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CSE 332: Data Structures and 
Parallelism

Fall 2022

Richard Anderson

Lecture 9: 2-3 Trees and B-Trees
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Announcements
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AVL Trees

• Binary Search Tree with O(log n) height 
guarantee

• Structural Invariants

• Operations to maintain invariants on updates
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Lectures 9 & 10

• Computation Trees

• 2-3 trees as another O(log n) search tree

• Changing the rules of computation to model 
external storage

• B-trees: high degree generalization of 2-3 
trees
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One of the fundamental ideas of 
computing

• Problem division

• Reduce a problem to smaller and/or simpler 
problems

• Applies to both data and computation

• Often there is an exponential reduction

• Trees often capture this process
– Branching factor

– Workload associated with nodes
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Trinary search trees

• How are BST invariants modified

• How are BST operations modified
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M-ary Search Tree

• Complete tree has height:

• # hops for find:

• Runtime of find:

Consider a search tree w ith branching factor M:
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2-3 Trees
• Can balance a  tree by varying the depth of the 

leaves,  or by varying the number of children of 
the nodes  

• 2-3 trees have a ll internal nodes of degree 2 or 3
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2-3 Tree basics

• Search trees

• Invariants
– Every internal node has degree 2 or 3

– All leaves at the same depth

• Height bound

• B-trees,  generalization to high degree trees

10/17/2022 CSE 332 9

94 51 2 7 8

Detail: Keys vs. Values stored at nodes
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≤ 2 ≤ 8

≤ 1 ≤ 4 ≤ 7 ≤ 9

> 8

≤ 5

> 2

> 5

For 2-3 trees, we will consider the version with values stored in leaves

Each internal node can have 1 or 2 keys,  each leaf has one value

Assume distinct keys

2-3 Tree Example
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32:68

75:874712:22

4:7 14 27 695037 80 95

2 7 11 14 22 24 32 37 45 7850 68 7369 87 95 99

Inserts

• Need to maintain invariants

– Internal nodes of degree 2 or 3

– All leaves at the same level

• Trees of height 0:

• Trees of height 1:
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General case

• Insert happens at a leaf

• Easy case, parent has two children

• Three child case,  option 1,  rebalance children
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Option 2,  parent splitting

• But what if the grand parent already has three 
children?
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Deletes  (not being lazy)

• Easy case is a parent with three children

• Rebalancing

• Merging
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Thinking about computation

• Algori thmic view

– Computation is a sequence of primitive operations

– Abstract machine

– Various approaches

• Runtime as a function of input size

• Asymptotic view

– This approach has been very successful

• Basic understanding for implementation of algorithms

• Foundation for mathematical theory of computation
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Where does this model break?

• Model: sequence of operations of roughly 
equal cost

• Model breaks if it does not suggest 
appropriate implementation techniques

• When is “roughly equal cost” wrong?
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Computer Architecture

• CPU – collection of highly engineered 
computational gadgets

• Dominant consideration – keeping the CPU 
fed with data to keep all  operations running

• Memory access costs

– The closer data is to the CPU the faster it is to 
access

– Different technologies in hierarchy change costs
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A typical hierarchy
Every desktop/laptop/server is 
different but here is a plausible 
configuration these days*

CPU

Disk: 4TB = 242

Main memory: 16GB = 234

L2 Cache: 2MB = 221

L1 Cache: 128KB = 217

instructions (e.g., addition): 230/sec

get data in L1: 229/sec = 2 insns

get data in L2: 225/sec = 30 insns

get data in main memory:

222/sec = 250 insns

get data from “new 
place” on disk:
27/sec =8,000,000 insns

“streamed”: 218/sec

*These numbers are out of  date
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It i s  much faster to do: Than:

5 mi l lion arithmetic ops 1 disk access

2500 L2 cache accesses 1 disk access

400 main memory accesses 1 disk access

Why are computers built this way?
– Physical realities (speed of light, closeness to CPU)

– Cost (price per byte of different technologies)

– Disks get much bigger not much faster

– Speedup at higher levels makes lower levels 
relatively slower
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Usually, it doesn’t matter . . .

The hardware automatically moves data into the caches 
from main memory for you
– Replacing items already there
– So algorithms much faster if “data fits in cache” (often does)

Disk accesses are done by software (e.g., ask operating 
system to open a file or database to access some data)

So most code “just runs” but sometimes it’s worth 
designing algorithms / data structures with knowledge of 
memory hierarchy
– And when you do, you often need to know one more thing…
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Model of data access

• Two separate issues

– What is the latency

– How much data is delivered at a time

• Buying in bulk

• Natural size of data delivery (page)

• External storage boundary most important to 
consider
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BSTs?
• Looking things up in balanced binary search 

trees  is O(logn), so even for n = 239 (512GB) 
we need not worry about minutes or hours

• Sti l l, number of disk accesses matters
– AVL tree could have height of 55 
– So each find could take about 0.5 seconds or 

about 100 finds a minute

– Most of the nodes will be on disk: the tree is 
shallow, but it is still many gigabytes big so the tree
cannot fit in memory
• Even if memory holds the first 25 nodes on our path, we 

still need 30 disk accesses

10/17/2022 CSE 332 23

• Each internal node has (up to) M-1 keys:

• Order property:

– subtree between two keys x and y 

– contain leaves with values v such that x ≤ v < y

– Note the  “≤”

• Leaf nodes have up to L

• sorted keys.

B+ Trees
(book calls these B-trees)

3 7 12 21

x<3 3≤x<7 7≤x<12 12≤x<21 21≤x
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B+ Tree Structure Properties

Internal nodes
– store up to M-1 keys

– have between ⎡M/2⎤ and M children

Leaf nodes
– where data is stored

– all at the same depth

– contain between ⎡L/2⎤and L data items

Root (special case) 
– has between 2 and M children (or root could be a leaf) 
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B+ Tree: Example
• B+ Tree with M = 4 (# pointers in internal node)

• and L = 5 (# data items in leaf)

1, AB..

4, XY.. 

6

8

9

10

12

14

16

17 

20

22

27

28

32

34

38

39

41

44

47

49 

50

60

70

12 44

6 20 27 34 50

All leaves 
at the same 
depth

Data objects…
which we will ignore 
in slides

2, GH..

19 

24

Definition for later: “neighbor” is the next sibling to the left or right.
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Disk Friendliness

• What makes B+ trees disk-friendly?

1.Many keys stored in a node

• All brought to memory/cache in one disk access.

2.Internal nodes contain only keys;

Only leaf nodes contain keys and actual data

• Much of tree structure can be loaded into memory
irrespective of data object size

• Data actually resides in disk
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B+ trees vs. AVL trees

•Suppose again w e have n = 230 ≈ 109 items:

•Depth of AVL Tree

•Depth of B+ Tree w ith M = 256, L = 256

•Great, but how  to w e actually make a B+ tree and 

keep it balanced…?
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Building a B+ Tree with Insertions

The empty 
B-Tree

M = 3 L = 3

Insert(3) Insert(18) Insert(14)
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Insert(30)
3

14

18

3

14

18

M = 3 L = 3
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Insert(32)
3

14

18

30

18

3

14

18

30

18

3

14

18

30

18

Insert(36)

3

14

18

30

18
Insert(15)

M = 3 L = 3
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Insert(16)
3

14

15

18

30

18 32

32

36

3

14

15

18

30

18 32

32

36

18

30

18 32

32

36

M = 3 L = 310/17/2022 CSE 332 32

Insert(12,40,45,38)

3

14

15

16

15

18

30

32

32

36

18

3

12

14

15

16

15

18

30

32 40

32

36

38

18

40

45

M = 3 L = 310/17/2022 CSE 332 33

Insertion Algorithm

1. Insert the key in its leaf in 
sorted order

2. If the leaf ends up with L+1 
i tems, overflow!
– Split the leaf into two nodes:

• original with ⎡(L+1)/2⎤ smaller 
keys

• new one with ⎣(L+1)/2⎦ larger 
keys

– Add the new child to the parent

– If the parent ends up with M+1
children, overflow!

3. If an internal node ends up with 
M+1 children, overflow!
– Split the node into two nodes:

• original with ⎡(M+1)/2⎤ children 

with smaller keys

• new one with ⎣(M+1)/2⎦ children 

with larger keys

– Add the new child to the parent

– If the parent ends up with M+1
items, overflow!

4. Split an overflowed root in two 
and hang the new nodes under a 
new root

5. Propagate keys up tree.This makes the tree deeper!
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Delete(32)

3

12

14

15

16

15

18

30

32 40

32

36

38

18

40

45

3

12

14

15

16

15

18

30

40

18

40

45

And Now for Deletion…

M = 3 L = 3
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Delete(15)

3

12

14

15

16

15

18

30

36 40

36

38

18

40

45

3

12 16

18

30

36 40

36

38

18

40

45

M = 3 L = 3
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Delete(16)

3

12

14

16

14

18

30

36 40

36

38

18

40

45

18

30

36 40

36

38

18

40

45

M = 3 L = 3
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Delete(16)

3

12

14

18

30

36 40

36

38

18

40

45

3

12

14

M = 3 L = 3
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Delete(14)

3

12

14

18

18

30

40

36

38

36

40

45

3

12

18

18

30

40

36

38

36

40

45

M = 3 L = 3
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Delete(18)

3

12

40

36

38

36

40

45

3

12

18

18

30

40

36

38

36

40

45

M = 3 L = 3
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3

12

30

40

36

38

36

40

45

M = 3 L = 3
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Deletion Algorithm

1.Remove the key from its leaf

• 2. If the leaf ends up with 
fewer than ⎡L/2⎤ i tems, 

underflow!

– Adopt data f rom a neighbor; 
update the parent

– If  adopting won’t work, delete 
node and merge with neighbor

– If  the parent ends up with f ewer 
than ⎡M/2⎤ children, underf low!
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Deletion Slide Two
• 3. If an internal node ends up with fewer than ⎡M/2⎤

children, underflow!

– Adopt from a neighbor;
update the parent

– If adoption won’t work,
merge with neighbor

– If the parent ends up with fewer than ⎡M/2⎤ children, 

underflow!

4. If the root ends up with only one child, make the child 

the new root of the tree

5. Propagate keys up through tree.
This reduces the 
height of the tree!
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Thinking about B+ Trees

• B+ Tree insertion can cause (expensive) splitting and 

propagation up the tree

• B+ Tree deletion can cause (cheap) adoption or 

(expensive) merging and propagation up the tree

• Split/merge/propagation is rare if M and L are large   

(Why?)

• Pick branching factor M and data items/leaf L such that 

each node takes one full page/block of memory/disk.
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Complexity

• Find:  

• Insert:

– find:  

– Insert in leaf:

– split/propagate up:

• Claim:  O(M) costs are negligible
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Tree Names You Might Encounter

– “B-Trees”

• More general form of B+ trees, allows data at internal nodes too

• Range of children is (key1,key2) rather than [key1, key2)

– B-Trees with M = 3, L = x are called 2-3 trees

• Internal nodes can have 2 or 3 children

– B-Trees with M = 4, L = x are called 2-3-4 trees

• Internal nodes can have 2, 3, or 4 children
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