
1

CSE 332: Data Structures and 
Parallelism

Fall 2022
Richard Anderson

Lecture 8: Адельсо́н-Ве́льский
Ла́ндис деревья, Часть вторая, 
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Lecture 8: AVL Trees, part two

Announcements

• Project 2,  available now (?)

– Checkpoint 1,  Oct 23

• MinFourHeapComparable,  MoveToFrontList

– Checkpoint 2,  Nov 3

– Deadline,  Nov 10
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AVL Tree overview

• Balance condition

• Depth bound

• Rotations to rebalance the tree
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The AVL Tree Data Structure
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Structural properties

1. Binary tree property

2. Balance: 

left.height – right.height

3. Balance property:
balance of every node is
between -1 and 1

4. Tree of height h has at least h 

nodes

5. Worst-case depth is O(log n)
15
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AVL insert: 

First BST insert, then check balance and potentially “fix” the AVL tree

Four different imbalance cases

AVL tree operations

• AVL find: 
– Same as BST find

• AVL insert: 
– First BST insert, then check balance and potentially 

“fix” the AVL tree
– Four different imbalance cases

• AVL delete: 
– The “easy way” is lazy deletion
– Otherwise, do the deletion and then have several 

imbalance cases ( 
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AVL Tree Insert: High level idea

Insert new leaf,  follow path back to 
root computing heights and balance 
factors

Find first unbalanced node

If there is an unbalanced node, apply a 
double rotation to fix it up
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Case #1: Example
Insert(6)

Insert(3)

Insert(1)

Third insertion violates 
balance property

• happens to be at 
the root

What is the only way to fix 
this? 
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Fix: Apply “Single Rotation”
• Single rotation: The basic operation we’ll use to 

rebalance
– Move child of unbalanced node into parent position
– Parent becomes the “other” child (always okay in a BST!)
– Other subtrees move in only way BST allows (next slide)
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Left-left rebalancing
• Node imbalanced due to insertion somewhere in 

left-left grandchild increasing height
– 1 of 4 possible imbalance causes (other three coming)

• First we did the insertion, which would make a imbalanced
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Left-left case
• Node imbalanced due to insertion somewhere in 

left-left grandchild
– 1 of 4 possible imbalance causes (other three coming)

• So we rotate at a, using BST facts: X < b < Y < a < Z

• A single rotation restores balance at the node

– To same height as before insertion, so ancestors now balanced
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Another example: insert(16)
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Another example: insert(16)
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The right-right case

• Mirror image to left-left case, so you rotate the other way
– Exact same concept, but need different code
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Two cases to go

Simple example:  insert(6), insert(1), insert(3)
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The last case: left-right

• Left-right grandchild promoted
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Right-left case
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• Mirror image to left-right case, so you rotate the other way
– Exact same concept, but need different code

Insert, summarized

• Insert as in a BST

• Check back up path for imbalance, which will be 1 of 4 cases:
– Node’s left-left grandchild is too tall
– Node’s left-right grandchild is too tall
– Node’s right-left grandchild is too tall
– Node’s right-right grandchild is too tall

• Only one case occurs because tree was balanced before insert

• After the appropriate single or double rotation, the smallest-
unbalanced subtree has the same height as before the insertion
– So all ancestors are now balanced
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Efficiency

• Worst-case complexity of find: O(log n)
– Tree is balanced

• Worst-case complexity of insert: O(log n)
– Tree starts balanced
– A rotation is O(1) and there’s an O(log n) path to root
– (Same complexity even without one-rotation-is-enough fact)
– Tree ends balanced

• Worst-case complexity of buildTree: O(n log n)

Will take some more rotation action to handle delete…
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AVL Tree Deletion
• Similar to insertion: do the delete and then rebalance

– Rotations and double rotations 

– Imbalance may propagate upward so rotations at multiple nodes along 
path to root may be needed (unlike with insert)

• Simple example: a deletion on the right causes the left-left grandchild to be 
too tall

– Call this the left-left case, despite deletion on the right

– insert(6) insert(3) insert(7) insert(1) delete(7)
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Properties of BST delete

We first do the normal BST deletion:
– 0 children: just delete it
– 1 child: delete it, connect child to parent
– 2 children: put successor in your place, 

delete successor node

Which nodes’ heights may have changed:
– 0 children: path from deleted node to root
– 1 child: path from deleted node to root
– 2 children: path from deleted successor node to root

Will rebalance as we return along the “path in question” to the root

2092

155

12

7 10

10/14/2022 CSE 332 20

10/14/2022 CSE 332 21

AVL Tree Delete: High level idea

Delete the node and possibly replace it 
with its successor.  Trace a path back 
from the node that was removed

Find first unbalanced node

If there is an unbalanced node, apply a 
double rotation to fix it up.  Possibly 
continue up the tree and repeat

Case #1 Left-left due to right deletion

• Start with some subtree where if right child becomes shorter we are 
unbalanced due to height of left-left grandchild

• A delete in the right child could cause this right-side shortening
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Case #1: Left-left due to right deletion
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• Same single rotation as when an insert in the left-left grandchild caused 
imbalance due to X becoming taller

• But here the “height” at the top decreases, so more rebalancing farther up 
the tree might still be necessary

• This case also applies when subtree y has height h+1, yielding a tree of 
height h+3, and no further rebalancing
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Case #2: Left-right due to right 
deletion
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• Same double rotation when an insert in the left-right grandchild caused 
imbalance due to c becoming taller

• But here the “height” at the top decreases, so more rebalancing farther up 
the tree might still be necessary
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And the other half

• Naturally two more mirror-image cases (not 
shown here)
– Deletion in left causes right-right grandchild to be too 

tall
– Deletion in left causes right-left grandchild to be too 

tall
– (Deletion in left causes both right grandchildren to be 

too tall, in which case the right-right solution still 
works)

• And, remember, “lazy deletion” is a lot simpler 
and might suffice for your needs
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Lazy Deletion
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Lazy deletion

• General technique – just add a deleted flag

• Requires some additional logic in find/insert

• Increases amount of storage used

– But usually this is not a problem

– Possible to use with garbage collection

• Bad case for lazy deletion – if the number of 
“live” items is small because number of 
deletes is similar to the number of inserts
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Red Black trees (optional)

• Binary search tree with 
rebalancing
– Reasonable alternative to AVL 

trees

• O(log n) Find, Insert, Delete
• Nodes colored red or black
• Every root leaf path has the 

same number of black nodes
• Root is black
• No adjacent red nodes
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Inserting a node into a red black tree

• Insert at leaf and 
color red*

• If the parent is red,  
then fix up the tree 
with recoloring or 
rotation

• Repeat until coloring 
satisfies R-B rules
– O(log n) steps
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* Exception – insert at root is black
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