CSE 332: Data Structures and Parallelism

Fall 2022 Richard Anderson Lecture 8: Адельсо́н-Ве́льский Ла́ндис деревья, Часть вторая,

Lecture 8: AVL Trees, part two

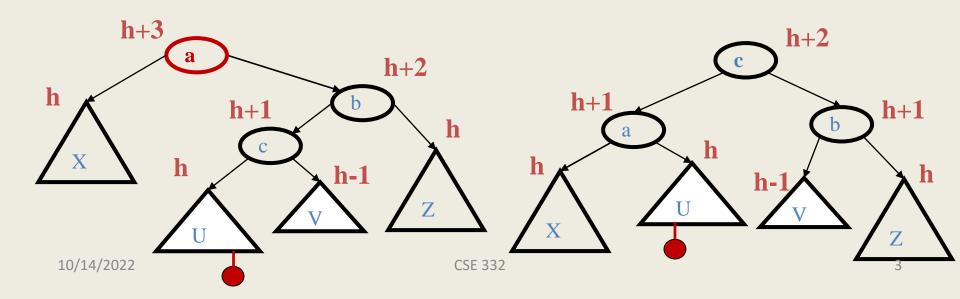
10/14/2022

Announcements

- Project 2, available now (?)
 - Checkpoint 1, Oct 23
 - MinFourHeapComparable, MoveToFrontList
 - Checkpoint 2, Nov 3
 - Deadline, Nov 10

AVL Tree overview

- Balance condition
- Depth bound
- Rotations to rebalance the tree



The AVL Tree Data Structure

Structural properties

- 1. Binary tree property
- 2. Balance:
 - left.height right.height
- Balance property: balance of every node is between -1 and 1
- 4. Tree of height h has at least φ^h nodes
- 5. Worst-case depth is O(log n)

AVL insert:

First BST **insert**, *then* check balance and potentially "fix" the AVL tree Four different imbalance cases

AVL tree operations

- AVL find:
 - Same as BST find

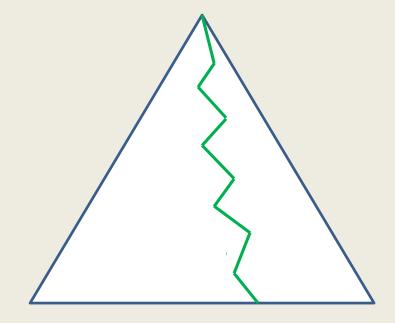
• AVL insert:

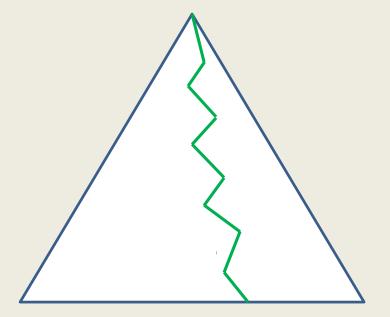
- First BST insert, then check balance and potentially "fix" the AVL tree
- Four different imbalance cases

• AVL delete:

- The "easy way" is lazy deletion
- Otherwise, do the deletion and then have several imbalance cases (

AVL Tree Insert: High level idea





Insert new leaf, follow path back to root computing heights and balance factors

If there is an unbalanced node, apply a double rotation to fix it up

10/14/2022 first unbalanced node

Case #1: Example

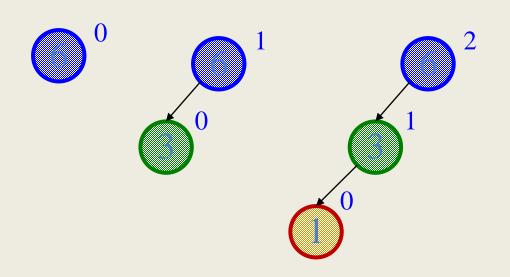
Insert(6) Insert(3)

Insert(1)

Third insertion violates balance property

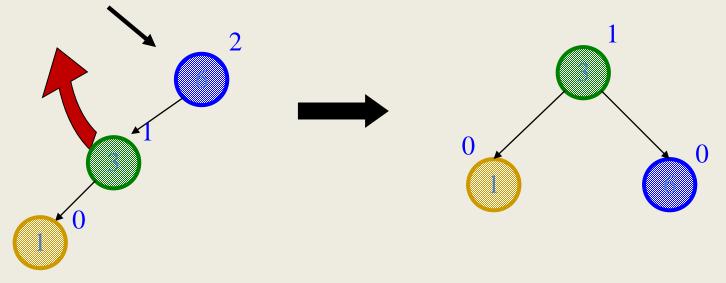
happens to be at the root

What is the only way to fix this?



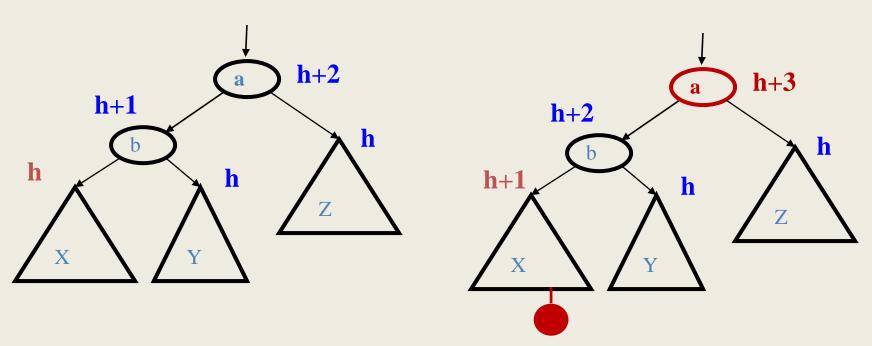
Fix: Apply "Single Rotation"

- *Single rotation:* The basic operation we'll use to rebalance
 - Move child of unbalanced node into parent position
 - Parent becomes the "other" child (always okay in a BST!)
 - Other subtrees move in only way BST allows (next slide)



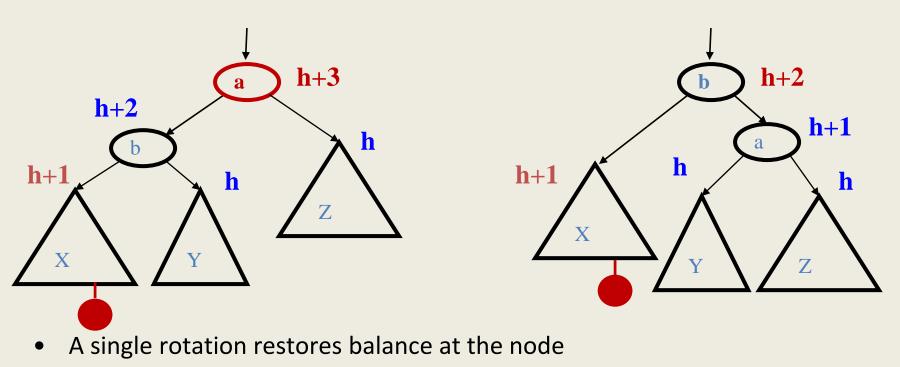
Left-left rebalancing

- Node imbalanced due to insertion *somewhere* in left-left grandchild increasing height
 - 1 of 4 possible imbalance causes (other three coming)
- First we did the insertion, which would make *a* imbalanced



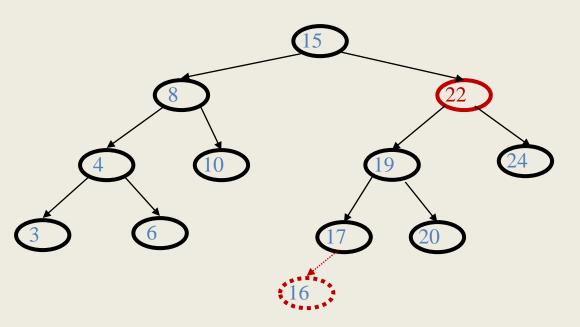
Left-left case

- Node imbalanced due to insertion *somewhere* in left-left grandchild
 - 1 of 4 possible imbalance causes (other three coming)
- So we rotate at *a*, using BST facts: X < b < Y < a < Z

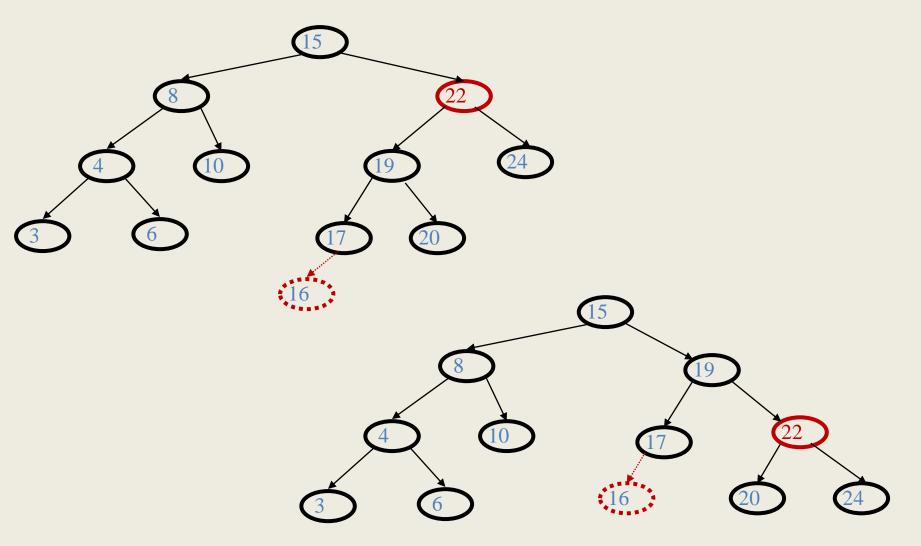


To same height as before insertion, so ancestors now balanced
 10/14/2022 CSE 332

Another example: insert(16)

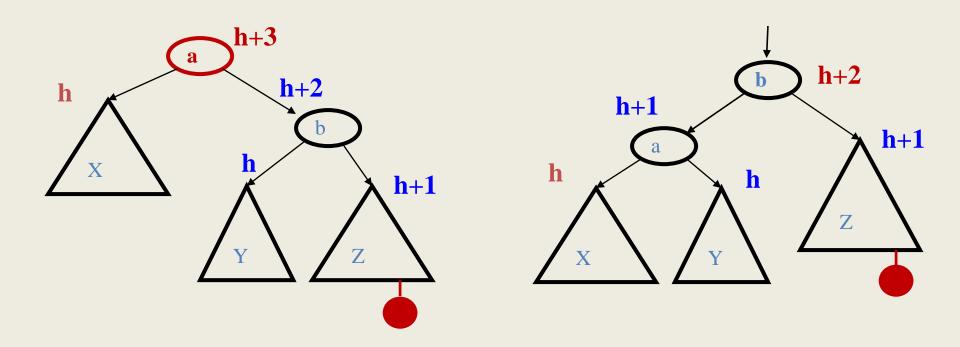


Another example: insert(16)



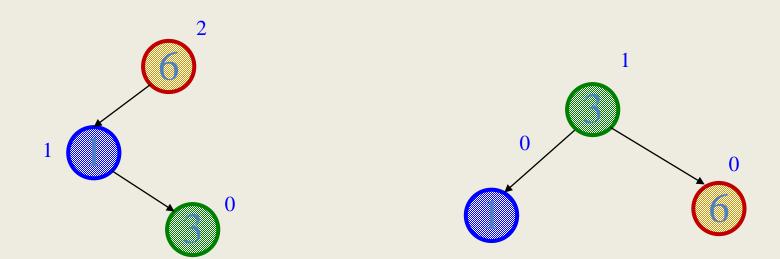
The right-right case

- Mirror image to left-left case, so you rotate the other way
 - Exact same concept, but need different code



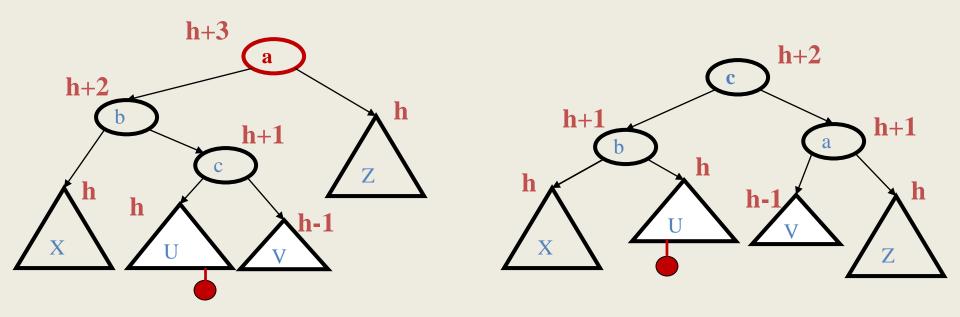
Two cases to go

Simple example: insert(6), insert(1), insert(3)



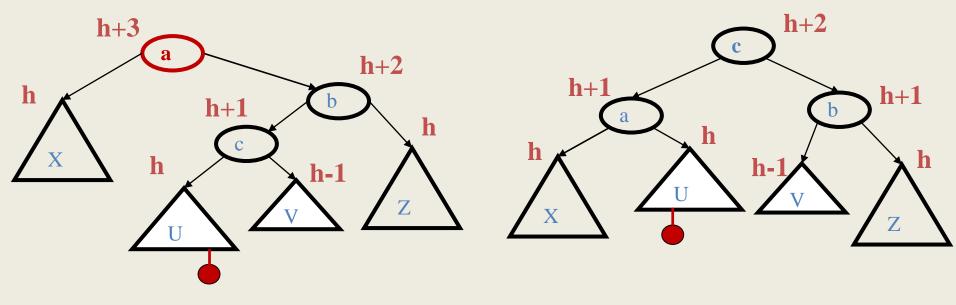
The last case: left-right

• Left-right grandchild promoted



Right-left case

- Mirror image to left-right case, so you rotate the other way
 - Exact same concept, but need different code



Insert, summarized

- Insert as in a BST
- Check back up path for imbalance, which will be 1 of 4 cases:
 - Node's left-left grandchild is too tall
 - Node's left-right grandchild is too tall
 - Node's right-left grandchild is too tall
 - Node's right-right grandchild is too tall
- Only one case occurs because tree was balanced before insert
- After the appropriate single or double rotation, the smallestunbalanced subtree has the same height as before the insertion
 - So all ancestors are now balanced

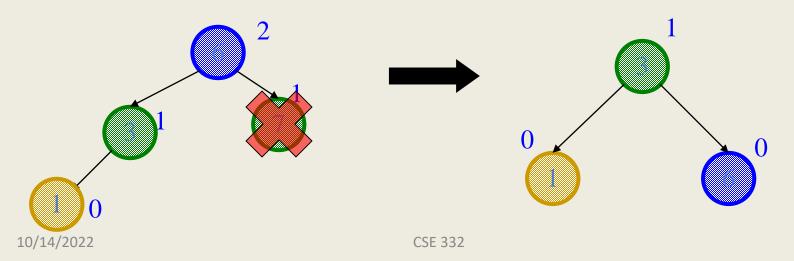
Efficiency

- Worst-case complexity of **find**: $O(\log n)$
 - Tree is balanced
- Worst-case complexity of insert: O(log n)
 - Tree starts balanced
 - A rotation is O(1) and there's an $O(\log n)$ path to root
 - (Same complexity even without one-rotation-is-enough fact)
 - Tree ends balanced
- Worst-case complexity of **buildTree**: $O(n \log n)$

Will take some more rotation action to handle **delete**...

AVL Tree Deletion

- Similar to insertion: do the delete and then rebalance
 - Rotations and double rotations
 - Imbalance may propagate upward so rotations at multiple nodes along path to root may be needed (unlike with insert)
- Simple example: a deletion on the right causes the left-left grandchild to be too tall
 - Call this the *left-left case*, despite deletion on the *right*
 - insert(6) insert(3) insert(7) insert(1) delete(7)



Properties of BST delete

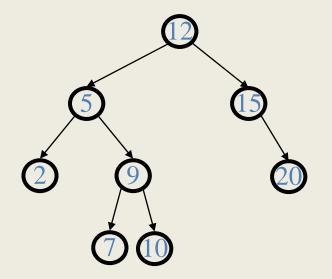
We first do the normal BST deletion:

- 0 children: just delete it
- 1 child: delete it, connect child to parent
- 2 children: put successor in your place, delete successor node

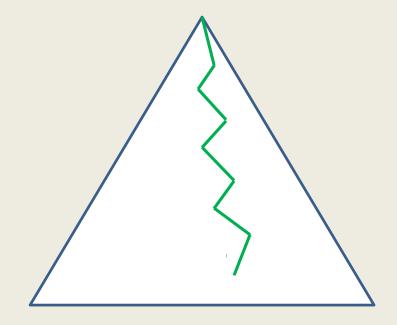
Which nodes' heights may have changed:

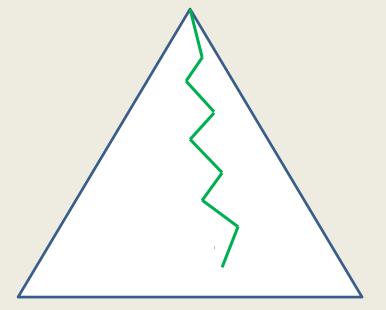
- 0 children: path from deleted node to root
- 1 child: path from deleted node to root
- 2 children: path from *deleted successor node* to root

Will rebalance as we return along the "path in question" to the root



AVL Tree Delete: High level idea





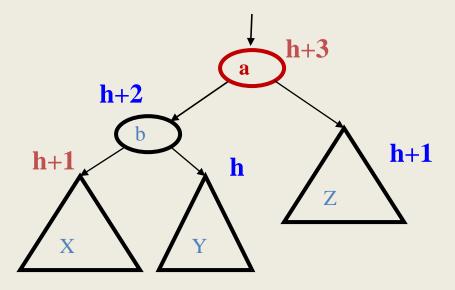
Delete the node and possibly replace it with its successor. Trace a path back from the node that was removed

Find first unbalanced node

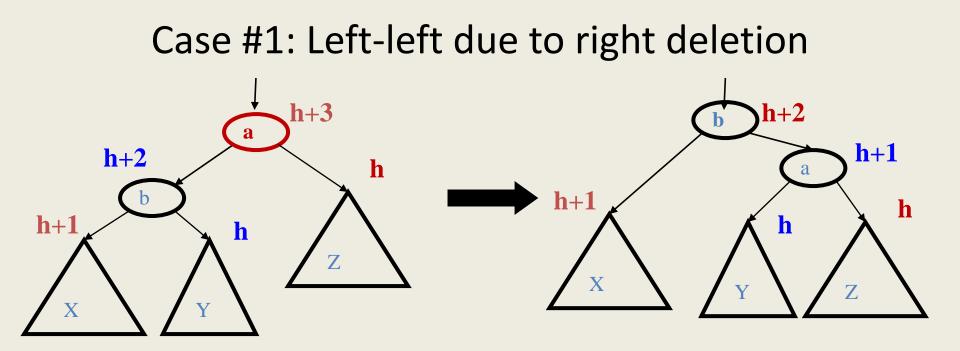
If there is an unbalanced node, apply a double rotation to fix it up. Possibly continue up the tree and repeat

Case #1 Left-left due to right deletion

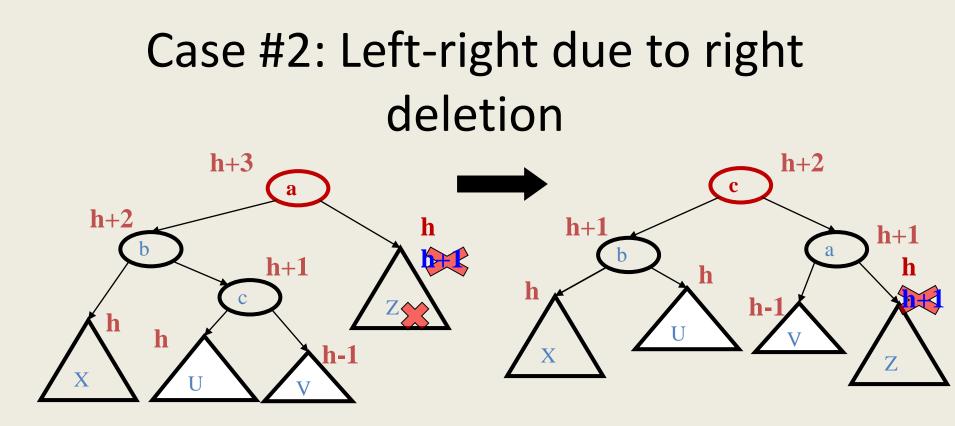
• Start with some subtree where if right child becomes shorter we are unbalanced due to height of left-left grandchild



• A delete in the right child could cause this right-side shortening



- Same single rotation as when an insert in the left-left grandchild caused imbalance due to X becoming taller
- But here the "height" at the top decreases, so more rebalancing farther up the tree might still be necessary
- This case also applies when subtree y has height h+1, yielding a tree of height h+3, and no further rebalancing

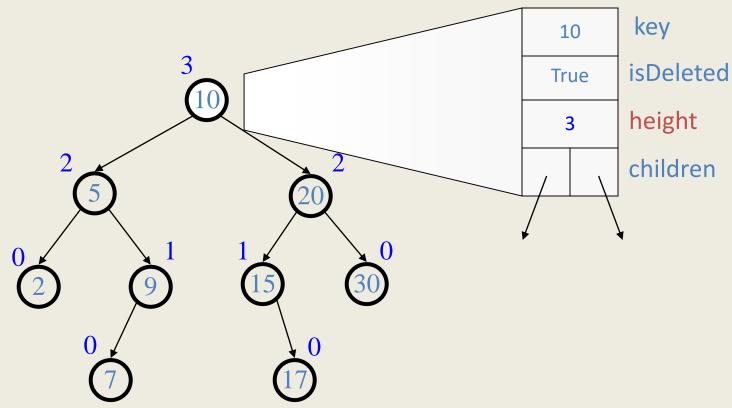


- Same double rotation when an insert in the left-right grandchild caused imbalance due to c becoming taller
- But here the "height" at the top decreases, so more rebalancing farther up the tree might still be necessary

And the other half

- Naturally two more mirror-image cases (not shown here)
 - Deletion in left causes right-right grandchild to be too tall
 - Deletion in left causes right-left grandchild to be too tall
 - (Deletion in left causes both right grandchildren to be too tall, in which case the right-right solution still works)
- And, remember, "lazy deletion" is a lot simpler and might suffice for your needs

Lazy Deletion



Lazy deletion

- General technique just add a deleted flag
- Requires some additional logic in find/insert
- Increases amount of storage used
 - But usually this is not a problem
 - Possible to use with garbage collection
- Bad case for lazy deletion if the number of "live" items is small because number of deletes is similar to the number of inserts

Red Black trees (optional)

- Binary search tree with rebalancing
 - Reasonable alternative to AVL trees
- O(log n) Find, Insert, Delete
- Nodes colored red or black
- Every root leaf path has the same number of black nodes
- Root is black
- No adjacent red nodes

		12		
	5		17	
(2)	9		(26)	
Ŭ				
)
			19 24	

Inserting a node into a red black tree

- Insert at leaf and color red*
- If the parent is red, then fix up the tree with recoloring or rotation
- Repeat until coloring satisfies R-B rules

 O(log n) steps

* Exception – insert at root is black 10/14/2022

