CSE 332: Data Structures and
Parallelism

Announcements

Finishing up hashing

Rehashing without recomputing hash function

Good hash functions
— Efficient
— Handle multiple word input

Bad case for hashing
Cryptographic Hash Functions
Expected performance

Java implementation of Hashing

e Chained hash table
* |nitial size is 64
* Double hash table size when A =34

 Hash buckets implemented at Lists — but are
converted to red-black trees at size 8

— Guard against bad data (so O(log n))

https://hg.openjdk.java.net/jdk8/jdk8/jdk/file/687fd7c7986d/src/share/classes/java/util/HashMap.java

Messing with a hash table

Find a large number of keys that hash to same
value

For a hash function H, find x, such that H(x) = z
H(x) = (ax + b) mod p
z=zax+b (modp) => alz-b=x(modp)

If we are hashing with to H(x) mod 2%, we find
values where

H(x) = 0, 2%, 2*2k, 3*2k .

Cryptographic Hash Functions

e Hash functions that are hard to invert,
e.g., given z, it is hard to find an x, such that

h(x) =z
— Examples, MD5, SHA-1, SHA-2, SHA-3, . ..
* Cryptographic Hash Functions are expensive

to compute, so NOT appropriate for data
structures

e Standard use case, store a file of passwords

Expected performance

Worst case, everything goes in one bucket

Load factor A, expected number of items per
bucket is A

Analysis, hashing N items into a table of size
N, assume the hashing is random and
independent

Prob(H(X) =Y)=1/N

What is the probability that a particular
bucket has j items?

The math: Balls in Bins

Probability that a bin is empty is (1 —1/n)"

Probability that a bin has one element is
almost (1- 1/n)"

Approximated by a poisson process

Expected length of the longest chain is
O(log n / loglog n)

Sorting

Sorting

Input
— an array A of data records
— a key value in each data record

— a comparison function which imposes a consistent ordering
on the keys

Output

— “sorted” array A such that
* Foranyiandj, ifi<jthen Ali] <A[j]

Space

* How much space does the sorting algorithm
require?
— In-place: no more than the array or at most O(1) addition
space
— Out-of-place: use separate data structures, copy back

— External memory sorting: data so large that does not fit in
memory

Time

How fast is the algorithm?
— requirement: for any i<j, Ali] < A[j]

— This means that you need to at least check on each element
at the very minimum

 Complexity is at least:

— And you could end up checking each element against every
other element

* Complexity could be as bad as:

The big question: How close to O(n) can you get?

Simple

algorithms:

O(n?)

/

Insertion sort

Selection sort

Sorting: The Big Picture

Fancier Comparison
algorithms: lower bound:
O(n log n) Q(n log n)
Heap sort
Merge sort

Quick sort (avg)

Specialized
algorithms:

O(n)

/

Bucket sort

Radix sort

Handling
huge data

sets

/

External

sorting

Insertion Sort

Sort first 2 elements.
Insert 3 element in order.

(First 3 elements are now sorted.)
Insert 4t element in order

(First 4 elements are now sorted.)
And so on...

How to do the insertion?

Suppose my sequence is:
16, 31,54, 78,32,17,6

And I've already sorted up to 78. How to insert 327

Try it out: Insertion sort

 31,16,54,4,2,17,6

Insertion Sort code

void InsertionSort (Array a[0..n-1]) {
for (i=1l; i<n; i++) {
for (j=i; j>0; j--) {
if (a[3j] < alj-1])
swap (a[3],a[j-1])
else
break

Insertion Sort

* Worst case O(n?)

e The runtime is related to how sorted the data is

— Run time proportional to number of pairs of out of order
items

* |nsertion sort is useful when there is a small number
of items to sort

Heap Sort: Sort with a Binary Heap

In-place heap sort

— Treat the initial array as a heap (via buildHeap)
— When you delete the ith element, put it at arr[n-i]
* It’s not part of the heap anymore!

- T

arr[n-i]= Y
deleteMin ()

“Divide and Conquer”

* Very important strategy in computer science:
— Divide problem into smaller parts
— Independently solve the parts
— Combine these solutions to get overall solution

 Idea 1: Divide array in half, recursively sort left and right
halves, then merge two halves
- known as Mergesort

 Idea 2 : Partition array into small items and large items, then
recursively sort the two sets
- known as Quicksort

Mergesort

81219415

3

1

Sort each half (recursively)
Merge two halves together

T~

Divide it in two at the midpoint

Mergesort Example

812(9/4/5|3|1|6

Divide — T
o 82 9 4 5316
Divide _ .
Divide 3 2 9 4 o 3 16
\ <\ ' N
lelement 8 2 9 4 5 3 1 6
W4 W4 W4 W
Merge ,™g 4 9 35 16
2 4 8 9 1 3 56
hﬂergé\\\\\\\\\\““**””/’////////

123456289

Merging: Two Pointer Method

Merge using an auxiliary array

Auxiliary array

Merging

Merge (A[], Temp[], left, mid, right)

int 1, j, k, 1, target
i = left
j =mid + 1
target = left
while (i < mid && j < right) {
if (A[i] < A[3J])
Temp [target] = A[i++]
else
Temp [target] = A[Jj++]
target++
}
if (i > mid) //left completed
for (k = left to target-1)
A[k] = Temp[k];
if (j > right) //right completed
k = mid
1 = right
while (k > i)
A[l--] = A[k--]
for (k left to target-1)
Alk] Temp [k]

Recursive Mergesort

MainMergesort (A[l..n], n) {
Array Temp[l. .n]
Mergesort[A, Temp, 1, n]

}

Mergesort (A[], Temp[], left, right) ({
if (left < right) {
mid = (left + right) /2
Mergesort (A, Temp, left, mid)
Mergesort (A, Temp, mid+1l, right)
Merge (A, Temp, left, mid, right)
}
}

What is the recurrence relation?

Mergesort: Complexity

Iterative Mergesort

\/

\/

\/

\/

\/

\/

\/

\/

\

Y

\

Y

\

Y

\

Y

Merge by 1
Merge by 2
Merge by 4

Merge by 8

Properties of Mergesort

In-place?

Sorted list complexity?

Nicely extends to handle linked lists.
Multi-way merge is basis of big data sorting.

Java uses Mergesort on Collections and on Arrays of
Objects.

Quicksort

Quicksort uses a divide and conquer strategy, but does
not require the O(N) extra space that MergeSort
does.

Here’s the idea for sorting array S:
1. Pick an elementvin$S. This is the pivot value.

2. Partition S-{v} into two disjoint subsets, S, and S, such
that:

* elementsinS;areall<v
* elementsinS,areall>v
3. Return concatenation of QuickSort(S,), v, QuickSort(S,)

Recursion ends if Quicksort() receives an array of length 0 or 1.

The steps of Quicksort

S 81 31 57 select pivot value
13 43 /’55
92 0
.
' partition S

QuickSort(S;) and
QuickSort(S,)
S (2631 43 57 65 @ Presto! Sis sorted

Quicksort Example

Divide — 5
. 42 31 - 6 9 8
Divide o o~
- il - 34 6 8
Divide ;
1 element 34
o
Conquer 3 4
Conquer g M
1 2 3 4 6 8 9
\ | /

Conquer 1 573 4 56 8 9

Pivot Picking and Partitioning

The tricky parts are:

* Picking the pivot

— Goal: pick a pivot value so that |S,;| and |S,| are
roughly equal in size.

* Partitioning
— Preferably in-place
— Dealing with duplicates

Picking the pivot

* Choose the first element in the subarray

* Choose a value that might be close to the
middle

— Median of three

e Choose a random element

Quicksort Partitioning

Partition the array into left and right sub-arrays such that:
— elements in left sub-array are < pivot

— elements in right sub-array are > pivot

Can be done in-place with another “two pointer method”

— Sounds like mergesort, but here we are partitioning, not
sorting...

— ...and we can do it in-place.
Lots of work has been invested in engineering
quicksort

Quicksort Pseudocode

Putting the pieces together:

Quicksort (A[], left, right) {
if (left < right) ({
medianOf3Pivot (A, left, right);
pivotIndex = Partition(A, left+l, right-1);

Quicksort (A, left, pivotIndex - 1);
Quicksort (A, pivotIndex + 1, right);

Important Tweak

Insertion sort is actually better than quicksort on
small arrays. Thus, a better version of quicksort:

Quicksort (A[], left, right) {
if (right - left 2 CUTOFF) ({
medianOf3Pivot (A, left, right);
pivotIndex = Partition (A, left+l, right-1);

Quicksort (A, left, pivotIndex - 1) ;
Quicksort (A, pivotIndex + 1, right);

} else {
InsertionSort (A, left, right);

CUTOFF = 16 is reasonable.

Quicksort run time

e What is the best case behavior?

Worst case run time

 What is the bad case for partitioning?

e Design a bad case input (assume first element
is chosen as pivot)

Average case pe rformance

* Assume all permutations of the data are
equally likely

— Or equivalently, a random pivot is chosen

* The math gets messy, but doable

Properties of Quicksort

O(N?) worst case performance, but

O(N log N) average case performance.

Pure quicksort not good for small arrays.
No iterative version (without using a stack).

“In-place,” but uses auxiliary storage because of
recursive calls.

Used by Java for sorting arrays of primitive types.

