
1

CSE 332: Data Structures and
Parallelism

Fall 2022
Richard Anderson

Lecture 11: Hashing (and some B-Tree
leftovers)

10/19/2022 CSE 332 1

Announcements

10/19/2022 CSE 332 2

Today

• Finish up B-trees
– Attempt to clear up some (justified) confusion

– B-Tree Deletes

• Hashing
– Arrays for dictionary

– Key space to array space

– Dealing with collisions

– Hash functions

– Resizing and Load Factors

– Expected performance

10/19/2022 CSE 332 3

B Tree Structure Properties
Internal nodes

– store up to M-1 keys

– have between ⎡M/2⎤ and M children

– Store keys and pointers to children

Leaf nodes
– where data is stored

– all at the same depth

– contain between ⎡L/2⎤ and L data items

– Store key-pointer pairs, where the pointer is to the record
that stores the data

Root (special case)
– has between 2 and M children (or root could be a leaf)

10/19/2022 CSE 332 4

B Tree: Example
• B+ Tree with M = 4 (# pointers in internal node)

• and L = 5 (# data items in leaf)

12 44

6 20 27 34 50

All leaves
at the same
depth

10/19/2022 CSE 332 5

50

60

70

20

22

24

44

47

49

12

14

19

17

16

6

8

10

9

1

2

4

27

28

32

34

38

41

39

R1

R2

R3

Operations

• Find(K)

– Return a pointer to the record of K

• Insert(K)

– Insert key K and return a pointer to the record of K

• Delete(K)

– Delete key K and associated data

10/19/2022 CSE 332 6

2

Node sizes

• Internal nodes

– 4096 bytes, 8 byte keys, 8 byte child pointer

– M = 256

• Leaves

– 4096 bytes, 8 byte keys, 8 byte record pointer

– L = 256

10/19/2022 CSE 332 7

Delete(32)

3

12

14

15

16

15

18

30

32 40

32

36

38

18

40

45

3

12

14

15

16

15

18

30

40

18

40

45

And Now for Deletion…

M = 3 L = 3
10/19/2022 CSE 332 8

Delete(15)

3

12

14

15

16

15

18

30

36 40

36

38

18

40

45

3

12 16

18

30

36 40

36

38

18

40

45

M = 3 L = 3
10/19/2022 CSE 332 9

Delete(16)

3

12

14

16

14

18

30

36 40

36

38

18

40

45

18

30

36 40

36

38

18

40

45

M = 3 L = 3
10/19/2022 CSE 332 10

Delete(16)

3

12

14

18

30

36 40

36

38

18

40

45

3

12

14

M = 3 L = 3
10/19/2022 CSE 332 11

Delete(14)

3

12

14

18

18

30

40

36

38

36

40

45

3

12

18

18

30

40

36

38

36

40

45

M = 3 L = 3
10/19/2022 CSE 332 12

3

Delete(18)

3

12

40

36

38

36

40

45

3

12

18

18

30

40

36

38

36

40

45

M = 3 L = 3
10/19/2022 CSE 332 13

3

12

30

40

36

38

36

40

45

M = 3 L = 3
10/19/2022 CSE 332 14

Deletion Algorithm

1.Remove the key from its leaf

• 2. If the leaf ends up with
fewer than ⎡L/2⎤ items,
underflow!
– Adopt data from a neighbor;

update the parent

– If adopting won’t work, delete
node and merge with neighbor

– If the parent ends up with fewer
than ⎡M/2⎤ children, underflow!

10/19/2022 CSE 332 15

Deletion Slide Two
• 3. If an internal node ends up with fewer than ⎡M/2⎤

children, underflow!

– Adopt from a neighbor;

update the parent

– If adoption won’t work,

merge with neighbor

– If the parent ends up with fewer than ⎡M/2⎤ children,

underflow!

4. If the root ends up with only one child, make the child

the new root of the tree

5. Propagate keys up through tree. This reduces the
height of the tree!

10/19/2022 CSE 332 16

Hashing

10/19/2022 CSE 332 17

Dictionary

10/19/2022 CSE 332 18

4

Array for data lookup

• Store football players by
jersey number

10 Uchenna Nwosu

11 Marquise Goodwin

12

13 Josh Jones

14 DK Metcalf

15

16 Tyler Lockett

17

18

19 Penny Hart

20

21 Artie Burns

22

23 Sidney Jones IV

24 Isaiah Dunn10/19/2022 CSE 332 19

Array for data lookup

• Store students by
student ID number

10/19/2022 CSE 332 20

2061129

2061130

2061131

2061132

2061133

2061134

2061135

2061136

2061137

2061138

2061139

2061140 Artie Burns

2061141

2061142

2061143

Arrays for dictionaries

• Index by key, O(1) insert and find

10/19/2022 CSE 332 21

Key space Index space

Hashing: Map large keyspace into
small index space

• I(K) = hash(K)

10/19/2022 CSE 332 22

Key space Index
space

23

Hash Tables

• Map keys to a smaller array called a hash table

– via a hash function h(K)

– Find, insert, delete: O(1) on average!

hash table
UW CSE 332, Spring 2016 24

Simple Integer Hash Functions

• key space K = integers

• TableSize = 10

• h(K) =

• Insert: 7, 18, 41, 34

0

1

2

3

4

5

6

7

8

9

UW CSE 332, Spring 2016

5

25

Simple Integer Hash Functions

• key space K = integers

• TableSize = 7

• h(K) = K mod 7

• Insert: 7, 18, 41, 34

0

1

2

3

4

5

6

UW CSE 332, Spring 2016 26

Aside: Properties of Mod

To keep hashed values within the size of the table, we

will generally do:

h(K) = function(K) mod TableSize

(In the previous examples, function(K) = K.)

Useful properties of mod:

(a + b) mod c = [(a mod c) + (b mod c)] mod c

(a b) mod c = [(a mod c) (b mod c)] mod c

a mod c = b mod c → (a – b) mod c = 0

UW CSE 332, Spring 2016

Collision Resolutions

• Separate Chaining

• Open Addressing

10/19/2022 CSE 332 27 28

Separate Chaining

All keys that map to the same

hash value are kept in a list

(or “bucket”).

0

1

2

3

4

5

6

7

8

9

Insert:

10

22

107

12

42

UW CSE 332, Spring 2016

29

Analysis of Separate Chaining

The load factor, , of a hash table is

 = average # of elements per bucket

N

TableSize

0

1 /

2

3 /

4 /

5 /

6

7 /

8 /

9 /

10 /

42

86 /

12 22 /

𝜆 =

UW CSE 332, Spring 2016 30

Analysis of Separate Chaining

The load factor, , of a hash table is

 = average # of elems per bucket

Average cost of:

– Unsuccessful find?

– Successful find?

– Insert?

N

TableSize

UW CSE 332, Spring 2016

6

31

Alternative: Use Empty Space in the Table

0

1

2

3

4

5

6

7

8

9

Insert:

38

19

8

109

10

Try h(K).

If full, try h(K)+1.

If full, try h(K)+2.

If full, try h(K)+3.

Etc…

UW CSE 332, Spring 2016 32

Open Addressing

After a collision, try “next” spot. If there’s another
collision, try another, etc.

Finding the next available spot is called probing:

0th probe = h(k) % TableSize

1th probe = (h(k) + f(1)) % TableSize

2th probe = (h(k) + f(2)) % TableSize

. . .

ith probe = (h(k) + f(i)) % TableSize

f(i) is the probing function. We’ll look at a few…

UW CSE 332, Spring 2016

33

Linear Probing

f(i) = i

• Probe sequence:

0th probe = h(K) % TableSize

1th probe = (h(K) + 1) % TableSize

2th probe = (h(K) + 2) % TableSize

. . .

ith probe = (h(K) + i) % TableSize

UW CSE 332, Spring 2016 34

Linear Probing

0

1

2

3

4

5

6

7

8

9

Insert:

38

19

8

109

10

8

109

10

38

19

Try h(K)

If full, try h(K)+1.

If full, try h(K)+2.

If full, try h(K)+3.

Etc…

UW CSE 332, Spring 2016

Linear Probing – Clustering

35[R. Sedgewick]

no collision

no collision

collision in

small cluster

collision in

large cluster

UW CSE 332, Spring 2016 36

Analysis of Linear Probing

• For any < 1, linear probing will find an empty slot

• Expected # of probes (for large table sizes)

– unsuccessful search:

– successful search:

• Linear probing suffers from primary clustering

• Performance quickly degrades for > 1/2

2
1

1
1

2

1

1

1
1

2

1

UW CSE 332, Spring 2016

7

37UW CSE 332, Spring 2016 38

Quadratic Probing

f(i) = i2

• Probe sequence:

0th probe = h(K) % TableSize

1th probe = (h(K) + 1) % TableSize

2th probe = (h(K) + 4) % TableSize

3th probe = (h(K) + 9) % TableSize

. . .

ith probe = (h(K) + i2) % TableSize

Less likely to
encounter
Primary
Clustering

UW CSE 332, Spring 2016

39

Quadratic Probing Example

0

1

2

3

4

5

6

7

8

9

Insert:

89

18

49

58

79

UW CSE 332, Spring 2016 40

Another Quadratic Probing Example

TableSize = 7

h(K) = K % 7

insert(76) 76 % 7 =6

insert(40) 40 % 7 =5

insert(48) 48 % 7 =6

insert(5) 5 % 7 =5

insert(55) 55 % 7 =6

insert(47) 47 % 7 =5

3

2

1

0

6

5

4

UW CSE 332, Spring 2016

41

Quadratic Probing: Properties

• For any < ½, quadratic probing will find an empty

slot; for bigger , quadratic probing may find a slot.

• Quadratic probing does not suffer from primary

clustering: keys hashing to the same area is ok

• But what about keys that hash to the same slot?

– Secondary Clustering!

UW CSE 332, Spring 2016 42

Double Hashing

Idea: given two different (good) hash functions h(K) and
g(K), it is unlikely for two keys to collide with both of them.

So…let’s try probing with a second hash function:

f(i) = i * g(K)

• Probe sequence:
0th probe = h(K) % TableSize

1th probe = (h(K) + g(K)) % TableSize

2th probe = (h(K) + 2*g(K)) % TableSize

3th probe = (h(K) + 3*g(K)) % TableSize

. . .

ith probe = (h(K) + i*g(K)) % TableSize

UW CSE 332, Spring 2016

8

43

Double Hashing Example

0

1

2

3

4

5

6

Insert(76) 76 % 7 = 6 and 5 - 76 % 5 =

Insert(93) 93 % 7 = 2 and 5 - 93 % 5 =

Insert(40) 40 % 7 = 5 and 5 - 40 % 5 =

Insert(47) 47 % 7 = 5 and 5 - 47 % 5 =

Insert(10) 10 % 7 = 3 and 5 - 10 % 5 =

Insert(55) 55 % 7 = 6 and 5 - 55 % 5 =

TableSize = 7

h(K) = K % 7

g(K) = 5 – (K % 5)

UW CSE 332, Spring 2016 44

Deletion in Separate Chaining

How do we delete an element with separate
chaining?

UW CSE 332, Spring 2016

45

Deletion in Open Addressing

0

1

2

3

4

5

6

16

23

59

76

h(k) = k % 7

Linear probing

Delete(23)

Find(59)

Insert(30)

Need to keep track of
deleted items... leave a
“marker”

UW CSE 332, Spring 2016 46

When the table gets too full, create a bigger table
(usually 2x as large) and hash all the items from the
original table into the new table.

• When to rehash?

– Separate chaining: full (= 1)

– Open addressing: half full (= 0.5)

– When an insertion fails

– Some other threshold

• Cost of a single rehashing?

Rehashing

UW CSE 332, Spring 2016

47

Rehashing Picture

• Starting with table of size 2, double
when load factor > 1.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 23 24 25

hashes

rehashes

UW CSE 332, Spring 2016 48

Amortized Analysis of Rehashing

• Cost of inserting n keys is < 3n

• suppose 2k + 1 < n < 2k+1

– Hashes = n

– Rehashes = 2 + 22 + … + 2k = 2k+1 – 2

– Total = n + 2k+1 – 2 < 3n

• Example
– n = 33, Total = 33 + 64 –2 = 95 < 99

UW CSE 332, Spring 2016

