CSE 332: Data Structures and
Parallelism

Fall 2022
RichardAnderson
Lecture 12:Hashing

Announcements

e Midterm — Nov 4, in class

— Coverage: stuffin class, up to the midterm

« Detailsof topicswill be posted
— Practice midterms

» Posted. Differentinstructorshave different styles
— Review session

Today

* Hashing
— Arrays for dictionary
— Key space to array space
— Dealing with collisions
— Hash functions
— Resizingand Load Factors
— Expected performance

Hashing
Dictionary ADT Key Index
— Access by key space = space
Arrays

— Keyis anindex

—0(1) Access

— What ifkey spaceis large
Hashing

— Key space mappings

Hashing Implementation

* SeparateChaining

* Open Addressing

.

Load factor: A= N/Tablesize
Rehashing: doublethesizeof the table

Open Addressing Summary

Does not need extra pointers
Probe sequence

— Order of finding open space for a key
* Linear Probing

* Quadratic Probing
* Double Hashing

Drawbacks

— Clustering harms run time
— Deletes are annoying

— Fails when A> 1

— Can fail when A > % for quadratic probing

CSE332




Separate chaining run time

* Averagebucketsizeis A
* O(1)runtimeifA<1

— Sort of: worst case is really O(N)
* Controllingload factor

—If N is known in advance, allocatea hash table of
size N
— If inserts are dynamic, double table size when A=1

Rehashing

* Costofrehashingis numberof elementsin the
hashtable

* Parameters chosensorehashing workis about
the same as hashingwork

mm hashes
B rehashes

L0y 23 45 67 89 1011121314 15 1617 18 1920 212324 25,

Amortized Analysis of Rehashing

» Assume cost of insertingn keysis< 3n

e Suppose 2k+1 <n< 2kt
— Hashes=n
— Rehashes=2+22+ ...+ 2k=2k1_2
— Total=n+2%1—-2<3n

* Question:
— Do you need a new hash function every time you
rehash?

The correct way to do hashing

H(X)
Key space =)

l mod 2k

10/22/2022 CSE332 * Unsigned arithmetic

Choosing a Hash Function

* Considerations
— Efficiency
— Depend on entire input
— Spread out values
— Uniform coverage of range
— Avoid patterns
— Non-invertable

10/22/202 CSE332 11

Efficiency

For data structure use, H(X) needs to be fast
to compute

Hash tables are competing with balanced
trees — need to beatthe log N factor

Bitoperations arefasters than arithmetic
operations
— Division is particularly slow




Common choice: aX+b mod p

Sometimes, mod 23? instead

Constants can berandom, or various
recommendationsareavailable

Fibonacci hashing: a=2654435769
Generalizations to finitefields
— Number theory/ Algebra

Other approaches —bit hacking

unsigned long ElfHash(const unsigned char *s)
{
unsigned long h =0, high;
while (*s)
{
h = (h << 4) + *s++;
if (high = h & 0xF0000000)
h = high >> 24;
h & ~high;
}

return h;

Hashing strings
K= S S ... Sm1 (where s; arechars: s; e [0, 127])

1. h(K)= symod TS

m-1

2. h(K) = [Zsijmod TS

i=0

N

m-1

3. h(K) = [Zsi-lzs'] mod TS

Application of a bad hash function

« D=[0.2%1]
* G:[0..127]->D (Hashingcharacters)

* H(sss;...5)) =Zi G(s;)

Build ananagramdictionary using H

Multiword hashing

Hashing W =w;w,...w;
Hasheachw;intoaresult

— Doin a waythat order matters
D =[0..2%1]
G:[0..2%1]->D (Hashingcharacters)

H(WiWa..w;) = 2, G(w; +f(i))

Example Hash Function

jenk insOneAtATimeHash (String key, int keyLength) {
hash = 0;
for (i = 0; i < key_len; i++) {
hash += key[i];
hash += (hash << 10);
hash #= (hash >> 6) ;
}
hash += (hash << 3) ;
hash *= (hash >> 11);
hash += (hash << 15);

return hash;




What would Java do?

Fromthe source codefor Hash Map
Chained hashtable

Initial sizeis 64

Doublehash tablesizewhen A= %

Hash buckets implemented atLists —butare
converted to balanced trees atsize 8
— Guard against bad data (so O(logn))

Messing with a hash table

Find a large number of keys that hashto same
value

Fora hashfunctionH, findx, such thatH(x)=z
H(x) = (ax+b)mod p
z=ax+b (mod p) => alz-b =x(mod p)

If we are hashing with to H(x) mod 2¥, we find
values where

H(x) =0, 2K 2%2K 3%k .

Cryptographic Hash Functions

Hash functionsthatarehard toinvert, e.g.,
givenz, itis hardtofindanx,suchthath(x)=
z

— Examples, MD5, SHA-1, SHA-2, SHA-3, . ..
Cryptographic Hash Functions are expensive
to compute, so NOTappropriatefor data
structures

Standard usecase, storea file of passwords

Expected performance

Worstcase, everythinggoes in one bucket
Load factor A, expected number of items per
bucketis A

Analysis, hashing Nitems into a tableof size
N, assumethehashingisrandomand
independent

Prob(H(X)=Y) = 1/N

Whatis the probability thata particular
buckethas jitems?

.

The math: Balls in Bins

Probability thata binis emptyis (1 -1/n)"
Probability thata bin has on elementis almost
(1-1/n)"

Approximated by a poisson process

Expected length of the longestchainis
O(logn/loglogn)




