CSE 332: Data Structures and Parallelism

Fall 2022
Richard Anderson
Lecture 8: Адельсо́н-Ве́льский Ла́ндис деревья, Часть вторая,

Announcements

- Project 2, available now (?)
- Checkpoint 1, Oct 23
- MinFourHeapComparable, MoveToFrontList
- Checkpoint 2, Nov 3
- Deadline, Nov 10

AVL Tree overview

- Balance condition
- Depth bound
- Rotations to rebalance the tree

The AVL Tree Data Structure

Structural properties

1. Binary tree property
2. Balance:
left.height - right.height
3. Balance property: balance of every node is between -1 and 1
4. Tree of height h has at least ϕ^{h} nodes
5. Worst-case depth is $\mathrm{O}(\log \mathrm{n})$

AVL insert:

First BST insert, then check balance and potentially "fix" the AVL tree
Four different imbalance cases

AVL tree operations

- AVL find:
- Same as BST find
- AVL insert:
- First BST insert, then check balance and potentially "fix" the AVL tree
- Four different imbalance cases
- AVL delete:
- The "easy way" is lazy deletion
- Otherwise, do the deletion and then have several imbalance cases (

AVL Tree Insert: High level idea

Insert new leaf, follow path back to root computing heights and balance factors

If there is an unbalanced node, apply a double rotation to fix it up

Case \#1: Example

Insert(6)
Insert(3)
Insert(1)

Third insertion violates balance property

- happens to be at the root

What is the only way to fix this?

Fix: Apply "Single Rotation"

- Single rotation: The basic operation we'll use to rebalance
- Move child of unbalanced node into parent position
- Parent becomes the "other" child (always okay in a BST!)
- Other subtrees move in only way BST allows (next slide)

AVL Property violated here

Left-left rebalancing

- Node imbalanced due to insertion somewhere in left-left grandchild increasing height
- 1 of 4 possible imbalance causes (other three coming)
- First we did the insertion, which would make a imbalanced

Left-left case

- Node imbalanced due to insertion somewhere in left-left grandchild
- 1 of 4 possible imbalance causes (other three coming)
- So we rotate at a, using BST facts: $\mathrm{X}<\mathrm{b}<\mathrm{Y}<\mathrm{a}<\mathrm{Z}$

- A single rotation restores balance at the node
- To same height as before insertion, so ancestors now balanced

Another example: insert(16)

Another example: insert (16)

$$
\begin{aligned}
& 0080 \\
& 0080 \\
& 0080 \%
\end{aligned}
$$

The right-right case

- Mirror image to left-left case, so you rotate the other way
- Exact same concept, but need different code

Two cases to go

Simple example: insert(6), insert(1), insert(3)

The last case: left-right

- Left-right grandchild promoted

Right-left case

- Mirror image to left-right case, so you rotate the other way
- Exact same concept, but need different code

Insert, summarized

- Insert as in a BST
- Check back up path for imbalance, which will be 1 of 4 cases:
- Node's left-left grandchild is too tall
- Node's left-right grandchild is too tall
- Node's right-left grandchild is too tall
- Node's right-right grandchild is too tall
- Only one case occurs because tree was balanced before insert
- After the appropriate single or double rotation, the smallestunbalanced subtree has the same height as before the insertion
- So all ancestors are now balanced

Efficiency

- Worst-case complexity of find: $O(\log n)$
- Tree is balanced
- Worst-case complexity of insert: $O(\log n)$
- Tree starts balanced
- A rotation is $O(1)$ and there's an $O(\log n)$ path to root
- (Same complexity even without one-rotation-is-enough fact)
- Tree ends balanced
- Worst-case complexity of buildTree: $O(n \log n)$

Will take some more rotation action to handle delete...

AVL Tree Deletion

- Similar to insertion: do the delete and then rebalance
- Rotations and double rotations
- Imbalance may propagate upward so rotations at multiple nodes along path to root may be needed (unlike with insert)
- Simple example: a deletion on the right causes the left-left grandchild to be too tall
- Call this the left-left case, despite deletion on the right
- insert(6) insert(3) insert(7) insert(1) delete(7)

Properties of BST delete

We first do the normal BST deletion:

- 0 children: just delete it
- 1 child: delete it, connect child to parent
- 2 children: put successor in your place, delete successor node

Which nodes' heights may have changed:

- 0 children: path from deleted node to root

- 1 child: path from deleted node to root
- 2 children: path from deleted successor node to root

Will rebalance as we return along the "path in question" to the root

AVL Tree Delete: High level idea

Delete the node and possibly replace it with its successor. Trace a path back from the node that was removed

Find first unbalanced node

If there is an unbalanced node, apply a double rotation to fix it up. Possibly continue up the tree and repeat

Case \#1 Left-left due to right deletion

- Start with some subtree where if right child becomes shorter we are unbalanced due to height of left-left grandchild

- A delete in the right child could cause this right-side shortening

Case \#1: Left-left due to right deletion

- Same single rotation as when an insert in the left-left grandchild caused imbalance due to X becoming taller
- But here the "height" at the top decreases, so more rebalancing farther up the tree might still be necessary
- This case also applies when subtree y has height $h+1$, yielding a tree of height $h+3$, and no further rebalancing

Case \#2: Left-right due to right deletion

- Same double rotation when an insert in the left-right grandchild caused imbalance due to c becoming taller
- But here the "height" at the top decreases, so more rebalancing farther up the tree might still be necessary

And the other half

- Naturally two more mirror-image cases (not shown here)
- Deletion in left causes right-right grandchild to be too tall
- Deletion in left causes right-left grandchild to be too tall
- (Deletion in left causes both right grandchildren to be too tall, in which case the right-right solution still works)
- And, remember, "lazy deletion" is a lot simpler and might suffice for your needs

Lazy Deletion

Lazy deletion

- General technique - just add a deleted flag
- Requires some additional logic in find/insert
- Increases amount of storage used
- But usually this is not a problem
- Possible to use with garbage collection
- Bad case for lazy deletion - if the number of "live" items is small because number of deletes is similar to the number of inserts

Red Black trees (optional)

- Binary search tree with rebalancing
- Reasonable alternative to AVL trees
- O(log n) Find, Insert, Delete
- Nodes colored red or black

- Root is black
- No adjacent red nodes

Inserting a node into a red black tree

- Insert at leaf and color red*
- If the parent is red, then fix up the tree with recoloring or rotation
- Repeat until coloring satisfies R-B rules
- O($\log \mathrm{n})$ steps

Recolor

Rotate
Other cases for RR, LR, RL

