
1

CSE 332: Data Structures and
Parallelism

Fall 2022

Richard Anderson

Lecture 12: Hashing

10/22/2022 CSE 332 1

Announcements

• Midterm – Nov 4, in class

– Coverage: stuff in class, up to the midterm

• Details of topics will be posted

– Practice midterms

• Posted. Different instructors have different styles

– Review session

10/22/2022 CSE 332 2

Today

• Hashing

– Arrays for dictionary

– Key space to array space

– Dealing with collisions

– Hash functions

– Resizing and Load Factors

– Expected performance

10/22/2022 CSE 332 3

Hashing

• Dictionary ADT

– Access by key

• Arrays

– Key is an index

– O(1) Access

– What if key space is large

• Hashing

– Key space mappings

10/22/2022 CSE 332 4

Key
space

Index
space

Hashing Implementation

• Separate Chaining

• Open Addressing

• Load factor: λ = N/Tablesize

• Rehashing: double the size of the table

10/22/2022 CSE 332 5

Open Addressing Summary

• Does not need extra pointers
• Probe sequence

– Order of finding open space for a key
• Linear Probing
• Quadratic Probing
• Double Hashing

• Drawbacks
– Clustering harms run time

– Deletes are annoying
– Fails when λ > 1

– Can fail when λ > ½ for quadratic probing

10/22/2022 CSE 332 6

2

Separate chaining run time

• Average bucket size is λ

• O(1) run time if λ ≤ 1
– Sort of: worst case is really O(N)

• Controlling load factor

– If N is known in advance, allocate a hash table of

size N

– If inserts are dynamic, double table size when λ=1

10/22/2022 CSE 332 7

Rehashing

• Cost of rehashing is number of elements in the
hash table

• Parameters chosen so rehashing work is about
the same as hashing work

10/22/2022 CSE 332 8
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 23 24 25

hashes

rehashes

9

Amortized Analysis of Rehashing

• Assume cost of inserting n keys is < 3n

• Suppose 2k + 1 < n < 2k+1

– Hashes = n

– Rehashes = 2 + 22 + … + 2k = 2k+1 – 2

– Total = n + 2k+1 – 2 < 3n

• Question:

– Do you need a new hash function every time you

rehash?

CSE 33210/22/2022

The correct way to do hashing

10/22/2022 CSE 332 10

Key space [0,…,232-1]*

[0,…,2k-1]

mod 2k

H(X)

* Unsigned arithmetic

Choosing a Hash Function

• Considerations

– Efficiency

– Depend on entire input

– Spread out values

– Uniform coverage of range

– Avoid patterns

– Non-invertable

10/22/2022 CSE 332 11

Efficiency

• For data structure use, H(X) needs to be fast
to compute

• Hash tables are competing with balanced
trees – need to beat the log N factor

• Bit operations are fasters than arithmetic
operations
– Division is particularly slow

10/22/2022 CSE 332 12

3

Common choice: aX+b mod p

• Sometimes, mod 232 instead

• Constants can be random, or various
recommendations are available

• Fibonacci hashing: a=2654435769

• Generalizations to finite fields

– Number theory / Algebra

10/22/2022 CSE 332 13

Other approaches – bit hacking

10/22/2022 CSE 332 14

unsigned long ElfHash(const unsigned char *s)

{

unsigned long h = 0, high;

while (*s)

{

h = (h << 4) + *s++;

if (high = h & 0xF0000000)

h ^= high >> 24;

h &= ~high;

}

return h;

}

Hashing strings

10/22/2022 CSE 332 15

K = s0 s1 s2 … s m-1 (where si are chars: si [0, 127])

1. h(K) = s0 mod TS

2. h(K) = mod TS

3. h(K) = mod TS

1

0

m

i

i

s

1

0

128

m

i

i

i

s

Application of a bad hash function

• D = [0..2K-1]

• G : [0..127] -> D (Hashing characters)

• H(s1s2…s j) = Σi G(s i)

Build an anagram dictionary using H

10/22/2022 CSE 332 16

Multiword hashing

• Hashing W = w1w2…wj

• Hash each wi into a result
– Do in a way that order matters

• D = [0..2K-1]

• G : [0.. 2K-1] -> D (Hashing characters)

• H(w1w2…wj) = Σi G(wi + f(i))

10/22/2022 CSE 332 17

Example Hash Function

10/22/2022 CSE 332 18

jenkinsOneAtATimeHash(String key, int keyLength) {

hash = 0;

for (i = 0; i < key_len; i++) {

hash += key[i];

hash += (hash << 10);

hash ^= (hash >> 6);

}

hash += (hash << 3);

hash ^= (hash >> 11);

hash += (hash << 15);

return hash;

}

4

What would Java do?

• From the source code for Hash Map

• Chained hash table

• Initial size is 64

• Double hash table size when λ = ¾

• Hash buckets implemented at Lists – but are
converted to balanced trees at size 8
– Guard against bad data (so O(log n))

10/22/2022 CSE 332 19

Messing with a hash table

• Find a large number of keys that hash to same
value

• For a hash function H, find x, such that H(x) = z

• H(x) = (ax + b) mod p
z ≡ ax + b (mod p) => a-1z - b ≡ x (mod p)

• If we are hashing with to H(x) mod 2k, we find
values where
H(x) = 0, 2k, 2*2k, 3*2k, . . .

10/22/2022 CSE 332 20

Cryptographic Hash Functions

• Hash functions that are hard to invert, e.g.,
given z, it is hard to find an x, such that h(x) =
z

– Examples, MD5, SHA-1, SHA-2, SHA-3, . . .

• Cryptographic Hash Functions are expensive
to compute, so NOT appropriate for data
structures

• Standard use case, store a fi le of passwords

10/22/2022 CSE 332 21

Expected performance

• Worst case, everything goes in one bucket

• Load factor , expected number of items per
bucket is

• Analysis, hashing N items into a table of size
N, assume the hashing is random and
independent

• Prob(H(X) = Y) = 1/N

• What is the probability that a particular
bucket has j items?

10/22/2022 CSE 332 22

The math: Balls in Bins

• Probability that a bin is empty is (1 – 1/n)n

• Probability that a bin has on element is almost
(1– 1/n)n

• Approximated by a poisson process

• Expected length of the longest chain is
O(log n / loglog n)

10/22/2022 CSE 332 23

