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CSE 332: Data Structures and 
Parallelism

Fall 2022
Richard Anderson

Lecture 7: Адельсо́н-Ве́льский
Ла́ндис деревья
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Lecture 7: AVL Trees

Announcements*

• 10/12: AVL Trees

• 10/14: AVL Trees 

• 10/17: B-Trees  

• 10/19: B-Trees

• 10/21: Hashing I

• 10/24: Hashing II 

• 10/26: Sorting I

• 10/28: Sorting II

• 10/31: Sorting III

• 11/02: Splay Trees

• 11/04: Midterm
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*Subject to change

Binary Search Tree Data Structure
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• Structural property
– each node has  2 children

• Order property
– all keys in left subtree smaller

than root’s key

– all keys in right subtree larger
than root’s key

• Find / Insert
– Compare with node value to go left 

or right

– Runtime O(height)

• Works great, unless tree is 
unbalanced
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Balanced binary trees

• Binary tree with 
guarantee on depths of 
leaves

• O(log n) insert and 
delete

• Many flavors
– Red-black trees

– Self-adjusting binary 
trees

– 2-3 trees

– AVL Trees

• Issues
– Ensure height is 

bounded by c log n

– Maintain this bound on 
insert and delete
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Imbalance is a real issue

log2 1,000  10

log2 1,000,000  20

log2 1,000,000,000  30

Almost sorted input is a realistic case

10/12/2022 CSE 332 5

More on binary search trees
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What does the following function do:

LV(Node root, int low, int high){

if (root == null)

return;

if (low <= root.key)

LV(root.left, low, high);

if (low <= root.key && high >= root.key)

Print(root.key);

if (high >= root.key)

LV(root.right, low, high);

}
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What is the run time?

• Tree of height h

• A total of k nodes 
are output
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AVL Trees

• Developed in 1962 by Soviet 
mathematicians Georgy 
Adelson-Velsky and Evgeny
Landis (Адельсо́н-
Ве́льский, Ла́ндис) 

• Structural property on tree 
guarantees depth O(log n)

• Rebalance operation to 
ensure property

• Practical
• First published balanced 

search tree
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AVL Tree overview

• Balance condition

• Depth bound

• Rotations to rebalance the tree
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The AVL Tree Data Structure
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Structural properties

1. Binary tree property

2. Balance: 

left.height – right.height

3. Balance property:
balance of every node is
between -1 and 1

Result:

Worst-case depth is
O(log n)

Ordering property

– Same as for BST 15
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An AVL tree?
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An AVL tree?
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Height of an AVL Tree?

Using the AVL balance property, we can determine the minimum 
number of nodes in an AVL tree of height h

Let S(h)be the minimum # of nodes in an AVL tree of height h, 
then:

S(h) = S(h-1) + S(h-2) + 1 
where S(0) = 1 and S(1)  = 2

Solution of Recurrence: S(h)  1.62h
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Let S(h)be the minimum # of nodes in an AVL tree of height 
h, then:

S(h) = S(h-1) + S(h-2) + 1   where S(0)= 1 and S(1)= 2

h Minimal AVL Tree S(h)
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A simpler bound:  Sk  2k/2
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S0 = 1,  S1 = 2,  Sk = 1+ Sk-1 + Sk-2

1, 2, 4, 7, 12, 20, 33, 54, . . .

Growing faster than the Fibonacci sequence

Observation:  Sk 2 Sk-2

The Golden Ratio
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This is a special number

• Golden ratio: If (a+b)/a = a/b, then a = b

• We will need one special arithmetic fact about  :

2 = ((1+51/2)/2)2

= (1 + 2*51/2 + 5)/4 

= (6 + 2*51/2)/4 

= (3 + 51/2)/2 

= 1 + (1 + 51/2)/2

= 1 + 
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The Proof

Theorem: For all h  0, S(h) > h – 1 
Proof: By induction on h
Base cases:

S(0) = 1 > 0 – 1 = 0 S(1) = 2 > 1 – 1  0.62

Inductive case (k > 1): 
Show S(k+1) > k+1 – 1 assuming S(k) > k – 1 and S(k-1) > k-1 – 1

S(k+1) = 1 + S(k) + S(k-1) by definition of S
> 1 + k – 1 + k-1 – 1 by induction
= k + k-1 – 1 
= k-1 ( + 1) – 1 by arithmetic (factor k-1 )
= k-1 2 – 1                    by special property of 
= k+1 – 1 

S(0)=1, S(1)=2, S(2)=4

For h 1, S(h) = 1+S(h-1)+S(h-2)
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Good news

Proof means that if we have an AVL tree, then find is O(log n)
– Recall logarithms of different bases > 1 differ by only a constant factor

But as we insert and delete elements, we need to:
1. Track balance
2. Detect imbalance
3. Restore balance
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Is this AVL tree balanced?

How about after insert(30)?
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An AVL Tree
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AVL tree operations

• AVL find: 
– Same as BST find

• AVL insert: 
– First BST insert, then check balance and potentially 

“fix” the AVL tree
– Four different imbalance cases

• AVL delete: 
– The “easy way” is lazy deletion
– Otherwise, do the deletion and then have several 

imbalance cases (next lecture, maybe)
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Insert: detect potential imbalance

1. Insert the new node as in a BST (a new leaf)
2. For each node on the path from the root to the new leaf, the 

insertion may (or may not) have changed the node’s height
3. So after recursive insertion in a subtree, detect height imbalance 

and perform a rotation to restore balance at that node

All the action is in defining the correct rotations to restore balance

Facts that an implementation can ignore:
– There must be a deepest element that is imbalanced after the 

insert (all descendants still balanced)
– After rebalancing this deepest node, every node is balanced
– So at most one node needs to be rebalanced
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Case #1: Example
Insert(6)

Insert(3)

Insert(1)

Third insertion violates 
balance property

• happens to be at 
the root

What is the only way to fix 
this? 
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Fix: Apply “Single Rotation”
• Single rotation: The basic operation we’ll use to 

rebalance
– Move child of unbalanced node into parent position
– Parent becomes the “other” child (always okay in a BST!)
– Other subtrees move in only way BST allows (next slide)
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The example generalized
• Node imbalanced due to insertion somewhere in 

left-left grandchild increasing height
– 1 of 4 possible imbalance causes (other three coming)

• First we did the insertion, which would make a imbalanced
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The general left-left case
• Node imbalanced due to insertion somewhere in 

left-left grandchild
– 1 of 4 possible imbalance causes (other three coming)

• So we rotate at a, using BST facts: X < b < Y < a < Z

• A single rotation restores balance at the node

– To same height as before insertion, so ancestors now balanced
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Another example: insert(16)
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Another example: insert(16)
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The general right-right case

• Mirror image to left-left case, so you rotate the other way
– Exact same concept, but need different code
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Two cases to go

Unfortunately, single rotations are not enough for insertions 
in the left-right subtree or the right-left subtree

Simple example:  insert(1), insert(6), insert(3)
– First wrong idea: single rotation like we did for left-left
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Two cases to go

Unfortunately, single rotations are not enough for insertions 
in the left-right subtree or the right-left subtree

Simple example: insert(1), insert(6), insert(3)
– Second wrong idea: single rotation on the child of the 

unbalanced node
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Sometimes two wrongs make a right 

• First idea violated the BST property
• Second idea didn’t fix balance
• But if we do both single rotations, starting with the 

second, it works!  (And not just for this example.)
• Double rotation: 

1. Rotate problematic child and grandchild
2. Then rotate between self and new child
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The general right-left case
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Comments
• Like in the left-left and right-right cases, the height of the 

subtree after rebalancing is the same as before the insert
– So no ancestor in the tree will need rebalancing

• Does not have to be implemented as two rotations; can just do:

a

X

b

c

h-1

h

h

h

V
U

h+1

h+2

h+3

Z

c

X

h-1

h+1

h

h+1

VU

h+2

Z

b

h

a

h

Easier to remember than you may think:

Move c to grandparent’s position

Put a, b, X, U, V, and Z in the only legal positions for a BST
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The last case: left-right

• Mirror image of right-left
– Again, no new concepts, only new code to write
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Insert, summarized

• Insert as in a BST

• Check back up path for imbalance, which will be 1 of 4 cases:
– Node’s left-left grandchild is too tall
– Node’s left-right grandchild is too tall
– Node’s right-left grandchild is too tall
– Node’s right-right grandchild is too tall

• Only one case occurs because tree was balanced before insert

• After the appropriate single or double rotation, the smallest-
unbalanced subtree has the same height as before the insertion
– So all ancestors are now balanced
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