CSE 332: Data Structures and
Parallelism

Fall 2022
Richard Anderson
Lecture 9: 2-3 Trees and B-Trees

10/17/202 CSE332 1

Announcements

AVL Trees

* BinarySearchTreewith O(logn) height
guarantee

* Structural Invariants

* Operationsto maintain invariants on updates

Lectures 9 & 10

* Computation Trees

» 2-3trees as another O(logn) search tree

* Changingtherules of computationto model
external storage

* B-trees: high degree generalizationof 2-3
trees

One of the fundamental ideas of
computing
* Problemdivision

* Reduce a problemto smaller and/or simpler
problems

* Applies to both data and computation
* Often thereis an exponential reduction
* Trees often capturethis process

— Branchingfactor

— Workload associated with nodes

10/17/202 CSE332

Trinary search trees

* How areBST invariants modified
* How areBST operations modified

10/17/202 CSE332

M-ary Search Tree

Consider a search tree with branching factor M:

|
AN AN AL A
OOO000 OOO0O COCOOO0 OOCCO

+ Complete tree has height:

* #hops for find:

* Runtime of find:

2-3 Trees

* Canbalancea tree byvarying the depth of the
leaves, orbyvaryingthe numberof children of
the nodes

* 2-3trees haveallinternal nodes of degree 2 or3

2-3 Tree basics

Search trees

Invariants
— Everyinternal node has degree 2 or 3

— All leaves at the same depth

Heightbound

B-trees, generalization to high degreetrees

Detail: Keys vs. Values stored at nodes

O ® 0 O

For 2-3 trees, we will consider the version with values stored in leaves
Each internal node can have 1 or 2 keys, each leaf has one value

Assume distinct keys

10/17/2022 CSE332

2-3 Tree Example

Inserts

* Need to maintaininvariants
— Internal nodes of degree 2 or 3
— All leaves at the same level

* Trees of heightO:

* Trees of height1:

General case

* Inserthappens ata leaf
* Easycase, parenthas two children

Three child case, option1, rebalancechildren

Option 2, parent splitting

* Butwhatifthe grand parentalready hasthree
children?

Deletes (not being lazy)

* Easycaseis a parentwith threechildren
* Rebalancing

* Merging

Thinking about computation

* Algorithmicview
— Computation is a sequence of primitive operations
— Abstract machine
— Various approaches
* Runtime as a function of input size
* Asymptotic view
— This approach has been very successful
* Basic understanding for implementation of algorithms
* Foundation for mathematical theory of computation

Where does this model break?

* Model:sequence of operations of roughly
equal cost

Model breaks ifitdoes not suggest
appropriateimplementation techniques

* Whenis “roughly equal cost” wrong?

Computer Architecture

* CPU —collection of highly engineered
computational gadgets

* Dominantconsideration —keeping the CPU
fed with data to keep all operations running

* Memory access costs

— The closer data istothe CPU the fasteritis to
access

— Different technologiesin hierarchy change costs

Every desktop/laptop/server is
1 1 different but here is a plausible
A typl Ca l h I€rarc hy configuration these days*

CPU instructions (e.g., addition): 23°/sec

L1 Cache: 128KB = 217 I__ll_l

[2 cache: 2mB =22

get data in L1: 229/sec = 2 insns

| get data in L2: 225/sec = 30 insns

| get data in main memory:
222/sec = 250 insns

Main memory: 16GB = 234
get data from “new

T place” on disk:

27/sec =8,000,000 insns

Disk: 4TB = 242 “streamed”: 218/sec

*These numbers areout of dat

Itis muchfasterto do: Than:

5 million arithmetic ops 1 diskaccess
2500 L2 cache accesses 1 diskaccess
400 main memoryaccesses 1 diskaccess

Whyare computers built this way?
— Physical realities (speed of light, closeness to CPU)
— Cost (price per byte of different technologies)
— Disks get much bigger not much faster

— Speedup athigher levels makes lower levels
relatively slower

Usually, it doesn’t matter .. .

The hardware automatically moves data into the caches
from main memory for you
— Replacing items already there
— So algorithms much faster if “data fits in cache” (often does)

Disk accesses are done by software (e.g., ask operating
system to open a file or database to access some data)

So most code “just runs” but sometimes it's worth
designing algorithms / data structures with knowledge of
memory hierarchy

— And when you do, you often need to know one more thing...

Model of data access

* Two separateissues

— What is the latency
— How much data is delivered ata time

* Buyinginbulk

* Natural size of data delivery (page)

External storage boundary mostimportantto
consider

BSTs?

* Lookingthingsupinbalancedbinarysearch
trees is O(logn), so even forn=23°(512GB)
we neednotworryabout minutes orhours

* Still, number of disk accesses matters
— AVLtree could have height of 55
— So each £ind could take about 0.5 seconds or
about 100 finds a minute
— Most of the nodes will be on disk: the tree is
shallow, but it is still many gigabytes big so the tree
cannot fit in memory

* Even if memory holds the first 25 nodes on our path, we
still need 30 disk accesses

B+ Trees

(book calls these B-trees)

Each internal node has (up to) M-1 keys:
Order property:
—subtree between twokeys x and y
— contain leaves with values v such that x <v <y
—Note the “<
Leafnodeshave upto L 7|
sorted keys.

B+ Tree Structure Properties

Internal nodes
— store up to M- keysl
— have between|M/2land M children
Leaf nodes
— where data isstored
— all atthe same depth
— containbetween [LIZ] andL data items
Root (special case)
— hasbetween 2 and M children (or root could be a leaf)

Disk Friendliness

» What makes B+ trees disk-friendly?

1.Many keys stored in anode
» All broughtto memory/cacheinone diskaccess.

2.Internal nodes contain only keys;
Only leaf nodes contain keys and actual data

* Much oftree structure canbe loaded into memory
irrespective of data objectsize

» Data actually residesin disk

B+ Tree: Example

* B+ TreewithM = 4 (# pointersin internal node)

s andL=5 (# dataitemsin leaf)

Data objects... 2]
which we will ignore/]
in sides /EEI:I

1, AB.. 6

2. GH.| [B]

4, XY. ﬂ

L]

Definition for later: “neighbor” is the next sibling to the left or right.

B+ trees vs. AVL trees
*Suppose again w e have n = 230 = 10° items:
*Depth of AVL Tree

*Depth of B+ Tree withM =256, L = 256

*Great, but how to we actually make a B+ tree and
keep it balanced...?

Building a B+ Tree with Insertions

E Insert(3) @Insen(m) @Insen(ﬂ) @

The empty
B-Tree

M=3L=3

Insert(12,40,45,38)

Insertion Algorithm

sorted order

2. Ifthe leaf endsup with L+1

items, overflow!

— Split the leaf into two nodes:
original with [(L+1)/2] smaller
keys
new one with l(L+1)/2J larger
keys

— Add the new child to the parent

— If the parent ends up with M+1

children, overflow!

This makes the tree deeper!

Insertthe keyinitsleafin 3. If an internal node ends up with

M+1 children, overflow!

— Split the node into two nodes:
original with [(M+1)/2] children
with smaller keys
new one with l(M+1)/2J children
with larger keys

— Add the new child to the parent

— If the parent ends up with M+1

items, overflow!

and hang the new nodes under a|
new root

5. Propagatekeysuptree |

10/17/2022 CSE332

And Now for Deletion...

Deletion Algorithm

1.Remove the key from its leaf

« 2. Iftheleafends up with
fewer thanlz/2l items,
underflow!

— Adopt data from a neighbor;
update the parent

— If adopting won’t work, delete
node and merge with neighbor

— If the parent ends up with f ewer
than m2] children, underflow!

Deletion Slide Two

« 3. If aninternal node ends up with fewer than [M/Z]

children, underflow!

— Adopt from a neighbor;
update the parent

— If adoption won’t work,
merge with neighbor

— If the parent ends up with fewer than [M/z] children,
underflow!

4. |f the root ends up with only one child, make the child|
he new root of the tree
his reduces the
5. Propagate keys up through tree. .
=L S0 < height of the tree!

Thinking about B+ Trees

B+ Tree insertion can cause (expensive) splitingand
propagationup the tree

B+ Tree deletion can cause (cheap) adoption or
(expensive) merging and propagationup the tree
Split/merge/propagation israre if Mand L are large
(Why?)

Pickbranching factor Mand dataitems/leaf L such that
each node takesone full page/block of memory/disk.

Complexity

* Find:
* Insert:
— find:
— Insertin leaf:
— split/propagate up:

Claim: O(M) costs are negligible

45

Tree Names You Might Encounter

— “B-Trees’
* More general form of B+ trees, allows data at internal nodes too
* Range of children is (keyl,key2) rather than [keyl, key2)
— B-TreeswithM = 3, L = xare called2-3 trees
* Internal nodes can have 2 or 3 children
— B-TreeswithM = 4, L = xare called2-3-4 trees
« Internal nodes can have 2, 3, or 4 children

