CSE 332: Data Structures and Parallelism

Fall 2022
Richard Anderson
Lecture 7: Адельсо́н-Ве́льский Ла́ндис деревья
ture 7: AVL
CSE 332

Announcements*

- 10/12: AVL Trees
- 10/14: AVL Trees
- 10/17: B-Trees
- 10/19: B-Trees
- 10/21: Hashing I
- 10/24: Hashing II
- 10/26: Sorting I
- 10/28: Sorting II
- 10/31: Sorting III
- 11/02: Splay Trees
- 11/04: Midterm
*Subject to change

Binary Search Tree Data Structure

- Structural property
- each node has ≤ 2 children
- Order property
- all keys in left subtree smaller than root's key
- all keys in right subtree larger than root's key
- Find / Insert
- Compare with node value to go left

- Works great, unless tree is unbalanced

Balanced binary trees

- Binary tree with guarantee on depths of leaves
- O($\log \mathrm{n})$ insert and delete
- Many flavors
- Red-black trees
- Self-adjusting binary trees
- 2-3 trees
- AVL Trees

10/12/2022
10/12/2022

- Issues
- Ensure height is bounded by c log n
- Maintain this bound on insert and delete
[5 (2)

CSE 332

Imbalance is a real issue

$\log _{2} 1,000 \approx 10$
$\log _{2} 1,000,000 \approx 20$
$\log _{2} 1,000,000,000 \approx 30$

Almost sorted input is a realistic case

More on binary search trees

What does the following function do:

```
LV(Node root, int low, int high) {
```

LV(Node root, int low, int high) {
if (root == null)
return;
if (low <= root. key)
LV(root.left, low, high) ;
if (low <= root.key \&\& high >= root.key) Print(root.key)
if (high >= root.key) LV(root.right, low, high)
LV(root.left, low, high);
LV(root.right, low, high);

```
\}
                                    CSE 332


\section*{AVL Tree overview}
- Balance condition
- Depth bound
- Rotations to rebalance the tree


\section*{The AVL Tree Data Structure}

Structural properties
1. Binary tree property
2. Balance:
left.height - right.height
3. Balance property:
balance of every node is
between -1 and 1
Result:
Worst-case depth is
\(\mathrm{O}(\log n)\)

Ordering property
- Same as for BST


\section*{Height of an AVL Tree?}

Using the AVL balance property, we can determine the minimum number of nodes in an AVL tree of height \(h\)

Let \(\mathbf{S}(h)\) be the minimum \# of nodes in an AVL tree of height \(h\), then:
\[
\mathbf{S}(h)=\mathbf{S}(h-1)+\mathbf{S}(h-2)+1
\]
\[
\text { where } \mathbf{S}(0)=1 \text { and } \mathbf{S}(1)=2
\]

Solution of Recurrence: \(\mathbf{S}(h) \approx 1.62^{h}\)
\[
n \geq \phi^{h} \Longrightarrow \log _{\phi} n \geq h
\]


Let \(S(h)\) be the minimum \# of nodes in an AVL tree of height \(h\), then:
\[
S(h)=S(h-1)+S(h-2)+1 \text { where } S(0)=1 \text { and } S(1)=2
\]
\(\underline{h} \quad\) Minimal AVL Tree
\(S(h)\)

10/12/2022

```

S(0)=1,S(1)=2,S(2)=4
For }h\geq1,S(h)=1+S(h-1)+S(h-2
Theorem: For all }h\geq0,S(h)>\mp@subsup{\phi}{}{h}-
Proof: By induction on }
Base cases:
S(0) =1>\mp@subsup{\phi}{}{0}-1=0 S(1)=2>\mp@subsup{\phi}{}{1}-1\approx0.62
Inductive case (}k>1\mathrm{):
Show S(k+1)>\mp@subsup{\phi}{}{k+1}-1 assuming S(k)>\mp@subsup{\phi}{}{k}-1 and S(k-1)>\mp@subsup{\phi}{}{k-1}-1
S(k+1)=1+S(k)+S(k-1) by definition of S
> 1+ \$}\mp@subsup{\phi}{}{k}-1+\mp@subsup{\phi}{}{k-1}-1 by inductio
= }\mp@subsup{\phi}{}{k}+\mp@subsup{\phi}{}{k-1}-
= 京-1}(\phi+1)-1\quad\mathrm{ by arithmetic (factor }\mp@subsup{\phi}{}{k-1}\mathrm{)

```

```

 = }\mp@subsup{\phi}{}{k+1}-
 The Proof
    ```
    0/12/2022
        CSE 332

\section*{Good news}

\section*{Proof means that if we have an AVL tree, then find is \(O(\log n)\)}
- Recall logarithms of different bases > 1 differ by only a constant factor

But as we insert and delete elements, we need to:
1. Track balance
2. Detect imbalance
3. Restore balance



\section*{Insert: detect potential imbalance}
1. Insert the new node as in a BST (a new leaf)
2. For each node on the path from the root to the new leaf, the insertion may (or may not) have changed the node's height
3. So after recursive insertion in a subtree, detect height imbalance and perform a rotation to restore balance at that node
All the action is in defining the correct rotations to restore balance
Facts that an implementation can ignore:
- There must be a deepest element that is imbalanced after the insert (all descendants still balanced)
- After rebalancing this deepest node, every node is balanced
- So at most one node needs to be rebalanced

CSE 332

\section*{AVL tree operations}
- AVL find:
- Same as BST find
- AVLinsert:
- First BST insert, then check balance and potentially "fix" the AVL tree
- Four different imbalance cases
- AVL delete:
- The "easy way" is lazy deletion
- Otherwise, do the deletion and then have several imbalance cases (next lecture, maybe)

10/12/2022
CSE 332

Case \#1: Example
Insert(6)
Insert(3)
Insert(1)
Third insertion violates
balance property
- happens to be at the root

What is the only way to fix this?

Fix: Apply "Single Rotation"
- Single rotation: The basic operation we'll use to rebalance
- Move child of unbalanced node into parent position
- Parent becomes the "other" child (always okay in a BST!)
- Other subtrees move in only way BST allows (next slide)

AVL Property violated here


\section*{The example generalized}
- Node imbalanced due to insertion somewhere in left-left grandchild increasing height
- 1 of 4 possible imbalance causes (other three coming)
- First we did the insertion, which would make a imbalanced


10/12/2022
CSE 332
24

\section*{The general left-left case}
- Node imbalanced due to insertion somewhere in left-left grandchild
- 1 of 4 possible imbalance causes (other three coming)
- So we rotate at \(a\), using BST facts: \(X<b<Y<a<Z\)

- A single rotation restores balance at the node
- To same height as before insertion, so ancestors now balanced


\section*{The general right-right case}
- Mirror image to left-left case, so you rotate the other way - Exact same concept, but need different code


10/12/2022 CSE 332

\section*{Two cases to go}

Unfortunately, single rotations are not enough for insertions in the left-right subtree or the right-left subtree

Simple example: insert(1), insert(6), insert(3) - Second wrong idea: single rotation on the child of the unbalanced node


\section*{Sometimes two wrongs make a right \(;\)}
- First idea violated the BST property
- Second idea didn't fix balance
- But if we do both single rotations, starting with the second, it works! (And not just for this example.)
- Double rotation:
1. Rotate problematic child and grandchild
2. Then rotate between self and new child


\section*{Comments}
- Like in the left-left and right-right cases, the height of the subtree after rebalancing is the same as before the insert - So no ancestor in the tree will need rebalancing
- Does not have to be implemented as two rotations; can just do:


Easier to remember than you may think:
Move \(c\) to grandparent's position
\(\underset{\text { Put }}{\text { Pu, }} \mathrm{b}, \mathrm{X}, \mathrm{U}, \mathrm{V}\), and Z in the only legal positions for a BST


\section*{Insert, summarized}
- Insert as in a BST
- Check back up path for imbalance, which will be 1 of 4 cases:
- Node's left-left grandchild is too tall
- Node's left-right grandchild is too tall
- Node's right-left grandchild is too tall
- Node's right-right grandchild is too tall
- Only one case occurs because tree was balanced before insert
- After the appropriate single or double rotation, the smallestunbalanced subtree has the same height as before the insertion
- So all ancestors are now balanced```

