

CSE 332: Data Structures and Parallelism

Spring 2022 Richard Anderson Lecture 15: Sorting III

Announcements

- Midterm, Friday, November 4
	- In class
	- Coverage: up to, and including QuickSort
- Review session,
	- Tuesday, Nov 1, CSE2 G01, 3 pm 5 pm

•

Sorting: *The Big Picture*

"Divide and Conquer"

- **Idea 1**: Divide array in half, *recursively* sort left and right halves, then *merge* two halves \rightarrow known as Mergesort
- **Idea 2:** Partition array into small items and large items, then recursively sort the two sets \rightarrow known as Quicksort
- Recurrences used to analyze runtime of recursive algorithms

Recurrences

General form:

 $T(N) = S(N) + \sum_i a_i T(f_i(N)); T(1) = c;$

Important recurrences $T(N) = T(N-1) + f(N)$ $T(N) = T(aN) + cN$, a < 1 $T(N) = aT(N/b) + N^c$

(for midterm, understand $aT(N/a) + N$)

Review

- $T(N) = T(N-1) + N^2$; $T(0) = 0$ – Unroll to get a summation
- $T(N) = T(N/2) + N$; $T(1) = 1$

– Unroll to get geometric sum $- T(N) = N + N/2 + N/4 + N/8 + ... + 4 + 2 + 1 = 2N-1$

$T(N) = 4 T(N/4) + N$; $T(1) = 1$

Quicksort

Quicksort uses a divide and conquer strategy, but does not require the O(N) extra space that MergeSort does.

Here's the idea for sorting array **S**:

- 1. Pick an element *v* in **S**. This is the *pivot* value.
- 2. Partition $S-\{v\}$ into two disjoint subsets, S_1 and S_2 such that:
	- elements in S_1 are all $\leq v$
	- elements in S_2 are all $\geq v$
- 3. Return concatenation of QuickSort(S₁), *v*, QuickSort(S₂)

Recursion ends if Quicksort() receives an array of length 0 or 1.

The steps of Quicksort

Quicksort Example

Pivot Picking and Partitioning

The tricky parts are:

• **Picking the pivot**

 $-$ Goal: pick a pivot value so that $|S_1|$ and $|S_2|$ are roughly equal in size.

• **Partitioning**

- Preferably in-place
- Dealing with duplicates

Picking the pivot

- Choose the first element in the subarray
- Choose a value that might be close to the middle
	- Median of three
- Choose a random element

Quicksort Partitioning

- Partition the array into left and right sub-arrays such that:
	- $-$ elements in left sub-array are \leq pivot
	- $-$ elements in right sub-array are \geq pivot
- Can be done in-place with another "two pointer method"
	- Sounds like mergesort, but here we are *partitioning*, not sorting…
	- …and we can do it in-place.
- Lots of work has been invested in engineering quicksort

Quicksort Pseudocode

Putting the pieces together:

```
Quicksort(A[], left, right) {
  if (left < right) {
    medianOf3Pivot(A, left, right);
    pivotIndex = Partition(A, left+1, right-1);
    Quicksort(A, left, pivotIndex – 1);
    Quicksort(A, pivotIndex + 1, right);
  }
}
```
Important Tweak

Insertion sort is actually better than quicksort on small arrays. Thus, a better version of quicksort:

```
Quicksort(A[], left, right) {
  if (right – left ≥ CUTOFF) {
    medianOf3Pivot(A, left, right);
    pivotIndex = Partition(A, left+1, right-1);
    Quicksort(A, left, pivotIndex – 1);
    Quicksort(A, pivotIndex + 1, right);
  } else {
    InsertionSort(A, left, right);
  }
}
```
CUTOFF = 16 is reasonable.

Quicksort run time

• What is the best case behavior?

Worst case run time

- What is the bad case for partitioning?
- Design a bad case input (assume first element is chosen as pivot)

Average case performance

• Assume all permutations of the data are equally likely

– Or equivalently, a random pivot is chosen

• The math gets messy, but doable $T(n) = cn +$ 1 \overline{n} \sum $i=0$ $n-1$ $(T(i) + T(n - 1 - i))$

Properties of Quicksort

- O(*N*²) worst case performance, but O(*N* log *N*) average case performance.
- Pure quicksort not good for small arrays.
- Iterative version uses a stack
- "In-place," but uses auxiliary storage because of recursive calls.
- Used by Java for sorting arrays of primitive types.

How fast can we sort?

Heapsort and Mergesort have O(*N* log *N*) **worst** case running time.

These algorithms, along with Quicksort, also have O(*N* log *N*) **average** case running time.

Can we do any better?

Permutations

- Suppose you are given *N* elements
	- Assume no duplicates
- How many possible orderings can you get?

– Example: a, b, c (*N* = 3)

Permutations

- How many possible orderings can you get?
	- Example: a, b, c (*N* = 3)
	- $-$ (a b c), (a c b), (b a c), (b c a), (c a b), (c b a)
	- -6 orderings = $3.2.1 = 3!$ (i.e., "3 factorial")
- For *N* elements
	- *N* choices for the first position, (*N*-1) choices for the second position, …, (2) choices, 1 choice
	- $-N(N-1)(N-2)\cdots(2)(1) = N!$ possible orderings

Sorting Model

Recall our basic sorting assumption:

We can only compare two elements at a time.

These comparisons prune the space of possible orderings.

We can represent these concepts in a…

The leaves contain all the possible orderings of a, b, c.

Decision Trees

- A Decision Tree is a Binary Tree such that:
	- Each node = a set of orderings
		- i.e., the remaining solution space
	- Each edge = 1 comparison
	- Each leaf = 1 unique ordering
	- How many leaves for *N* distinct elements?

• Only 1 leaf has the ordering that is the desired correctly sorted arrangement

Decision Tree Example

Decision Trees and Sorting

- Every comparison based sorting algorithm corresponds to a decision tree
	- Finds correct leaf by choosing edges to follow
		- i.e., by making comparisons
- We will focus on worst case run time
- Observations:
	- $-$ Worst case run time \geq max number of comparisons
	- Max number of comparisons = length of the longest path in the decision tree = tree height

How many leaves on a tree?

Suppose you have a binary tree of height *h*. How many leaves in a perfect tree?

We can prune a perfect tree to make any binary tree of Same height. Can # of leaves increase? $10/31/2022$ CSE 332 28

Lower bound on Height

• A binary tree of height h has at most 2*^h* leaves

– Can prove by induction

• A decision tree has *N*! leaves. What is its minimum height?

$$
\begin{array}{rcl}\n\text{Lower bound on } \log(n!) \\
n! & = & n \cdot (n-1) \cdot (n-2) \cdots 4 \cdot 3 \cdot 2 \cdot 1 \\
& \geq & n \cdot (n-1) \cdot (n-2) \cdots \frac{n}{2} \\
& \geq & \frac{n}{2} \cdot \frac{n}{2} \cdot \frac{n}{2} \cdots \frac{n}{2} \\
& \geq & \left(\frac{n}{2}\right)^{n/2} \\
\end{array}
$$

$$
\log n! \ge \log \left(\frac{n}{2}\right)^{n/2} = \frac{n}{2} \log \frac{n}{2}
$$

(*N* log *N*)

Worst case run time of any comparison-based sorting algorithm is $\Omega(N \log N)$.

Can also show that **average case** run time is also $\Omega(N \log N)$.

Can we do better if we don't use comparisons?

Can we sort in O(n)?

• Suppose keys are integers between 0 and 1000

BucketSort (aka BinSort)

If all values to be sorted are integers between 1 and *B*, create an array **count** of size *B*, **increment** counts while traversing the input, and finally output the result.

What about our $\Omega(n \log n)$ bound?

Dependence on *B*

What if B is very large (e.g., 2^{64})?

Fixing impracticality: RadixSort

- RadixSort: generalization of BucketSort for large integer keys
- Origins go back to the 1890 census.
- Radix = "The base of a number system"
	- We'll use 10 for convenience, but could be anything
- Idea:
	- BucketSort on one digit at a time
	- $-$ After kth sort, the last k digits are sorted
	- Set number of buckets: *B* = radix.

Radix Sort Example

Input: 478, 537, 9, 721, 3, 38, 123, 67

Radix Sort Example (1st pass)

Bucket sort by 1's digit

This example uses B=10 and base 10 digits for simplicity of demonstration. Larger bucket counts should be used in an actual implementation.

Radix Sort Example (2nd pass)

Radix Sort Example (3rd pass)

Invariant: after k passes the low order k digits are sorted.

Radixsort: Complexity

In our examples, we had:

- Input size, N
- $-$ Number of buckets, $B = 10$
- Maximum value, $M < 10³$
- Number of passes, P =

How much work per pass?

Total time?

Choosing the Radix

Run time is roughly proportional to:

 $P(B+N) = log_BM(B+N)$

Can show that this is minimized when:

B $log_e B \approx N$

In theory, then, the best base (radix) depends only on *N*. For fast computation, prefer $B = 2^b$. Then best *b* is:

b + \log_2b ≈ \log_2N

Example:

 $- N = 1$ million (i.e., $\sim 2^{20}$) 64 bit numbers, $M = 2^{64}$

$$
-\log_2 N \approx 20 \Rightarrow b = 16
$$

 $-B = 2^{16} = 65,536$ and $P = log_{(2^{16})} 2^{64} = 4$.

In practice, memory word sizes, space, other architectural considerations, are important in choosing the radix.

Sorting Summary

O(*N²*) average, worst case:

– **Selection Sort**, **Bubblesort**, **Insertion Sort**

O(*N log N*) average case:

- **Heapsort**: In-place, not stable.
- **BST Sort**: *O*(*N*) extra space (including tree pointers, possibly poor memory locality), stable.
- **Mergesort**: *O*(*N*) extra space, stable.
- **Quicksort**: claimed fastest in practice, but *O*(*N²*) worst case. Recursion/stack requirement. Not stable.

$\Omega(N \log N)$ worst and average case:

– **Any comparison-based sorting algorithm**

O(*N*)

– **Radix Sort**: fast and stable. Not comparison based. Not in-place. Poor memory locality can undercut performance.