CSE 332: Data Structures and Parallelism

Fall 2022
RichardAnderson Lecture 12: Hashing

10/22/202
CSE 332

Announcements

- Midterm - Nov 4, in class
- Coverage: stuff in class, up to the midterm
- Details of topics will be posted
- Practice midterms
- Posted. Different instructors have different styles - Review session

Today

- Hashing
- Arrays for dictionary
- Key space to array space
- Dealing with collisions
- Hash functions
- Resizing and Load Factors
- Expected performance

10/22/2022
CSE 332

Hashing Implementation

- Separate Chaining
- Open Addressing
- Load factor: $\lambda=N /$ Tablesize
- Rehashing: double the size of the table

Open Addressing Summary

- Does not need extra pointers
- Probe sequence
- Order of finding open space for a key
- Linear Probing
- Quadratic Probing
- Double Hashing
- Drawbacks
- Clustering harms run time
- Deletes are annoying
- Fails when $\lambda>1$
- Can fail when $\lambda>1 / 2$ for quadratic probing

10/22/2022
CSE 332

Separate chaining run time

- Average bucket sizeis λ
- O (1) run time if $\lambda \leq 1$
- Sort of: worst case is really $\mathrm{O}(\mathrm{N})$
- Controlling load factor
- If N is known in advance, allocate a hash table of size N
- If inserts are dynamic, double table size when $\lambda=1$

10/22/202
CSE 332

Rehashing

- Cost of rehashing is number of elements in the hash table
- Parameters chosen so rehashing workis about the same as hashing work
\square hashes
\square rehashes

Amortized Analysis of Rehashing

- Assume cost of inserting n keysis $<3 n$
- Suppose $2^{k}+1 \leq n \leq 2^{k+1}$
- Hashes= n
- Rehashes $=2+2^{2}+\ldots+2^{k}=2^{k+1}-2$
- Total $=n+2^{k+1}-2<3 n$
- Question:
- Do you need a new hash function every time you rehash?

10/22/2022
CSE 332 9

Choosing a Hash Function

- Considerations
- Efficiency
- Depend on entire input
- Spread out values
- Uniform coverage of range
- Avoid patterns
- Non-invertable

The correct way to do hashing

Efficiency

- For data structure use, $\mathrm{H}(\mathrm{X})$ needs to be fast to compute
- Hash tables are competing with balanced trees - need to beat the $\log N$ factor
- Bit operations are fasters than arithmetic operations
- Division is particularly slow

Common choice: $\mathrm{aX}+\mathrm{b} \bmod \mathrm{p}$

- Sometimes, mod 2^{32} instead
- Constants can be random, or various recommendations are available
- Fibonacci hashing: $a=2654435769$
- Generalizations to finite fields
- Number theory / Algebra

Other approaches - bit hacking
unsigned long ElfHash(const unsigned char *s)
unsigned long $h=0$, high;
while (*s)
$h=(h \ll 4)+{ }^{\prime} s++;$
if (high $=h \& 0 \times F 0000000$) h $\wedge=$ high $\gg 24$;
h $\varepsilon=\sim$ high;
return h;
\}
10/22/2022

Application of a bad hash function

- $\mathrm{D}=\left[0 . .2^{\mathrm{K}}-1\right]$
- G:[0..127]->D (Hashing characters)
- $\mathrm{H}\left(\mathrm{s}_{1} \mathrm{~s}_{2} \ldots \mathrm{~s}_{\mathrm{j}}\right)=\sum_{\mathrm{i}} \mathrm{G}\left(\mathrm{s}_{\mathrm{i}}\right)$

Build an anagram dictionary using H

10/22/2022
CSE332

Multiword hashing

- Hashing $W=W_{1} W_{2} \ldots w_{j}$
- Hash each w_{i} into a result
- Do in a way that order matters
- $D=\left[0 . .2^{\mathrm{K}}-1\right]$
- G:[0.. $\left.2^{\mathrm{K}}-1\right]$-> D (Hashing characters)
- $\mathrm{H}\left(\mathrm{w}_{1} \mathrm{w}_{2} \ldots \mathrm{w}_{\mathrm{j}}\right)=\sum_{\mathrm{i}} \mathrm{G}\left(\mathrm{w}_{\mathrm{i}}+\mathrm{f}(\mathrm{i})\right)$

Example Hash Function

```
jenkinsOneAtATimeHash(String key, int keyLength) {
    hash = 0;
    for (i = 0; i < key_len; i++) {
        hash += key[i];
        hash += (hash << 10);
        hash ^= (hash >> 6);
    }
    hash += (hash << 3);
    hash ^= (hash >> 11);
    hash += (hash << 15);
    return hash;
}
10/22/2022
CSE 332
```


What would Java do?

- From the source code for Hash Map
- Chained hash table
- Initial size is 64
- Double hash table size when $\lambda=3 / 4$
- Hash buckets implemented at Lists - but are converted to balanced trees at size 8
- Guard against bad data (so O(logn))

10/22/202 CSE 332

Messing with a hash table

- Find a large number of keys that hash to same value
- For a hash function H, find x, such that $H(x)=z$
- $H(x)=(a x+b) \bmod p$
$z \equiv a x+b(\bmod p)=>a^{-1} z-b \equiv x(\bmod p)$
- If we are hashing with to $H(x) \bmod 2^{k}$, we find values where
$H(x)=0,2^{k}, 2^{*} 2^{k}, 3^{*} 2^{k}, \ldots$

10/22/2022 \qquad

Expected performance

- Worstcase, everything goes in one bucket
- Load factor λ, expected number of items per bucketis λ
- Analysis, hashing Nitems into a table of size N , assume the hashing is random and independent
- $\operatorname{Prob}(H(X)=Y)=1 / N$
- What is the probability that a particular bucket has jitems?

The math: Balls in Bins

- Probability that a bin is empty is $(1-1 / n)^{n}$
- Probability that a bin has on element is almost $(1-1 / n)^{n}$
- Approximated by a poisson process
- Expected length of the longest chain is O(logn $/ \log \log n)$

