
CSE 332: Data Structures and
Parallelism

Spring 2022

Richard Anderson

Lecture 14: Sorting II

10/28/2022 CSE 332 1

Announcements

• Midterm, Friday, November 4

– In class

– No notes, no calculators

– Coverage: up to, and including Sorting

– Review session, Tuesday, Nov 1, CSE2 G01

• Lecture on Wed, Nov 2 will end at 1:10 pm

10/28/2022 CSE 332 2

Sorting: The Big Picture

Simple

algorithms:

O(n2)

Fancier

algorithms:

O(n log n)

Comparison

lower bound:

(n log n)

Specialized

algorithms:

O(n)

Insertion sort

Selection sort

…

Heap sort

Merge sort

Quick sort (avg)

…

Bucket sort

Radix sort

10/28/2022 CSE 332 3

“Divide and Conquer”

• Very important strategy in computer science:
– Divide problem into smaller parts

– Independently solve the parts

– Combine these solutions to get overall solution

• Idea 1: Divide array in half, recursively sort left and right
halves, then merge two halves
 known as Mergesort

• Idea 2 : Partition array into small items and large items, then
recursively sort the two sets
 known as Quicksort

10/28/2022 CSE 332 4

Mergesort

• Divide it in two at the midpoint

• Sort each half (recursively)

• Merge two halves together

8 2 9 4 5 3 1 6

10/28/2022 CSE 332 5

Mergesort Example

8 2 9 4 5 3 1 6

8 2 1 69 4 5 3

8 2 9 4 5 3 1 6

2 8 4 9 3 5 1 6

2 4 8 9 1 3 5 6

1 2 3 4 5 6 8 9

Merge

Merge

Merge

Divide

Divide

Divide

1 element

8 2 9 4 5 3 1 6

10/28/2022 CSE 332 6

Merging: Two Pointer Method

10/28/2022 CSE 332 7

2 4 8 9 1 3 5 6

Auxiliary array

Merge using an auxiliary array

Merging

10/28/2022 CSE 332 8

Merge(A[], Temp[], left, mid, right) {

int i, j, k, l, target

i = left

j = mid + 1

target = left

while (i < mid && j < right) {

if (A[i] < A[j])

Temp[target] = A[i++]

else

Temp[target] = A[j++]

target++

}

if (i > mid) //left completed

for (k = left to target-1)

A[k] = Temp[k];

if (j > right) //right completed

k = mid

l = right

while (k > i)

A[l--] = A[k--]

for (k = left to target-1)

A[k] = Temp[k]

}

Recursive Mergesort

10/28/2022 CSE 332 9

MainMergesort(A[1..n], n) {

Array Temp[1..n]

Mergesort[A, Temp, 1, n]

}

Mergesort(A[], Temp[], left, right) {

if (left < right) {

mid = (left + right)/2

Mergesort(A, Temp, left, mid)

Mergesort(A, Temp, mid+1, right)

Merge(A, Temp, left, mid, right)

}

}

What is the recurrence relation?

Mergesort: Complexity

10/28/2022 CSE 332 10

Iterative Mergesort

Merge by 1

Merge by 2

Merge by 4

Merge by 8

10/28/2022 CSE 332 11

Properties of Mergesort

• In-place?

• Sorted list complexity?

• Nicely extends to handle linked lists.

• Multi-way merge is basis of big data sorting.

• Java uses Mergesort on Collections and on Arrays of
Objects.

10/28/2022 CSE 332 12

Recurrences

General form:

T(N) = S(N) + i aiT(fi(N)); T(1) = c;

Important recurrences

T(N) = T(N-1) + f(N)

T(N) = T(aN) + cN, a < 1

T(N) = aT(N/b) + Nc

10/28/2022 CSE 332 13

T(N) = T(N-1) + N2; T(1) = 0

10/28/2022 CSE 332 14

T(N) = T(N/2) + N; T(1) = 1

10/28/2022 CSE 332 15

T(N) = 4 T(N/4) + N; T(1) = 1

10/28/2022 CSE 332 16

Quicksort

Quicksort uses a divide and conquer strategy, but does
not require the O(N) extra space that MergeSort
does.

Here’s the idea for sorting array S:
1. Pick an element v in S. This is the pivot value.
2. Partition S-{v} into two disjoint subsets, S1 and S2 such

that:
• elements in S1 are all v
• elements in S2 are all v

3. Return concatenation of QuickSort(S1), v, QuickSort(S2)

Recursion ends if Quicksort() receives an array of length 0 or 1.

10/28/2022 CSE 332 17

The steps of Quicksort

13
81

92

43

65

31 57

26

75
0

S select pivot value

13
81

92

43 65
31

5726

75
0

S1 S2
partition S

13 4331 57260

S1

81 927565

S2

QuickSort(S1) and
QuickSort(S2)

13 4331 57260 65 81 9275S Presto! S is sorted

10/28/2022 CSE 332 18

Quicksort Example

4 2 3 1 6 9 8

1 93 4 6

1 2 3 4 6 8 9

1 2 3 4 5 6 8 9

Conquer

Conquer

Conquer

Divide

Divide

Divide

1 element

4 6 3 8 1 9 2 5

5

8
2

43

3 4

10/28/2022 CSE 332 19

Pivot Picking and Partitioning

The tricky parts are:

• Picking the pivot
– Goal: pick a pivot value so that |S1| and |S2| are

roughly equal in size.

• Partitioning
– Preferably in-place

– Dealing with duplicates

10/28/2022 CSE 332 20

Picking the pivot

• Choose the first element in the subarray

• Choose a value that might be close to the
middle

– Median of three

• Choose a random element

10/28/2022 CSE 332 21

Quicksort Partitioning

• Partition the array into left and right sub-arrays such that:

– elements in left sub-array are pivot

– elements in right sub-array are pivot

• Can be done in-place with another “two pointer method”

– Sounds like mergesort, but here we are partitioning, not
sorting…

– …and we can do it in-place.

• Lots of work has been invested in engineering
quicksort

10/28/2022 CSE 332 22

Quicksort Pseudocode

Quicksort(A[], left, right) {

if (left < right) {

medianOf3Pivot(A, left, right);

pivotIndex = Partition(A, left+1, right-1);

Quicksort(A, left, pivotIndex – 1);

Quicksort(A, pivotIndex + 1, right);

}

}

Putting the pieces together:

10/28/2022 CSE 332 23

Important Tweak

Quicksort(A[], left, right) {

if (right – left ≥ CUTOFF) {

medianOf3Pivot(A, left, right);

pivotIndex = Partition(A, left+1, right-1);

Quicksort(A, left, pivotIndex – 1);

Quicksort(A, pivotIndex + 1, right);

} else {

InsertionSort(A, left, right);

}

}

CUTOFF = 16 is reasonable.

Insertion sort is actually better than quicksort on
small arrays. Thus, a better version of quicksort:

10/28/2022 CSE 332 24

Quicksort run time

• What is the best case behavior?

10/28/2022 CSE 332 25

Worst case run time

• What is the bad case for partitioning?

• Design a bad case input (assume first element
is chosen as pivot)

10/28/2022 CSE 332 26

Average case performance

• Assume all permutations of the data are
equally likely

– Or equivalently, a random pivot is chosen

• The math gets messy, but doable

10/28/2022 CSE 332 27

Properties of Quicksort

• O(N2) worst case performance, but

O(N log N) average case performance.

• Pure quicksort not good for small arrays.

• No iterative version (without using a stack).

• “In-place,” but uses auxiliary storage because of
recursive calls.

• Used by Java for sorting arrays of primitive types.

10/28/2022 CSE 332 28

