
1

CSE 332: Data Structures and
Parallelism

Fall 2022
Richard Anderson

Lecture 7: Адельсо́н-Ве́льский
Ла́ндис деревья

10/12/2022 CSE 332 1

Lecture 7: AVL Trees

Announcements*

• 10/12: AVL Trees

• 10/14: AVL Trees

• 10/17: B-Trees

• 10/19: B-Trees

• 10/21: Hashing I

• 10/24: Hashing II

• 10/26: Sorting I

• 10/28: Sorting II

• 10/31: Sorting III

• 11/02: Splay Trees

• 11/04: Midterm

10/12/2022 CSE 332 2

*Subject to change

Binary Search Tree Data Structure

4

121062

115

8

14

13

7 9

• Structural property
– each node has  2 children

• Order property
– all keys in left subtree smaller

than root’s key

– all keys in right subtree larger
than root’s key

• Find / Insert
– Compare with node value to go left

or right

– Runtime O(height)

• Works great, unless tree is
unbalanced

10/12/2022 CSE 332 3

Balanced binary trees

• Binary tree with
guarantee on depths of
leaves

• O(log n) insert and
delete

• Many flavors
– Red-black trees

– Self-adjusting binary
trees

– 2-3 trees

– AVL Trees

• Issues
– Ensure height is

bounded by c log n

– Maintain this bound on
insert and delete

10/12/2022 CSE 332 4

Imbalance is a real issue

log2 1,000  10

log2 1,000,000  20

log2 1,000,000,000  30

Almost sorted input is a realistic case

10/12/2022 CSE 332 5

More on binary search trees

10/12/2022 CSE 332 6

What does the following function do:

LV(Node root, int low, int high){

if (root == null)

return;

if (low <= root.key)

LV(root.left, low, high);

if (low <= root.key && high >= root.key)

Print(root.key);

if (high >= root.key)

LV(root.right, low, high);

}

2

What is the run time?

• Tree of height h

• A total of k nodes
are output

10/12/2022 CSE 332 7

4

121062

115

8

14

13

7 9

AVL Trees

• Developed in 1962 by Soviet
mathematicians Georgy
Adelson-Velsky and Evgeny
Landis (Адельсо́н-
Ве́льский, Ла́ндис)

• Structural property on tree
guarantees depth O(log n)

• Rebalance operation to
ensure property

• Practical
• First published balanced

search tree

10/12/2022 CSE 332 8

AVL Tree overview

• Balance condition

• Depth bound

• Rotations to rebalance the tree

a

X

b

c

h-1

h

h

h

V
U

h+1

h+2

h+3

Z

c

X

h-1

h+1

h

h+1

VU

h+2

Z

b

h

a

h

10/12/2022 CSE 332 9

The AVL Tree Data Structure

4

131062

115

8

14127 9

Structural properties

1. Binary tree property

2. Balance:

left.height – right.height

3. Balance property:
balance of every node is
between -1 and 1

Result:

Worst-case depth is
O(log n)

Ordering property

– Same as for BST 15

10/12/2022 CSE 332 10

111

84

6

10 12

7

An AVL tree?

10/12/2022 CSE 332 11

3

1171

84

6

2

5

An AVL tree?

10/12/2022 CSE 332 12

3

Height of an AVL Tree?

Using the AVL balance property, we can determine the minimum
number of nodes in an AVL tree of height h

Let S(h)be the minimum # of nodes in an AVL tree of height h,
then:

S(h) = S(h-1) + S(h-2) + 1
where S(0) = 1 and S(1) = 2

Solution of Recurrence: S(h)  1.62h

10/12/2022 13

h-2

h

h-1

CSE 332

Let S(h)be the minimum # of nodes in an AVL tree of height
h, then:

S(h) = S(h-1) + S(h-2) + 1 where S(0)= 1 and S(1)= 2

h Minimal AVL Tree S(h)

10/12/2022 14CSE 332

A simpler bound: Sk  2k/2

10/12/2022 CSE 332 15

S0 = 1, S1 = 2, Sk = 1+ Sk-1 + Sk-2

1, 2, 4, 7, 12, 20, 33, 54, . . .

Growing faster than the Fibonacci sequence

Observation: Sk 2 Sk-2

The Golden Ratio

62.1
2

51





This is a special number

• Golden ratio: If (a+b)/a = a/b, then a = b

• We will need one special arithmetic fact about  :

2 = ((1+51/2)/2)2

= (1 + 2*51/2 + 5)/4

= (6 + 2*51/2)/4

= (3 + 51/2)/2

= 1 + (1 + 51/2)/2

= 1 + 

10/12/2022 CSE 332 16

The Proof

Theorem: For all h  0, S(h) > h – 1
Proof: By induction on h
Base cases:

S(0) = 1 > 0 – 1 = 0 S(1) = 2 > 1 – 1  0.62

Inductive case (k > 1):
Show S(k+1) > k+1 – 1 assuming S(k) > k – 1 and S(k-1) > k-1 – 1

S(k+1) = 1 + S(k) + S(k-1) by definition of S
> 1 + k – 1 + k-1 – 1 by induction
= k + k-1 – 1
= k-1 ( + 1) – 1 by arithmetic (factor k-1)
= k-1 2 – 1 by special property of 
= k+1 – 1

S(0)=1, S(1)=2, S(2)=4

For h 1, S(h) = 1+S(h-1)+S(h-2)

10/12/2022 CSE 332 17

Good news

Proof means that if we have an AVL tree, then find is O(log n)
– Recall logarithms of different bases > 1 differ by only a constant factor

But as we insert and delete elements, we need to:
1. Track balance
2. Detect imbalance
3. Restore balance

92

5

10

7

Is this AVL tree balanced?

How about after insert(30)?

15

20

10/12/2022 CSE 332 18

4

An AVL Tree

20

92 15

5

10

30

177

0

0 0

011

2 2

3 …

3

value

height

children

10 key

10/12/2022 CSE 332 19

AVL tree operations

• AVL find:
– Same as BST find

• AVL insert:
– First BST insert, then check balance and potentially

“fix” the AVL tree
– Four different imbalance cases

• AVL delete:
– The “easy way” is lazy deletion
– Otherwise, do the deletion and then have several

imbalance cases (next lecture, maybe)

10/12/2022 CSE 332 20

Insert: detect potential imbalance

1. Insert the new node as in a BST (a new leaf)
2. For each node on the path from the root to the new leaf, the

insertion may (or may not) have changed the node’s height
3. So after recursive insertion in a subtree, detect height imbalance

and perform a rotation to restore balance at that node

All the action is in defining the correct rotations to restore balance

Facts that an implementation can ignore:
– There must be a deepest element that is imbalanced after the

insert (all descendants still balanced)
– After rebalancing this deepest node, every node is balanced
– So at most one node needs to be rebalanced

10/12/2022 CSE 332 21

Case #1: Example
Insert(6)

Insert(3)

Insert(1)

Third insertion violates
balance property

• happens to be at
the root

What is the only way to fix
this?

6

3

1

2

1

0

6

3

1

0

6
0

10/12/2022 CSE 332 22

Fix: Apply “Single Rotation”
• Single rotation: The basic operation we’ll use to

rebalance
– Move child of unbalanced node into parent position
– Parent becomes the “other” child (always okay in a BST!)
– Other subtrees move in only way BST allows (next slide)

3

1 6
00

1

6

3

0

1

2

AVL Property violated here

1

10/12/2022 CSE 332 23

The example generalized
• Node imbalanced due to insertion somewhere in

left-left grandchild increasing height
– 1 of 4 possible imbalance causes (other three coming)

• First we did the insertion, which would make a imbalanced

a

Z

Y

b

X

h h

h

h+1

h+2
a

Z

Y

b

X

h+1 h

h

h+2

h+3

10/12/2022 CSE 332 24

5

The general left-left case
• Node imbalanced due to insertion somewhere in

left-left grandchild
– 1 of 4 possible imbalance causes (other three coming)

• So we rotate at a, using BST facts: X < b < Y < a < Z

• A single rotation restores balance at the node

– To same height as before insertion, so ancestors now balanced

a

Z

Y

b

X

h+1 h

h

h+2

h+3 b

ZY

a

h+1 h
h

h+1

h+2

X

10/12/2022 CSE 332 25

Another example: insert(16)

104

228

15

3 6

19

17 20

24

16

10/12/2022 CSE 332 26

Another example: insert(16)

104

228

15

3 6

19

17 20

24

16

104

8

15

3 6

19

17

2016

22

24

10/12/2022 CSE 332 27

The general right-right case

• Mirror image to left-left case, so you rotate the other way
– Exact same concept, but need different code

a

ZY

X

h

h
h+1

h+3

b

h+2 b

Z

Y

a

X

h h

h+1

h+1

h+2

10/12/2022 CSE 332 28

Two cases to go

Unfortunately, single rotations are not enough for insertions
in the left-right subtree or the right-left subtree

Simple example: insert(1), insert(6), insert(3)
– First wrong idea: single rotation like we did for left-left

3

6

1

0

1

2

6

1 3

1

0 0

10/12/2022 CSE 332 29

Two cases to go

Unfortunately, single rotations are not enough for insertions
in the left-right subtree or the right-left subtree

Simple example: insert(1), insert(6), insert(3)
– Second wrong idea: single rotation on the child of the

unbalanced node

3

6

1

0

1

2

6

3

1

0

1

2

10/12/2022 CSE 332 30

6

Sometimes two wrongs make a right 

• First idea violated the BST property
• Second idea didn’t fix balance
• But if we do both single rotations, starting with the

second, it works! (And not just for this example.)
• Double rotation:

1. Rotate problematic child and grandchild
2. Then rotate between self and new child

3

6

1

0

1

2

6

3

1

0

1

2

00

1

1

3

6
10/12/2022 CSE 332 31

The general right-left case
a

X

b

c

h-1

h

h

h

V
U

h+1

h+2

h+3

Z

a

X

c

h-1

h+1h

h

V

U

h+2

h+3

Z

b

h

c

X

h-1

h+1

h

h+1

VU

h+2

Z

b

h

a

h

10/12/2022 CSE 332 32

Comments
• Like in the left-left and right-right cases, the height of the

subtree after rebalancing is the same as before the insert
– So no ancestor in the tree will need rebalancing

• Does not have to be implemented as two rotations; can just do:

a

X

b

c

h-1

h

h

h

V
U

h+1

h+2

h+3

Z

c

X

h-1

h+1

h

h+1

VU

h+2

Z

b

h

a

h

Easier to remember than you may think:

Move c to grandparent’s position

Put a, b, X, U, V, and Z in the only legal positions for a BST
10/12/2022 CSE 332 33

The last case: left-right

• Mirror image of right-left
– Again, no new concepts, only new code to write

a

h-1

h

h
h

VU

h+1

h+2

h+3

Z

X

b

c

c

X

h-1

h+1

h

h+1

VU

h+2

Z

a

h

b

h

10/12/2022 CSE 332 34

Insert, summarized

• Insert as in a BST

• Check back up path for imbalance, which will be 1 of 4 cases:
– Node’s left-left grandchild is too tall
– Node’s left-right grandchild is too tall
– Node’s right-left grandchild is too tall
– Node’s right-right grandchild is too tall

• Only one case occurs because tree was balanced before insert

• After the appropriate single or double rotation, the smallest-
unbalanced subtree has the same height as before the insertion
– So all ancestors are now balanced

10/12/2022 CSE 332 35

