

43

65

31 57

26

75
0

S select pivot value

13
81

92

43 65
31

5726

75
0

S1 S2
partition S

13 4331 57260

S1

81 927565

S2

QuickSort(S1) and
QuickSort(S2)

13 4331 57260 65 81 9275S Presto!  S is sorted
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Quicksort Example

4  2   3   1 6   9   8

1 93  4 6

1   2 3   4 6   8 9

1   2   3   4   5 6   8   9

Conquer

Conquer

Conquer

Divide

Divide

Divide

1 element

4 6 3 8 1 9 2 5

5

8
2

43

3 4
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Pivot Picking and Partitioning

The tricky parts are:

• Picking the pivot
– Goal: pick a pivot value so that |S1| and |S2| are 

roughly equal in size.

• Partitioning
– Preferably in-place

– Dealing with duplicates
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Picking the pivot

• Choose the first element in the subarray

• Choose a value that might be close to the 
middle

– Median of three

• Choose a random element
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Quicksort Partitioning

• Partition the array into left and right sub-arrays such that:

– elements in left sub-array are  pivot

– elements in right sub-array are  pivot

• Can be done in-place with another “two pointer method”

– Sounds like mergesort, but here we are partitioning, not 
sorting…

– …and we can do it in-place.

• Lots of work has been invested in engineering 
quicksort
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Quicksort Pseudocode

Quicksort(A[], left, right) {

if (left < right) {

medianOf3Pivot(A, left, right);

pivotIndex = Partition(A, left+1, right-1);

Quicksort(A, left, pivotIndex – 1);

Quicksort(A, pivotIndex + 1, right);

}

}

Putting the pieces together:
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Important Tweak

Quicksort(A[], left, right) {

if (right – left ≥ CUTOFF) {

medianOf3Pivot(A, left, right);

pivotIndex = Partition(A, left+1, right-1);

Quicksort(A, left, pivotIndex – 1);

Quicksort(A, pivotIndex + 1, right);

} else {

InsertionSort(A, left, right);

}

}

CUTOFF = 16 is reasonable.

Insertion sort is actually better than quicksort on 
small arrays.  Thus, a better version of quicksort:
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Quicksort run time

• What is the best case behavior?
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Worst case run time

• What is the bad case for partitioning?

• Design a bad case input (assume first element 
is chosen as pivot)
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Average case performance

• Assume all permutations of the data are 
equally likely

– Or equivalently,  a random pivot is chosen

• The math gets messy,  but doable

𝑇 𝑛 = 𝑐𝑛 +
1

𝑛
෍

𝑖=0

𝑛−1

(𝑇 𝑖 + 𝑇 𝑛 − 1 − 𝑖 )
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Properties of Quicksort

• O(N2) worst case performance, but 

O(N log N) average case performance.

• Pure quicksort not good for small arrays.

• Iterative version uses a stack

• “In-place,” but uses auxiliary storage because of 
recursive calls.

• Used by Java for sorting arrays of primitive types.
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How fast can we sort?

Heapsort and Mergesort have O(N log N) worst case 
running time.

These algorithms, along with Quicksort, also have O(N
log N) average case running time.

Can we do any better?
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Permutations

• Suppose you are given N elements

– Assume no duplicates

• How many possible orderings can you get?

– Example: a, b, c  (N = 3)
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Permutations
• How many possible orderings can you get?

– Example: a, b, c  (N = 3)

– (a b c), (a c b), (b a c), (b c a), (c a b), (c b a)   

– 6 orderings = 3•2•1 = 3!   (i.e., “3 factorial”)

• For N elements

– N choices for the first position, (N-1) choices for the 
second position, …, (2) choices, 1 choice

– N(N-1)(N-2)(2)(1)= N! possible orderings
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Sorting Model

Recall our basic sorting assumption: 

We can only compare 

two elements at a time.

These comparisons prune the space of possible 
orderings.

We can represent these concepts in a…
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Decision Tree

24

a < b < c,  b < c < a,
c < a < b,  a < c < b,
b < a < c,  c < b < a 

a < b < c
c < a < b
a < c < b

b < c < a
b < a < c 
c < b < a

a < b < c
a < c < b

c < a < b

a < b < c a < c < b

b < c < a
b < a < c 

c < b < a

b < c < a b < a < c 

a < b a > b

a > ca < c

b < c b > c

b < c b > c 

c < a c > a

The leaves contain all the possible orderings of a, b, c.
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Decision Trees

• A Decision Tree is a Binary Tree such that:
– Each node = a set of orderings

• i.e., the remaining solution space

– Each edge = 1 comparison

– Each leaf = 1 unique ordering

– How many leaves for N distinct elements?

• Only 1 leaf has the ordering that is the desired 
correctly sorted arrangement
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Decision Tree Example

26

a < b < c,  b < c < a,
c < a < b,  a < c < b,
b < a < c,  c < b < a 

a < b < c
c < a < b
a < c < b

b < c < a
b < a < c 
c < b < a

a < b < c
a < c < b

c < a < b

a < b < c a < c < b

b < c < a
b < a < c 

c < b < a

b < c < a b < a < c 

a < b a > b

a > ca < c

b < c b > c

b < c b > c 

c < a c > a

possible orders

actual order
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Decision Trees and Sorting

• Every comparison based sorting algorithm 
corresponds to a decision tree
– Finds correct leaf by choosing edges to follow

• i.e., by making comparisons

• We will focus on worst case run time

• Observations:
– Worst case run time  max number of comparisons

– Max number of comparisons 
= length of the longest path in the decision tree 
= tree height
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How many leaves on a tree?

Suppose you have a binary tree of height h. How many 
leaves in a perfect tree?

We can prune a perfect tree to make any binary tree of 
same height.  Can # of leaves increase?
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Lower bound on Height

• A binary tree of height h has at most 2h leaves

– Can prove by induction

• A decision tree has N! leaves.  What is its minimum 
height? 
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Lower bound on log(n!)
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(N log N)

Worst case run time of any comparison-based sorting 
algorithm is (N log N) .

Can also show that average case run time is also 
(N log N) .

Can we do better if we don’t use comparisons?  
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Can we sort in O(n)?

• Suppose keys are integers between 0 and 1000
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BucketSort (aka BinSort)
If all values to be sorted are integers between 1 and
B, create an array count of size B, increment counts 
while traversing the input, and finally output the 
result.

Example B=5.   Input = (5,1,3,4,3,2,1,1,5,4,5)

33

count array

1

2

3

4

5

Running time to sort n items?
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What about our (n log n) bound?
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Dependence on B

What if B is very large (e.g., 264)?
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Fixing impracticality: RadixSort

• RadixSort: generalization of BucketSort for large 
integer keys

• Origins go back to the 1890 census.

• Radix = “The base of a number system” 
– We’ll use 10 for convenience, but could be anything

• Idea: 
– BucketSort on one digit at a time
– After kth sort, the last k digits are sorted
– Set number of buckets: B = radix.
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Radix Sort Example

37

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

Input: 478, 537, 9, 721, 3, 38, 123, 67

BucketSort
on 1’s

0 1 2 3 4 5 6 7 8 9

BucketSort
on 10’s

BucketSort
on 100’s

Output:
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Radix Sort Example (1st pass)

38

67
123
38

3
721

9
537
478

Bucket sort 
by 1’s digit

0 1

721

2 3

3
123

4 5 6 7

537
67

8

478
38

9

9

Input data

This example uses B=10 and base 10 
digits for simplicity of demonstration.  
Larger bucket counts should be used 
in an actual implementation.

721
3

123
537

67
478
38

9

After 1st pass
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Radix Sort Example (2nd pass)

39

Bucket sort 
by 10’s 
digit

0

03
09

1 2

721
123

3

537
38

4 5 6

67

7

478

8 9

721
3

123
537

67
478

38
9

After 1st pass After 2nd pass

3
9

721
123
537
38
67

478
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Radix Sort Example (3rd pass)

40

Bucket sort 
by 100’s 
digit

0

003
009
038
067

1

123

2 3 4

478

5

537

6 7

721

8 9

After 2nd pass

3
9

721
123
537
38
67

478

After 3rd pass

3
9

38
67

123
478
537
721

Invariant: after k passes the low order k digits are sorted.
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Radixsort: Complexity

In our examples, we had:
– Input size, N
– Number of buckets, B = 10
– Maximum value, M < 103

– Number of passes, P =

How much work per pass?  

Total time?

4110/31/2022 CSE 332



Choosing the Radix
Run time is roughly proportional to:

P(B+N) = logBM(B+N)

Can show that this is minimized when:

B logeB ≈ N

In theory, then, the best base (radix) depends only on N.

For fast computation, prefer B = 2b.  Then best b is:

b + log2b ≈ log2N

Example:

– N = 1 million (i.e., ~220 ) 64 bit numbers,  M = 264

– log2N ≈ 20 → b = 16

– B = 216 = 65,536 and P = log(216) 264 = 4.

In practice, memory word sizes, space, other architectural 
considerations, are important in choosing the radix.
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Sorting Summary
O(N2) average, worst case:

– Selection Sort, Bubblesort, Insertion Sort
O(N log N) average case:

– Heapsort: In-place, not stable.
– BST Sort: O(N) extra space (including tree pointers, possibly poor 

memory locality), stable.
– Mergesort: O(N) extra space, stable.
– Quicksort: claimed fastest in practice, but O(N2) worst case. 

Recursion/stack requirement. Not stable.
(N log N) worst and average case:

– Any comparison-based sorting algorithm
O(N)

– Radix Sort: fast and stable. Not comparison based. Not in-place.  Poor 
memory locality can undercut performance.
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