
1

CSE 332: Data Structures and
Parallelism

Fall 2022

Richard Anderson

Lecture 9: 2-3 Trees and B-Trees

10/17/2022 CSE 332 1

Announcements

10/17/2022 CSE 332 2

AVL Trees

• Binary Search Tree with O(log n) height
guarantee

• Structural Invariants

• Operations to maintain invariants on updates

10/17/2022 CSE 332 3

Lectures 9 & 10

• Computation Trees

• 2-3 trees as another O(log n) search tree

• Changing the rules of computation to model
external storage

• B-trees: high degree generalization of 2-3
trees

10/17/2022 CSE 332 4

One of the fundamental ideas of
computing

• Problem division

• Reduce a problem to smaller and/or simpler
problems

• Applies to both data and computation

• Often there is an exponential reduction

• Trees often capture this process
– Branching factor

– Workload associated with nodes

10/17/2022 CSE 332 5

Trinary search trees

• How are BST invariants modified

• How are BST operations modified

10/17/2022 CSE 332 6

2

M-ary Search Tree

• Complete tree has height:

• # hops for find:

• Runtime of find:

Consider a search tree w ith branching factor M:

10/17/2022 CSE 332 7

2-3 Trees
• Can balance a tree by varying the depth of the

leaves, or by varying the number of children of
the nodes

• 2-3 trees have a ll internal nodes of degree 2 or 3

10/17/2022 CSE 332 8

2-3 Tree basics

• Search trees

• Invariants
– Every internal node has degree 2 or 3

– All leaves at the same depth

• Height bound

• B-trees, generalization to high degree trees

10/17/2022 CSE 332 9

94 51 2 7 8

Detail: Keys vs. Values stored at nodes

10/17/2022 CSE 332 10

5

82

1 4 7 9

5

82

1 4 7 9

≤ 2 ≤ 8

≤ 1 ≤ 4 ≤ 7 ≤ 9

> 8

≤ 5

> 2

> 5

For 2-3 trees, we will consider the version with values stored in leaves

Each internal node can have 1 or 2 keys, each leaf has one value

Assume distinct keys

2-3 Tree Example

10/17/2022 CSE 332 11

32:68

75:874712:22

4:7 14 27 695037 80 95

2 7 11 14 22 24 32 37 45 7850 68 7369 87 95 99

Inserts

• Need to maintain invariants

– Internal nodes of degree 2 or 3

– All leaves at the same level

• Trees of height 0:

• Trees of height 1:

10/17/2022 CSE 332 12

3

General case

• Insert happens at a leaf

• Easy case, parent has two children

• Three child case, option 1, rebalance children

10/17/2022 CSE 332 13

Option 2, parent splitting

• But what if the grand parent already has three
children?

10/17/2022 CSE 332 14

Deletes (not being lazy)

• Easy case is a parent with three children

• Rebalancing

• Merging

10/17/2022 CSE 332

Thinking about computation

• Algori thmic view

– Computation is a sequence of primitive operations

– Abstract machine

– Various approaches

• Runtime as a function of input size

• Asymptotic view

– This approach has been very successful

• Basic understanding for implementation of algorithms

• Foundation for mathematical theory of computation

10/17/2022 CSE 332 16

Where does this model break?

• Model: sequence of operations of roughly
equal cost

• Model breaks if it does not suggest
appropriate implementation techniques

• When is “roughly equal cost” wrong?

10/17/2022 CSE 332 17

Computer Architecture

• CPU – collection of highly engineered
computational gadgets

• Dominant consideration – keeping the CPU
fed with data to keep all operations running

• Memory access costs

– The closer data is to the CPU the faster it is to
access

– Different technologies in hierarchy change costs

10/17/2022 CSE 332 18

4

A typical hierarchy
Every desktop/laptop/server is
different but here is a plausible
configuration these days*

CPU

Disk: 4TB = 242

Main memory: 16GB = 234

L2 Cache: 2MB = 221

L1 Cache: 128KB = 217

instructions (e.g., addition): 230/sec

get data in L1: 229/sec = 2 insns

get data in L2: 225/sec = 30 insns

get data in main memory:

222/sec = 250 insns

get data from “new
place” on disk:
27/sec =8,000,000 insns

“streamed”: 218/sec

*These numbers are out of date
10/17/2022 CSE 332 19

It i s much faster to do: Than:

5 mi l lion arithmetic ops 1 disk access

2500 L2 cache accesses 1 disk access

400 main memory accesses 1 disk access

Why are computers built this way?
– Physical realities (speed of light, closeness to CPU)

– Cost (price per byte of different technologies)

– Disks get much bigger not much faster

– Speedup at higher levels makes lower levels
relatively slower

10/17/2022 CSE 332 20

Usually, it doesn’t matter . . .

The hardware automatically moves data into the caches
from main memory for you
– Replacing items already there
– So algorithms much faster if “data fits in cache” (often does)

Disk accesses are done by software (e.g., ask operating
system to open a file or database to access some data)

So most code “just runs” but sometimes it’s worth
designing algorithms / data structures with knowledge of
memory hierarchy
– And when you do, you often need to know one more thing…

10/17/2022 CSE 332 21

Model of data access

• Two separate issues

– What is the latency

– How much data is delivered at a time

• Buying in bulk

• Natural size of data delivery (page)

• External storage boundary most important to
consider

10/17/2022 CSE 332 22

BSTs?
• Looking things up in balanced binary search

trees is O(logn), so even for n = 239 (512GB)
we need not worry about minutes or hours

• Sti l l, number of disk accesses matters
– AVL tree could have height of 55
– So each find could take about 0.5 seconds or

about 100 finds a minute

– Most of the nodes will be on disk: the tree is
shallow, but it is still many gigabytes big so the tree
cannot fit in memory
• Even if memory holds the first 25 nodes on our path, we

still need 30 disk accesses

10/17/2022 CSE 332 23

• Each internal node has (up to) M-1 keys:

• Order property:

– subtree between two keys x and y

– contain leaves with values v such that x ≤ v < y

– Note the “≤”

• Leaf nodes have up to L

• sorted keys.

B+ Trees
(book calls these B-trees)

3 7 12 21

x<3 3≤x<7 7≤x<12 12≤x<21 21≤x

10/17/2022 CSE 332 24

5

B+ Tree Structure Properties

Internal nodes
– store up to M-1 keys

– have between ⎡M/2⎤ and M children

Leaf nodes
– where data is stored

– all at the same depth

– contain between ⎡L/2⎤and L data items

Root (special case)
– has between 2 and M children (or root could be a leaf)

10/17/2022 CSE 332 25

B+ Tree: Example
• B+ Tree with M = 4 (# pointers in internal node)

• and L = 5 (# data items in leaf)

1, AB..

4, XY..

6

8

9

10

12

14

16

17

20

22

27

28

32

34

38

39

41

44

47

49

50

60

70

12 44

6 20 27 34 50

All leaves
at the same
depth

Data objects…
which we will ignore
in slides

2, GH..

19

24

Definition for later: “neighbor” is the next sibling to the left or right.
10/17/2022 CSE 332 26

Disk Friendliness

• What makes B+ trees disk-friendly?

1.Many keys stored in a node

• All brought to memory/cache in one disk access.

2.Internal nodes contain only keys;

Only leaf nodes contain keys and actual data

• Much of tree structure can be loaded into memory
irrespective of data object size

• Data actually resides in disk

10/17/2022 CSE 332 27

B+ trees vs. AVL trees

•Suppose again w e have n = 230 ≈ 109 items:

•Depth of AVL Tree

•Depth of B+ Tree w ith M = 256, L = 256

•Great, but how to w e actually make a B+ tree and

keep it balanced…?

10/17/2022 CSE 332 28

Building a B+ Tree with Insertions

The empty
B-Tree

M = 3 L = 3

Insert(3) Insert(18) Insert(14)

10/17/2022 CSE 332 29

Insert(30)
3

14

18

3

14

18

M = 3 L = 3
10/17/2022 CSE 332 30

6

Insert(32)
3

14

18

30

18

3

14

18

30

18

3

14

18

30

18

Insert(36)

3

14

18

30

18
Insert(15)

M = 3 L = 3
10/17/2022 CSE 332 31

Insert(16)
3

14

15

18

30

18 32

32

36

3

14

15

18

30

18 32

32

36

18

30

18 32

32

36

M = 3 L = 310/17/2022 CSE 332 32

Insert(12,40,45,38)

3

14

15

16

15

18

30

32

32

36

18

3

12

14

15

16

15

18

30

32 40

32

36

38

18

40

45

M = 3 L = 310/17/2022 CSE 332 33

Insertion Algorithm

1. Insert the key in its leaf in
sorted order

2. If the leaf ends up with L+1
i tems, overflow!
– Split the leaf into two nodes:

• original with ⎡(L+1)/2⎤ smaller
keys

• new one with ⎣(L+1)/2⎦ larger
keys

– Add the new child to the parent

– If the parent ends up with M+1
children, overflow!

3. If an internal node ends up with
M+1 children, overflow!
– Split the node into two nodes:

• original with ⎡(M+1)/2⎤ children

with smaller keys

• new one with ⎣(M+1)/2⎦ children

with larger keys

– Add the new child to the parent

– If the parent ends up with M+1
items, overflow!

4. Split an overflowed root in two
and hang the new nodes under a
new root

5. Propagate keys up tree.This makes the tree deeper!

10/17/2022 CSE 332 34

Delete(32)

3

12

14

15

16

15

18

30

32 40

32

36

38

18

40

45

3

12

14

15

16

15

18

30

40

18

40

45

And Now for Deletion…

M = 3 L = 3
10/17/2022 CSE 332 35

Delete(15)

3

12

14

15

16

15

18

30

36 40

36

38

18

40

45

3

12 16

18

30

36 40

36

38

18

40

45

M = 3 L = 3
10/17/2022 CSE 332 36

7

Delete(16)

3

12

14

16

14

18

30

36 40

36

38

18

40

45

18

30

36 40

36

38

18

40

45

M = 3 L = 3
10/17/2022 CSE 332 37

Delete(16)

3

12

14

18

30

36 40

36

38

18

40

45

3

12

14

M = 3 L = 3
10/17/2022 CSE 332 38

Delete(14)

3

12

14

18

18

30

40

36

38

36

40

45

3

12

18

18

30

40

36

38

36

40

45

M = 3 L = 3
10/17/2022 CSE 332 39

Delete(18)

3

12

40

36

38

36

40

45

3

12

18

18

30

40

36

38

36

40

45

M = 3 L = 3
10/17/2022 CSE 332 40

3

12

30

40

36

38

36

40

45

M = 3 L = 3
10/17/2022 CSE 332 41

Deletion Algorithm

1.Remove the key from its leaf

• 2. If the leaf ends up with
fewer than ⎡L/2⎤ i tems,

underflow!

– Adopt data f rom a neighbor;
update the parent

– If adopting won’t work, delete
node and merge with neighbor

– If the parent ends up with f ewer
than ⎡M/2⎤ children, underf low!

10/17/2022 CSE 332 42

8

Deletion Slide Two
• 3. If an internal node ends up with fewer than ⎡M/2⎤

children, underflow!

– Adopt from a neighbor;
update the parent

– If adoption won’t work,
merge with neighbor

– If the parent ends up with fewer than ⎡M/2⎤ children,

underflow!

4. If the root ends up with only one child, make the child

the new root of the tree

5. Propagate keys up through tree.
This reduces the
height of the tree!

10/17/2022 CSE 332 43

Thinking about B+ Trees

• B+ Tree insertion can cause (expensive) splitting and

propagation up the tree

• B+ Tree deletion can cause (cheap) adoption or

(expensive) merging and propagation up the tree

• Split/merge/propagation is rare if M and L are large

(Why?)

• Pick branching factor M and data items/leaf L such that

each node takes one full page/block of memory/disk.

10/17/2022 CSE 332 44

45

Complexity

• Find:

• Insert:

– find:

– Insert in leaf:

– split/propagate up:

• Claim: O(M) costs are negligible

10/17/2022 CSE 332 45
46

Tree Names You Might Encounter

– “B-Trees”

• More general form of B+ trees, allows data at internal nodes too

• Range of children is (key1,key2) rather than [key1, key2)

– B-Trees with M = 3, L = x are called 2-3 trees

• Internal nodes can have 2 or 3 children

– B-Trees with M = 4, L = x are called 2-3-4 trees

• Internal nodes can have 2, 3, or 4 children

10/17/2022 CSE 332 46

