
CSE 332: Data Structures and 
Parallelism

Spring 2022

Richard Anderson

Lecture 13: Sorting I

10/26/2022 CSE 332 1



Announcements

10/26/2022 CSE 332 2



Finishing up hashing

• Rehashing without recomputing hash function

• Good hash functions

– Efficient

– Handle multiple word input

• Bad case for hashing

• Cryptographic Hash Functions

• Expected performance

10/26/2022 CSE 332 3



Java implementation of Hashing

• Chained hash table

• Initial size is 64

• Double hash table size when λ = ¾

• Hash buckets implemented at Lists – but are 
converted to red-black trees at size 8

– Guard against bad data (so O(log n))

10/26/2022 CSE 332 4

https://hg.openjdk.java.net/jdk8/jdk8/jdk/file/687fd7c7986d/src/share/classes/java/util/HashMap.java



Messing with a hash table

• Find a large number of keys that hash to same 
value

• For a hash function H,  find x,  such that H(x) = z

• H(x) = (ax + b) mod p
z ≡ ax + b  (mod p)  =>  a-1z - b ≡ x (mod p)

• If we are hashing  with to H(x) mod 2k,  we find 
values where 
H(x) = 0, 2k, 2*2k, 3*2k, . . .

10/26/2022 CSE 332 5



Cryptographic Hash Functions

• Hash functions that are hard to invert,  
e.g.,  given z, it is hard to find an x, such that 
h(x) = z

– Examples, MD5, SHA-1, SHA-2, SHA-3, . . .

• Cryptographic Hash Functions are expensive 
to compute, so NOT appropriate for data 
structures 

• Standard use case,  store a file of passwords

10/26/2022 CSE 332 6



Expected performance

• Worst case,  everything goes in one bucket

• Load factor ,  expected number of items per 
bucket is 

• Analysis,  hashing N items into a table of size 
N,  assume the hashing is random and 
independent

• Prob(H(X) = Y) = 1/N

• What is the probability that a particular 
bucket has j items?

10/26/2022 CSE 332 7



The math: Balls in Bins

• Probability that a bin is empty is (1 – 1/n)n

• Probability that a bin has one element is 
almost (1– 1/n)n

• Approximated by a poisson process

• Expected length of the longest chain is        
O(log n / loglog n)

10/26/2022 CSE 332 8



Sorting

10/26/2022 CSE 332 9



Sorting

• Input
– an array A of data records

– a key value in each data record

– a comparison function which imposes a consistent ordering 
on the keys

• Output
– “sorted” array A such that

• For any i and j, if i < j then A[i]  A[j]

10/26/2022 CSE 332 10



Space

• How much space does the sorting algorithm 
require?
– In-place:  no more than the array or at most O(1) addition 

space

– Out-of-place:  use separate data structures, copy back

– External memory sorting:  data so large that does not fit in 
memory

10/26/2022 CSE 332 11



Time
How fast is the algorithm?

– requirement:  for any i<j, A[i] < A[j]

– This means that you need to at least check on each element 
at the very minimum 

• Complexity is at least: 

– And you could end up checking each element against every 
other element

• Complexity could be as bad as:

The big question: How close to O(n) can you get?

10/26/2022 CSE 332 12



Sorting: The Big Picture

Simple

algorithms:

O(n2)

Fancier

algorithms:

O(n log n)

Comparison

lower bound:

(n log n)

Specialized

algorithms:

O(n)

Handling

huge data

sets

Insertion sort

Selection sort

…

Heap sort

Merge sort

Quick sort (avg)

…

Bucket sort

Radix sort

External

sorting

10/26/2022 CSE 332 13



Insertion Sort

1. Sort first 2 elements.
2. Insert 3rd element in order.

(First 3 elements are now sorted.)

3. Insert 4th element in order
(First 4 elements are now sorted.)

4. And so on…

10/26/2022 CSE 332 14



How to do the insertion?

Suppose my sequence is:

16, 31, 54, 78, 32, 17, 6

And I’ve already sorted up to 78.  How to insert 32?

10/26/2022 CSE 332 15



Try it out: Insertion sort

• 31, 16, 54, 4, 2, 17, 6

10/26/2022 CSE 332 16



Insertion Sort code

10/26/2022 CSE 332 17

void InsertionSort (Array a[0..n-1]) {

for (i=1; i<n; i++) {

for (j=i; j>0; j--) {

if (a[j] < a[j-1])

Swap(a[j],a[j-1])

else

break

}

}



Insertion Sort  

• Worst case O(n2)

• The runtime is related to how sorted the data is

– Run time proportional to number of pairs of out of order 
items

• Insertion sort is useful when there is a small number 
of items to sort

10/26/2022 CSE 332 18



Heap Sort: Sort with a Binary Heap

10/26/2022 CSE 332 19



In-place heap sort

– Treat the initial array as a heap (via buildHeap)

– When you delete the ith element, put it at arr[n-i]

• It’s not part of the heap anymore!

4 7 5 9 8 6 10 3 2 1

sorted partheap part

arr[n-i]=

deleteMin()

5 7 6 9 8 10 4 3 2 1

sorted partheap part

10/26/2022 CSE 332 20



“Divide and Conquer”

• Very important strategy in computer science:
– Divide problem into smaller parts

– Independently solve the parts

– Combine these solutions to get overall solution

• Idea 1: Divide array in half, recursively sort left and right 
halves, then merge two halves 
 known as Mergesort

• Idea 2 : Partition array into small items and large items, then 
recursively sort the two sets 
 known as Quicksort

10/26/2022 CSE 332 21



Mergesort

• Divide it in two at the midpoint

• Sort each half (recursively)

• Merge two halves together

8 2 9 4 5 3 1 6

10/26/2022 CSE 332 22



Mergesort Example

8  2   9   4 5   3   1   6

8   2 1   69   4 5   3

8 2 9 4 5 3 1 6

2   8 4    9 3   5 1   6

2   4   8   9 1   3   5   6

1   2   3   4   5   6   8   9

Merge

Merge

Merge

Divide

Divide

Divide

1 element

8 2 9 4 5 3 1 6

10/26/2022 CSE 332 23



Merging: Two Pointer Method

10/26/2022 CSE 332 24

2 4 8 9 1 3 5 6

Auxiliary array

Merge using an auxiliary array



Merging

10/26/2022 CSE 332 25

Merge(A[], Temp[], left, mid, right)  {

int i, j, k, l, target

i = left

j = mid + 1

target = left

while (i < mid && j < right) {

if (A[i] < A[j]) 

Temp[target] = A[i++] 

else 

Temp[target] = A[j++]

target++

}

if (i > mid) //left completed 

for (k = left to target-1) 

A[k] = Temp[k];

if (j > right) //right completed 

k = mid

l = right

while (k > i)

A[l--] = A[k--]

for (k = left to target-1) 

A[k] = Temp[k]

}



Recursive Mergesort

10/26/2022 CSE 332 26

MainMergesort(A[1..n], n) {

Array Temp[1..n]

Mergesort[A, Temp, 1, n]

}

Mergesort(A[], Temp[], left, right) {

if (left < right) { 

mid = (left + right)/2

Mergesort(A, Temp, left, mid)

Mergesort(A, Temp, mid+1, right)

Merge(A, Temp, left, mid, right)

}

}

What is the recurrence relation?



Mergesort: Complexity

10/26/2022 CSE 332 27



Iterative Mergesort

Merge by 1

Merge by 2

Merge by 4

Merge by 8

10/26/2022 CSE 332 28



Properties of Mergesort

• In-place?

• Sorted list complexity?

• Nicely extends to handle linked lists.

• Multi-way merge is basis of big data sorting.

• Java uses Mergesort on Collections and on Arrays of 
Objects.

10/26/2022 CSE 332 29



Quicksort

Quicksort uses a divide and conquer strategy, but does 
not require the O(N) extra space that MergeSort
does.

Here’s the idea for sorting array S:
1. Pick an element v in S.  This is the pivot value.
2. Partition S-{v} into two disjoint subsets, S1 and S2 such 

that:
• elements in S1 are all  v
• elements in S2 are all  v

3. Return concatenation of QuickSort(S1), v, QuickSort(S2)

Recursion ends if Quicksort( ) receives an array of length 0 or 1.

10/26/2022 CSE 332 30



The steps of Quicksort

13
81

92

43

65

31 57

26

75
0

S select pivot value

13
81

92

43 65
31

5726

75
0

S1 S2
partition S

13 4331 57260

S1

81 927565

S2

QuickSort(S1) and
QuickSort(S2)

13 4331 57260 65 81 9275S Presto!  S is sorted

10/26/2022 CSE 332 31



Quicksort Example

4  2   3   1 6   9   8

1 93  4 6

1   2 3   4 6   8 9

1   2   3   4   5 6   8   9

Conquer

Conquer

Conquer

Divide

Divide

Divide

1 element

4 6 3 8 1 9 2 5

5

8
2

43

3 4

10/26/2022 CSE 332 32



Pivot Picking and Partitioning

The tricky parts are:

• Picking the pivot
– Goal: pick a pivot value so that |S1| and |S2| are 

roughly equal in size.

• Partitioning
– Preferably in-place

– Dealing with duplicates

10/26/2022 CSE 332 33



Picking the pivot

• Choose the first element in the subarray

• Choose a value that might be close to the 
middle

– Median of three

• Choose a random element

10/26/2022 CSE 332 34



Quicksort Partitioning

• Partition the array into left and right sub-arrays such that:

– elements in left sub-array are  pivot

– elements in right sub-array are  pivot

• Can be done in-place with another “two pointer method”

– Sounds like mergesort, but here we are partitioning, not 
sorting…

– …and we can do it in-place.

• Lots of work has been invested in engineering 
quicksort

10/26/2022 CSE 332 35



Quicksort Pseudocode

Quicksort(A[], left, right) {

if (left < right) {

medianOf3Pivot(A, left, right);

pivotIndex = Partition(A, left+1, right-1);

Quicksort(A, left, pivotIndex – 1);

Quicksort(A, pivotIndex + 1, right);

}

}

Putting the pieces together:

10/26/2022 CSE 332 36



Important Tweak

Quicksort(A[], left, right) {

if (right – left ≥ CUTOFF) {

medianOf3Pivot(A, left, right);

pivotIndex = Partition(A, left+1, right-1);

Quicksort(A, left, pivotIndex – 1);

Quicksort(A, pivotIndex + 1, right);

} else {

InsertionSort(A, left, right);

}

}

CUTOFF = 16 is reasonable.

Insertion sort is actually better than quicksort on 
small arrays.  Thus, a better version of quicksort:

10/26/2022 CSE 332 37



Quicksort run time

• What is the best case behavior?

10/26/2022 CSE 332 38



Worst case run time

• What is the bad case for partitioning?

• Design a bad case input (assume first element 
is chosen as pivot)

10/26/2022 CSE 332 39



Average case performance

• Assume all permutations of the data are 
equally likely

– Or equivalently,  a random pivot is chosen

• The math gets messy,  but doable

10/26/2022 CSE 332 40



Properties of Quicksort

• O(N2) worst case performance, but 

O(N log N) average case performance.

• Pure quicksort not good for small arrays.

• No iterative version (without using a stack).

• “In-place,” but uses auxiliary storage because of 
recursive calls.

• Used by Java for sorting arrays of primitive types.

10/26/2022 CSE 332 41


