CSE 332: Data Structures and
Parallelism
Spring 2022
Richard Anderson
Lecture 13: Sorting ।
torsmone

Finishing up hashing

- Rehashing without recomputing hash function
- Good hash functions
- Efficient
- Handle multiple word input
- Bad case for hashing
- Cryptographic Hash Functions
- Expected performance

Messing with a hash table

- Find a large number of keys that hash to same value
- For a hash function H, find x, such that $H(x)=z$
- $\mathrm{H}(\mathrm{x})=(\mathrm{ax}+\mathrm{b}) \bmod \mathrm{p}$
$z \equiv a x+b(\bmod p)=>a^{-1} z-b \equiv x(\bmod p)$
- If we are hashing with to $\mathrm{H}(\mathrm{x}) \bmod 2^{\mathrm{k}}$, we find values where
$H(x)=0,2^{k}, 2^{*} 2^{k}, 3^{*} 2^{k}, \ldots$

Announcements

Java implementation of Hashing

- Chained hash table
- Initial size is 64
- Double hash table size when $\lambda=3 / 4$
- Hash buckets implemented at Lists - but are converted to red-black trees at size 8
- Guard against bad data (so $\mathrm{O}(\log \mathrm{n})$)
https://hg.openjdk.java.net/jdk8/jdk8/jdk/file/687fd7c7986d/src/share/classes/java/util/HashMap.java
\qquad

Cryptographic Hash Functions

- Hash functions that are hard to invert, e.g., given z, it is hard to find an x, such that $h(x)=z$
- Examples, MD5, SHA-1, SHA-2, SHA-3, . . .
- Cryptographic Hash Functions are expensive to compute, so NOT appropriate for data structures
- Standard use case, store a file of passwords

Expected performance

- Worst case, everything goes in one bucket
- Load factor λ, expected number of items per bucket is λ
- Analysis, hashing N items into a table of size N, assume the hashing is random and independent
- $\operatorname{Prob}(H(X)=Y)=1 / N$
- What is the probability that a particular bucket has jitems?

10/26/2022
CSE 332

The math: Balls in Bins

- Probability that a bin is empty is $(1-1 / n)^{n}$
- Probability that a bin has one element is almost $(1-1 / n)^{n}$
- Approximated by a poisson process
- Expected length of the longest chain is O($\log n / \log \log n)$

Space

- How much space does the sorting algorithm require?
- In-place: no more than the array or at most O(1) addition space
- Out-of-place: use separate data structures, copy back
- External memory sorting: data so large that does not fit in memory

Sorting

- Input
- an array A of data records
- a key value in each data record
- a comparison function which imposes a consistent ordering on the keys
- Output
- "sorted" array A such that
- For any i and j, if $i<j$ then $A[i] \leq A[j]$

10/26/2022 CSE 332

Time

How fast is the algorithm?

- requirement: for any $i<j, A[i] \leq A[j]$
- This means that you need to at least check on each element at the very minimum
- Complexity is at least:
- And you could end up checking each element against every other element
- Complexity could be as bad as:

The big question: How close to $O(n)$ can you get?

How to do the insertion?

Suppose my sequence is:
$16,31,54,78,32,17,6$

And I've already sorted up to 78 . How to insert 32?

Insertion Sort code

void InsertionSort (Array a[0..n-1]) \{
for ($i=1 ; i<n$; $i++$) $\{$
for ($j=i ; j>0 ; j--)\{$
if $(a[j]<a[j-1])$
Swap (a[j], a[j-1])
else
break
\}
\}

Try it out: Insertion sort

- 31, 16, 54, 4, 2, 17, 6
\qquad

1. Sort first 2 elements.
2. Insert $3^{\text {rd }}$ element in order.
(First 3 elements are now sorted.)
3. Insert $4^{\text {th }}$ element in order
(First 4 elements are now sorted.)
4. And so on...

Insertion Sort

Insertion Sort

- Worst case $O\left(\mathrm{n}^{2}\right)$
- The runtime is related to how sorted the data is
- Run time proportional to number of pairs of out of order items
- Insertion sort is useful when there is a small number of items to sort

Heap Sort: Sort with a Binary Heap

10/26/2022
CSE 332

"Divide and Conquer"

- Very important strategy in computer science:
- Divide problem into smaller parts
- Independently solve the parts
- Combine these solutions to get overall solution
- Idea 1: Divide array in half, recursively sort left and right halves, then merge two halves
\rightarrow known as Mergesort
- Idea 2 : Partition array into small items and large items, then recursively sort the two sets
\rightarrow known as Quicksort

In-place heap sort

- Treat the initial array as a heap (via buildHeap)
- When you delete the $i^{\text {th }}$ element, put it at arr[n-i]
- It's not part of the heap anymore!

10/26/2022

Merging: Two Pointer Method

Merge using an auxiliary array


```
Merging
Merge (A[], Temp[], left, mid, right) {
    int i, j, k, l, target
    i = left
    j = mid + 1
    target = left
        ile (i < mid && j \leq right) {
            (A[i] < A[j])
            Temp[target] = A[i++]
            else
            Temp[target] = A[j++]
            target++
    }
        f (i > mid) //left completed
        for (k = left to target-1)
        A[k] = Temp[k];
    if (j > right) //right completed
        k = mid
        l = right
        while (k > i)
        while (k \geq i)
        A[l--] \equivA[k--]
        for (k = left to target-1
            A[k] = Temp[k]
}
```


Recursive Mergesort

```
MainMergesort(A[1..n], n)
    Array Temp[1. .n]
    Mergesort[A, Temp, 1, n]
}
Mergesort(A[], Temp[], left, right) {
    if (left < right) {
        mid = (left + right)/2
        Mergesort(A, Temp, left, mid)
        Mergesort(A, Temp, mid+1, right)
        Merge(A, Temp, left, mid, right)
    }
}
```

What is the recurrence relation?

10/26/2022

Mergesort: Complexity

Mergesort: Complexity

Iterative Mergesort

Properties of Mergesort

- In-place?
- Sorted list complexity?
- Nicely extends to handle linked lists.
- Multi-way merge is basis of big data sorting.
- Java uses Mergesort on Collections and on Arrays of Objects.

Quicksort

Quicksort uses a divide and conquer strategy, but does not require the $\mathrm{O}(\mathrm{N})$ extra space that MergeSort does.

Here's the idea for sorting array S:

1. Pick an element v in \mathbf{S}. This is the pivot value.
2. Partition \mathbf{S} - $\{v\}$ into two disjoint subsets, \mathbf{S}_{1} and \mathbf{S}_{2} such that:

- elements in \mathbf{S}_{1} are all $\leq v$
- elements in \mathbf{S}_{2} are all $\geq v$

3. Return concatenation of QuickSort($\left.\mathbf{S}_{1}\right), v$, QuickSort(\mathbf{S}_{2})

Recursion ends if Quicksort() receives an array of length 0 or 1.

Pivot Picking and Partitioning

The tricky parts are:

- Picking the pivot
- Goal: pick a pivot value so that $\left|S_{1}\right|$ and $\left|S_{2}\right|$ are roughly equal in size.
- Partitioning
- Preferably in-place
- Dealing with duplicates

Quicksort Partitioning

- Partition the array into left and right sub-arrays such that:
- elements in left sub-array are \leq pivot
- elements in right sub-array are \geq pivot
- Can be done in-place with another "two pointer method"
- Sounds like mergesort, but here we are partitioning, not sorting...
- ...and we can do it in-place.
- Lots of work has been invested in engineering quicksort

Quicksort Example

Picking the pivot

- Choose the first element in the subarray
- Choose a value that might be close to the middle
- Median of three
- Choose a random element

Quicksort Pseudocode

Putting the pieces together:

```
Quicksort(A[], left, right) {
    if (left < right) {
        medianOf3Pivot(A, left, right);
        pivotIndex = Partition(A, left+1, right-1);
        Quicksort(A, left, pivotIndex - 1);
        Quicksort(A, pivotIndex + 1, right);
        }
}
```


Important Tweak

Insertion sort is actually better than quicksort on small arrays. Thus, a better version of quicksort:

```
Quicksort(A[], left, right) {
    if (right - left \geq CUTOFF)
        medianOf3Pivot(A, left, right);
        pivotIndex = Partition(A, left+1, right-1);
        Quicksort(A, left, pivotIndex - 1);
        Quicksort(A, pivotIndex + 1, right);
    } else {
        InsertionSort(A, left, right);
}
```

```
CUTOFF = 16 is reasonable.
```

10/26/2022

10/26/2022

Quicksort run time

- What is the best case behavior?

Worst case run time

-What is the bad case for partitioning?

- Design a bad case input (assume first element is chosen as pivot)

Properties of Quicksort

- $\mathrm{O}\left(N^{2}\right)$ worst case performance, but $\mathrm{O}(N \log N)$ average case performance.
- Pure quicksort not good for small arrays.
- No iterative version (without using a stack).
- "In-place," but uses auxiliary storage because of recursive calls.
- Used by Java for sorting arrays of primitive types.

Average case performance

- Assume all permutations of the data are equally likely
- Or equivalently, a random pivot is chosen
- The math gets messy, but doable

