
1

CSE 332: Data Structures and
Parallelism

Fall 2022
Richard Anderson

Lecture 8: Адельсо́н-Ве́льский
Ла́ндис деревья, Часть вторая,

10/14/2022 CSE 332 1

Lecture 8: AVL Trees, part two

Announcements

• Project 2, available now (?)

– Checkpoint 1, Oct 23

• MinFourHeapComparable, MoveToFrontList

– Checkpoint 2, Nov 3

– Deadline, Nov 10

10/14/2022 CSE 332 2

AVL Tree overview

• Balance condition

• Depth bound

• Rotations to rebalance the tree

a

X

b

c

h-1

h

h

h

V
U

h+1

h+2

h+3

Z

c

X

h-1

h+1

h

h+1

VU

h+2

Z

b

h

a

h

10/14/2022 CSE 332 3

The AVL Tree Data Structure

4

131062

115

8

14127 9

Structural properties

1. Binary tree property

2. Balance:

left.height – right.height

3. Balance property:
balance of every node is
between -1 and 1

4. Tree of height h has at least h

nodes

5. Worst-case depth is O(log n)
15

10/14/2022 CSE 332 4

AVL insert:

First BST insert, then check balance and potentially “fix” the AVL tree

Four different imbalance cases

AVL tree operations

• AVL find:
– Same as BST find

• AVL insert:
– First BST insert, then check balance and potentially

“fix” the AVL tree
– Four different imbalance cases

• AVL delete:
– The “easy way” is lazy deletion
– Otherwise, do the deletion and then have several

imbalance cases (

10/14/2022 CSE 332 5 10/14/2022 CSE 332 6

AVL Tree Insert: High level idea

Insert new leaf, follow path back to
root computing heights and balance
factors

Find first unbalanced node

If there is an unbalanced node, apply a
double rotation to fix it up

2

Case #1: Example
Insert(6)

Insert(3)

Insert(1)

Third insertion violates
balance property

• happens to be at
the root

What is the only way to fix
this?

6

3

1

2

1

0

6

3

1

0

6
0

10/12/2022 CSE 332 7

Fix: Apply “Single Rotation”
• Single rotation: The basic operation we’ll use to

rebalance
– Move child of unbalanced node into parent position
– Parent becomes the “other” child (always okay in a BST!)
– Other subtrees move in only way BST allows (next slide)

3

1 6
00

1

6

3

0

1

2

AVL Property violated here

1

10/12/2022 CSE 332 8

Left-left rebalancing
• Node imbalanced due to insertion somewhere in

left-left grandchild increasing height
– 1 of 4 possible imbalance causes (other three coming)

• First we did the insertion, which would make a imbalanced

a

Z

Y

b

X

h h

h

h+1

h+2
a

Z

Y

b

X

h+1 h

h

h+2

h+3

10/14/2022 CSE 332 9

Left-left case
• Node imbalanced due to insertion somewhere in

left-left grandchild
– 1 of 4 possible imbalance causes (other three coming)

• So we rotate at a, using BST facts: X < b < Y < a < Z

• A single rotation restores balance at the node

– To same height as before insertion, so ancestors now balanced

a

Z

Y

b

X

h+1 h

h

h+2

h+3 b

ZY

a

h+1 h
h

h+1

h+2

X

10/14/2022 CSE 332 10

Another example: insert(16)

104

228

15

3 6

19

17 20

24

16

10/14/2022 CSE 332 11

Another example: insert(16)

104

228

15

3 6

19

17 20

24

16

104

8

15

3 6

19

17

2016

22

24

10/14/2022 CSE 332 12

3

The right-right case

• Mirror image to left-left case, so you rotate the other way
– Exact same concept, but need different code

a

ZY

X

h

h
h+1

h+3

b

h+2 b

Z

Y

a

X

h h

h+1

h+1

h+2

10/14/2022 CSE 332 13

Two cases to go

Simple example: insert(6), insert(1), insert(3)

3

1

6

0

1

2

1 6

3

1

0
0

10/14/2022 CSE 332 14

The last case: left-right

• Left-right grandchild promoted

a

h-1

h

h
h

VU

h+1

h+2

h+3

Z

X

b

c

c

X

h-1

h+1

h

h+1

VU

h+2

Z

a

h

b

h

10/14/2022 CSE 332 15

Right-left case

a

X

b

c

h-1

h

h

h

V
U

h+1

h+2

h+3

Z

c

X

h-1

h+1

h

h+1

VU

h+2

Z

b

h

a

h

10/14/2022 CSE 332 16

• Mirror image to left-right case, so you rotate the other way
– Exact same concept, but need different code

Insert, summarized

• Insert as in a BST

• Check back up path for imbalance, which will be 1 of 4 cases:
– Node’s left-left grandchild is too tall
– Node’s left-right grandchild is too tall
– Node’s right-left grandchild is too tall
– Node’s right-right grandchild is too tall

• Only one case occurs because tree was balanced before insert

• After the appropriate single or double rotation, the smallest-
unbalanced subtree has the same height as before the insertion
– So all ancestors are now balanced

10/14/2022 CSE 332 17

Efficiency

• Worst-case complexity of find: O(log n)
– Tree is balanced

• Worst-case complexity of insert: O(log n)
– Tree starts balanced
– A rotation is O(1) and there’s an O(log n) path to root
– (Same complexity even without one-rotation-is-enough fact)
– Tree ends balanced

• Worst-case complexity of buildTree: O(n log n)

Will take some more rotation action to handle delete…

10/14/2022 CSE 332 18

4

AVL Tree Deletion
• Similar to insertion: do the delete and then rebalance

– Rotations and double rotations

– Imbalance may propagate upward so rotations at multiple nodes along
path to root may be needed (unlike with insert)

• Simple example: a deletion on the right causes the left-left grandchild to be
too tall

– Call this the left-left case, despite deletion on the right

– insert(6) insert(3) insert(7) insert(1) delete(7)

6

3

0

1

2

1

7

1
3

1 6
00

1

10/14/2022 CSE 332 19

Properties of BST delete

We first do the normal BST deletion:
– 0 children: just delete it
– 1 child: delete it, connect child to parent
– 2 children: put successor in your place,

delete successor node

Which nodes’ heights may have changed:
– 0 children: path from deleted node to root
– 1 child: path from deleted node to root
– 2 children: path from deleted successor node to root

Will rebalance as we return along the “path in question” to the root

2092

155

12

7 10

10/14/2022 CSE 332 20

10/14/2022 CSE 332 21

AVL Tree Delete: High level idea

Delete the node and possibly replace it
with its successor. Trace a path back
from the node that was removed

Find first unbalanced node

If there is an unbalanced node, apply a
double rotation to fix it up. Possibly
continue up the tree and repeat

Case #1 Left-left due to right deletion

• Start with some subtree where if right child becomes shorter we are
unbalanced due to height of left-left grandchild

• A delete in the right child could cause this right-side shortening

a

Z

Y

b

X

h+1 h
h+1

h+2

h+3

10/14/2022 CSE 332 22

Case #1: Left-left due to right deletion

h

a

Z

Y

b

X

h+1 h

h+2

h+3 b

ZY

a

h+1
h

h+1

h+2

X

h

• Same single rotation as when an insert in the left-left grandchild caused
imbalance due to X becoming taller

• But here the “height” at the top decreases, so more rebalancing farther up
the tree might still be necessary

• This case also applies when subtree y has height h+1, yielding a tree of
height h+3, and no further rebalancing

10/14/2022 CSE 332 23

Case #2: Left-right due to right
deletion

a

h-1
h

h

VU

h+1

h+2

h+3

Z

X

b

c

h+1

h

c

X

h-1

h+1

h

h+1

VU

h+2

Z

ab

h h+1

h

• Same double rotation when an insert in the left-right grandchild caused
imbalance due to c becoming taller

• But here the “height” at the top decreases, so more rebalancing farther up
the tree might still be necessary

10/14/2022 CSE 332 24

5

And the other half

• Naturally two more mirror-image cases (not
shown here)
– Deletion in left causes right-right grandchild to be too

tall
– Deletion in left causes right-left grandchild to be too

tall
– (Deletion in left causes both right grandchildren to be

too tall, in which case the right-right solution still
works)

• And, remember, “lazy deletion” is a lot simpler
and might suffice for your needs

10/14/2022 CSE 332 25

Lazy Deletion

20

92 15

5

10

30

177

0

0 0

011

2 2

3 True

3

isDeleted

height

children

10 key

10/12/2022 CSE 332 26

Lazy deletion

• General technique – just add a deleted flag

• Requires some additional logic in find/insert

• Increases amount of storage used

– But usually this is not a problem

– Possible to use with garbage collection

• Bad case for lazy deletion – if the number of
“live” items is small because number of
deletes is similar to the number of inserts

10/14/2022 CSE 332 27

Red Black trees (optional)

• Binary search tree with
rebalancing
– Reasonable alternative to AVL

trees

• O(log n) Find, Insert, Delete
• Nodes colored red or black
• Every root leaf path has the

same number of black nodes
• Root is black
• No adjacent red nodes

10/14/2022 CSE 332 28

2692

175

12

7 10 20 31

19

14

11 16

24

Inserting a node into a red black tree

• Insert at leaf and
color red*

• If the parent is red,
then fix up the tree
with recoloring or
rotation

• Repeat until coloring
satisfies R-B rules
– O(log n) steps

10/14/2022 CSE 332 29

* Exception – insert at root is black

Recolor

G

U

X

P

P

X

U

G

Rotate

Other cases for RR, LR, RL

