

AVL Trees

- Binary SearchTree with O(log n) height guarantee
- Structural Invariants
- Operations to maintain invariants on updates

One of the fundamental ideas of computing

- Problem division
- Reduce a problem to smaller and/or simpler problems
- Applies to both data and computation
- Often there is an exponential reduction
- Trees often capture this process
- Branching factor
- Workload associated with nodes

Announcements

Announcements

Lectures 9 \& 10

- Computation Trees
- 2-3 trees as another $\mathrm{O}(\log n)$ search tree
- Changing the rules of computation to model external storage
- B-trees: high degree generalization of 2-3 trees

10/17/2022
CSE332

M-ary Search Tree

Consider a search tree with branching factor M :

- Complete tree has height:
- \# hops for find:
- Runtime of find:

CSE 332

2-3 Tree basics

- Search trees
- Invariants
- Every internal node has degree 2 or 3
- All leaves at the same depth
- Height bound
- B-trees, generalization to high degree trees

10/17/2022
CSE 332

2-3 Tree Example

2-3 Trees

- Can balance a tree by varying the depth of the leaves, or by varying the number of children of the nodes
- 2-3 trees have allinternal nodes of degree 2 or 3

Detail: Keys vs. Values stored at nodes

For 2-3 trees, we will consider the version with values stored in leaves Each internal node can have 1 or 2 keys, each leaf has one value Assume distinct keys
\qquad

Inserts

- Need to maintain invariants
- Internal nodes of degree 2 or 3
- All leaves at the same level
- Trees of height 0:
- Trees of height 1 :

General case

- Inserthappens at a leaf
- Easy case, parent has two children
- Three child case, option1, rebalance children

Deletes (not being lazy)

- Easy case is a parent with three children
- Rebalancing

Where does this model break?

- Model: sequence of operations of roughly equal cost
- Model breaks ifit does not suggest appropriate implementation techniques
- When is "roughly equal cost" wrong?

Option 2, parent splitting

- But what if the grand parent already has three children?

Thinking about computation

- Algorithmic view
- Computation is a sequence of primitive operations
- Abstract machine
- Various approaches
- Runtime as a function of input size
- Asymptotic view
- This approach has been very successful
- Basic understanding for implementation of algorithms
- Foundation for mathematical theory of computation

10/17/202
CSE332

Computer Architecture

- CPU - collection of highly engineered computational gadgets
- Dominant consideration - keeping the CPU fed with data to keep all operations running
- Memory access costs
- The closer data is to the CPU the faster it is to access
- Different technologies in hierarchy change costs

It is much faster to do:	Than:
5 million arithmeticops	1 diskaccess
2500 L2 cache accesses	1 diskaccess
400 main memoryaccesses	1 diskaccess

Why are computers built this way?

- Physical realities (speed of light, closeness to CPU)
- Cost (price per byte of different technologies)
- Disks get much bigger not much faster
- Speedup at higher levels makes lower levels relatively slower

Usually, it doesn't matter . . .

The hardware automatically moves data into the caches from main memory for you

- Replacing items already there
- So algorithms much faster if "data fits in cache" (often does)

Disk accesses are done by software (e.g., ask operating system to open a file or database to access some data)

So most code "just runs" but sometimes it's worth designing algorithms / data structures with knowledge of memory hierarchy

- And when you do, you often need to know one more thing...

10/17/2022
CSE 332

Model of data access

- Two separateissues
- What is the latency
- How much data is delivered ata time
- Buying in bulk
- Natural size of data delivery (page)
- External storage boundary mostimportant to consider

10/17/2022 SE332

BSTs?

- Looking things up in balanced binary search trees is $O(\log n)$, so even for $n=2^{39}(512 \mathrm{~GB})$ we need not worry about minutes or hours
- Still, number of disk a ccesses matters
- AVL tree could have height of 55
- So each find could take about 0.5 seconds or about 100 finds a minute
- Most of the nodes will be on disk: the tree is shallow, but it is still many gigabytes big so the tree cannot fit in memory
- Even if memory holds the first 25 nodes on our path, we still need 30 disk accesses

B+ Trees
 (book calls these B-trees)

- Each internal node has (up to) $M-1$ keys:
- Order property:
- subtree between two keys x and y
- contain leaves with values v such that $x \leq v<y$
- Note the " $\leq "$
- Leaf nodeshave up to L
- sorted keys.


```
B+ Tree Structure Properties
Internal nodes
    - store up to M-1 keys
    - have between/ M/2 and Mchildren
Leaf nodes
    - where data isstored
    - all at the same depth
    - containbetween[L/2] and }L\mathrm{ data items
Root (special case)
    - hasbetween 2 and Mchildren (or root could be a leaf)
    10/17/202
        CSE332
```


Disk Friendliness

-What makes $\mathrm{B}+$ trees disk-friendly?
1.Many keys stored in a node

- All broughtto memory/cache in one diskaccess.

2. Internal nodes contain only keys;

Only leaf nodes contain keys and actual data

- Much of tree structure can be loaded into memory irrespective of data objectsize
- Data actually resides in disk

10/17/2022
CSE 332

Building a B+ Tree with Insertions

The empty
B-Tree
$\boldsymbol{M}=3 L=3$

0/17/2022
CSE 332

B+ Tree: Example

- B+ Tree with $\boldsymbol{M}=4$ (\# pointers in internal node)
- and $L=5$ (\# data itemsin leaf)

Data objects...
which we will ignore in slides

Definition for later: "neighbor" is the next sibling to the left or right.

B+ trees vs. AVL trees

-Suppose again we have $n=2^{30} \approx 10^{9}$ items:

- Depth of AVL Tree
- Depth of B+ Tree with M = 256, L = 256
- Great, but how to we actually make a B+ tree and keep it balanced...?

10/17/2022
CSE332 \qquad

Insertion Algorithm

1. Insert the key in itsleaf in 3. If an internal node ends up with sorted order M+1 children, overflow!
2. If the leaf endsup with $L+1 \quad-$ Split the node into two nodes: items, overflow! - original with $\lceil(M+1) / 2\rceil_{\text {children }}$

- Split the leaf into two nodes: - original with $\lceil(L+1) / 2\rceil_{\text {smaller }}$ keys
new one with $\lfloor(L+1) / 2\rfloor$ larger keys
- Add the new child to the parent
- If the parent ends up with children, overflow! with smaller keys
- new one with $\lfloor(M+1) / 2\rfloor$ children with larger keys
Add the new child to the parent If the parent ends up with $M+1$ items, overflow!
Split an overflowed root in two and hang the new nodes under a new root
This makes the tree deeper!

5. Propagate keysup tree.

10/17/2022
CSE 332

Deletion Algorithm

1. Remove the key from its leaf

- 2. If the leaf ends up with fewer than ${ }_{L / 2}$ items, underflow!
- Adopt data from a neighbor; update the parent
- If adopting won't work, delete node and merge with neighbor
- If the parent ends up with fewer than $\left.\right|_{M / 2}$ children, underflow!

10/17/2022

Deletion Slide Two

- 3. If an internal node ends up with fewer than $\lceil M / 2\rceil$ children, underflow!
- Adopt from a neighbor; update the parent
- If adoption won't work,
merge with neighbor
- If the parent ends up with fewer than $\left\lceil_{M / 2}\right\rceil_{\text {children, }}$ underflow!

4. If the root ends up with only one child, make the child the new root of the tree
5. Propagate keys up through tree. height of the tree!

Thinking about B+ Trees

- B+ Tree insertion can cause (expensive) splitting and propagation up the tree
- B+Tree deletion can cause (cheap) adoption or (expensive) merging and propagation up the tree
- Split/merge/propagation is rare if M and L are large (Why?)
- Pickbranching factor M and dataitems/leaf L such that each node takesone full page/block of memory/disk.

10/17/2022

Tree Names You Might Encounter

- "B-Trees"
- More general form of B+ trees, allows data at internal nodes too
- Range of children is (key1,key2) rather than [key1, key2)
- B-Trees with $M=3, L=\mathbf{x}$ are called 2-3 trees
- Internal nodes can have 2 or 3 children
- B-Treeswith $M=4, \quad L=\mathbf{x}$ are called 2-3-4 trees
- Internal nodes can have 2,3 , or 4 children
- Claim: $O(M)$ costs are negligible

CSE 332
10/17/2027

Complexity

- Find:
- Insert:
- find:
- Insert in leaf:
- split/propagate up:

