CSE 332: Data Structures and
Parallelism

Announcements

 Midterm, Friday, November 4
— In class
— No notes, no calculators
— Coverage: up to, and including Sorting
— Review session, Tuesday, Nov 1, CSE2 GO1

* Lecture on Wed, Nov 2 will end at 1:10 pm

Sorting: The Big Picture

Simple Fancier Comparison
algorithms: algorithms: lower bound:
O(n?) O(n log n) Q(n log n)
Insertion sort Heap sort
Selection sort Merge sort

Quick sort (avg)

Specialized
algorithms:

O(n)

/

Bucket sort

Radix sort

“Divide and Conquer”

* \Very important strategy in computer science:
— Divide problem into smaller parts
— Independently solve the parts
— Combine these solutions to get overall solution

 Idea 1: Divide array in half, recursively sort left and right
halves, then merge two halves
- known as Mergesort

 Idea 2 : Partition array into small items and large items, then
recursively sort the two sets
- known as Quicksort

Mergesort

81219415

3

1

Sort each half (recursively)
Merge two halves together

~

Divide it in two at the midpoint

Mergesort Example

812(9|14/5|3|1|6

Divide = =
o 82 9 4 5 316
Divide _ .
Divide 52 9 4 2 3 16
\ e X\ X
lelement 8 2 9 4 5 3 1 6
V4 W4 V4 W
WAGE 5™ 4 9 35 16
2 4 8 9 1 356
hAergé\\\\\\\\\\““**/”/”////////

123456289

Merging: Two Pointer Method

Merge using an auxiliary array

Auxiliary array

Merging

Merge (A[], Temp[], left, mid, right)

int 1, j, k, 1, target
i = left
j =mid + 1
target = left
while (i < mid && j < right) {
if (A[i] < A[3])
Temp [target] = A[i++]
else
Temp [target] = A[j++]
target++
}
if (i > mid) //left completed
for (k = left to target-1)
A[k] = Temp[k];
if (j > right) //right completed
k = mid
1 = right
while (k > i)
A[l--] = A[k--]
for (k left to target-1)
Alk] Temp [k]

Recursive Mergesort

MainMergesort (A[l..n], n) {
Array Temp[l..n]
Mergesort[A, Temp, 1, n]

}

Mergesort (A[], Temp[], left, right) ({
if (left < right) {
mid = (left + right) /2
Mergesort (A, Temp, left, mid)
Mergesort (A, Temp, mid+l, right)
Merge (A, Temp, left, mid, right)
}
}

What is the recurrence relation?

Mergesort: Complexity

Iterative Mergesort

\/

\/

\/

\/

\/

\/

\/

\/

\

Y

\

Y

\

Y

\

Y

Merge by 1
Merge by 2
Merge by 4

Merge by 8

Properties of Mergesort

In-place?

Sorted list complexity?

Nicely extends to handle linked lists.
Multi-way merge is basis of big data sorting.

Java uses Mergesort on Collections and on Arrays of
Objects.

Recurrences

General form:

T(N) = S(N) + 2. aT(f(N)); T(1)=c;

Important recurrences

T(N) = T(N-1) + f(N)
T(N)=T(aN)+cN, a<1
T(N) = aT(N/b) + Nc

T(N) =T(N-1) + N4, T(1)=0

T(N) = T(N/2) + N; T(1) =1

T(N) =4 T(N/4) + N; T(1) =1

Quicksort

Quicksort uses a divide and conquer strategy, but does
not require the O(N) extra space that MergeSort
does.

Here’s the idea for sorting array S:
1. Pick an elementvin$S. This is the pivot value.

2. Partition S-{v} into two disjoint subsets, S, and S, such
that:

* elementsinS;areall<v
* elementsinS,areall>v
3. Return concatenation of QuickSort(S,), v, QuickSort(S,)

Recursion ends if Quicksort() receives an array of length 0 or 1.

The steps of Quicksort

S 81 31 57 select pivot value
+ ® /—55
92 0
2 iyt
o “n

QuickSort(S;) and
QuickSort(S,)
S (2631 43 57 65 @ Presto! Sis sorted

Quicksort Example

Divide — 5
. 42 31 - 6 9 8
Divide o o~
- il - 34 6 8
Divide ;
1 element 34
o
Conquer 3 4
Conquer g M
1 2 3 4 6 8 9
\ | /

Conquer 1 "3 4 5 6 8 9

Pivot Picking and Partitioning

The tricky parts are:

* Picking the pivot

— Goal: pick a pivot value so that |S,;| and |S,| are
roughly equal in size.

* Partitioning
— Preferably in-place
— Dealing with duplicates

Picking the pivot

* Choose the first element in the subarray

* Choose a value that might be close to the
middle

— Median of three

e Choose a random element

Quicksort Partitioning

Partition the array into left and right sub-arrays such that:
— elements in left sub-array are < pivot

— elements in right sub-array are > pivot

Can be done in-place with another “two pointer method”

— Sounds like mergesort, but here we are partitioning, not
sorting...

— ...and we can do it in-place.
Lots of work has been invested in engineering
quicksort

Quicksort Pseudocode

Putting the pieces together:

Quicksort (A[], left, right) {
if (left < right) {
medianOf3Pivot (A, left, right);
pivotIndex = Partition (A, left+l, right-1);

Quicksort (A, left, pivotIndex - 1);
Quicksort (A, pivotIndex + 1, right);

Important Tweak

Insertion sort is actually better than quicksort on
small arrays. Thus, a better version of quicksort:

Quicksort (A[], left, right) {
if (right - left 2 CUTOFF) ({
medianOf3Pivot (A, left, right);
pivotIndex = Partition (A, left+l, right-1);

Quicksort (A, left, pivotIndex - 1) ;
Quicksort (A, pivotIndex + 1, right);

} else {
InsertionSort (A, left, right);

CUTOFF = 16 is reasonable.

Quicksort run time

e What is the best case behavior?

Worst case run time

 What is the bad case for partitioning?

e Design a bad case input (assume first element
is chosen as pivot)

Average case pe rformance

* Assume all permutations of the data are
equally likely

— Or equivalently, a random pivot is chosen

* The math gets messy, but doable

Properties of Quicksort

O(N?) worst case performance, but

O(N log N) average case performance.

Pure quicksort not good for small arrays.
No iterative version (without using a stack).

“In-place,” but uses auxiliary storage because of
recursive calls.

Used by Java for sorting arrays of primitive types.

