CSE 332: Data Structures and Parallelism

Spring 2022 Richard Anderson Lecture 14: Sorting II

Announcements

- Midterm, Friday, November 4
 - In class
 - No notes, no calculators
 - Coverage: up to, and including Sorting
 - Review session, Tuesday, Nov 1, CSE2 G01
- Lecture on Wed, Nov 2 will end at 1:10 pm

Sorting: The Big Picture

"Divide and Conquer"

- Very important strategy in computer science:
 - Divide problem into smaller parts
 - Independently solve the parts
 - Combine these solutions to get overall solution
- Idea 1: Divide array in half, *recursively* sort left and right halves, then *merge* two halves
 → known as Mergesort
- Idea 2 : Partition array into small items and large items, then recursively sort the two sets
 → known as Quicksort

Mergesort

- Divide it in two at the midpoint
- Sort each half (recursively)
- Merge two halves together

Mergesort Example

Merging: Two Pointer Method

Merge using an auxiliary array

Merging

```
Merge(A[], Temp[], left, mid, right) {
  int i, j, k, l, target
  i = left
  j = mid + 1
  target = left
  while (i < mid && j < right) {</pre>
    if (A[i] < A[j])
      Temp[target] = A[i++]
    else
      Temp[target] = A[j++]
    target++
  }
  if (i > mid) //left completed
    for (k = left to target-1)
      A[k] = Temp[k];
  if (j > right) //right completed
    \mathbf{k} = \mathbf{mid}
    l = right
    while (k > i)
      A[1--] = A[k--]
    for (k = left to target-1)
      A[k] = Temp[k]
}
```

Recursive Mergesort

```
MainMergesort(A[1..n], n) {
  Array Temp[1..n]
  Mergesort[A, Temp, 1, n]
}
Mergesort(A[], Temp[], left, right) {
  if (left < right) {</pre>
    mid = (left + right)/2
    Mergesort(A, Temp, left, mid)
    Mergesort(A, Temp, mid+1, right)
    Merge(A, Temp, left, mid, right)
  }
```

What is the recurrence relation?

Mergesort: Complexity

Iterative Mergesort

Properties of Mergesort

- In-place?
- Sorted list complexity?
- Nicely extends to handle linked lists.
- Multi-way merge is basis of big data sorting.
- Java uses Mergesort on Collections and on Arrays of Objects.

Recurrences

General form:

$$T(N) = S(N) + \sum_{i} a_{i}T(f_{i}(N)); T(1) = c;$$

Important recurrences T(N) = T(N-1) + f(N) T(N) = T(aN) + cN, a < 1T(N) = aT(N/b) + Nc

$T(N) = T(N-1) + N^2; T(1) = 0$

T(N) = T(N/2) + N; T(1) = 1

T(N) = 4 T(N/4) + N; T(1) = 1

Quicksort

Quicksort uses a divide and conquer strategy, but does not require the O(N) extra space that MergeSort does.

Here's the idea for sorting array **S**:

- 1. Pick an element *v* in **S**. This is the *pivot* value.
- Partition S-{v} into two disjoint subsets, S₁ and S₂ such that:
 - elements in \mathbf{S}_1 are all $\leq v$
 - elements in \mathbf{S}_2 are all $\geq v$
- 3. Return concatenation of QuickSort(**S**₁), *v*, QuickSort(**S**₂)

Recursion ends if Quicksort() receives an array of length 0 or 1.

The steps of Quicksort

Quicksort Example

Pivot Picking and Partitioning

The tricky parts are:

• Picking the pivot

– Goal: pick a pivot value so that $|S_1|$ and $|S_2|$ are roughly equal in size.

Partitioning

- Preferably in-place
- Dealing with duplicates

Picking the pivot

- Choose the first element in the subarray
- Choose a value that might be close to the middle
 - Median of three
- Choose a random element

Quicksort Partitioning

- Partition the array into left and right sub-arrays such that:
 - elements in left sub-array are \leq pivot
 - elements in right sub-array are \geq pivot
- Can be done in-place with another "two pointer method"
 - Sounds like mergesort, but here we are *partitioning*, not sorting...
 - …and we can do it in-place.
- Lots of work has been invested in engineering quicksort

Quicksort Pseudocode

Putting the pieces together:

```
Quicksort(A[], left, right) {
    if (left < right) {
        medianOf3Pivot(A, left, right);
        pivotIndex = Partition(A, left+1, right-1);
        Quicksort(A, left, pivotIndex - 1);
        Quicksort(A, pivotIndex + 1, right);
    }
}</pre>
```

Important Tweak

Insertion sort is actually better than quicksort on small arrays. Thus, a better version of quicksort:

```
Quicksort(A[], left, right) {
  if (right - left ≥ CUTOFF) {
    medianOf3Pivot(A, left, right);
    pivotIndex = Partition(A, left+1, right-1);
    Quicksort(A, left, pivotIndex - 1);
    Quicksort(A, pivotIndex + 1, right);
  } else {
    InsertionSort(A, left, right);
  }
}
```

CUTOFF = 16 is reasonable.

Quicksort run time

• What is the best case behavior?

Worst case run time

- What is the bad case for partitioning?
- Design a bad case input (assume first element is chosen as pivot)

Average case performance

 Assume all permutations of the data are equally likely

- Or equivalently, a random pivot is chosen

• The math gets messy, but doable

Properties of Quicksort

- O(N²) worst case performance, but
 O(N log N) average case performance.
- Pure quicksort not good for small arrays.
- No iterative version (without using a stack).
- "In-place," but uses auxiliary storage because of recursive calls.
- Used by Java for sorting arrays of primitive types.