10/10/2022

CSE 332: Data Structures and
Parallelism

Fall 2022
Richard Anderson

Lecture 6: Binary Search Trees

CSE 332

Announcements

Reading: Weiss

— Today: Binary Search Trees, 4.1-4.3, 4.6
— Wednesday: AVL Trees, 4.4

— Friday: AVL Trees and B-Trees, 4.7

Project 1, Due Thursday
Exercises 3 and 4, Due next week
Minor change in lecture schedule

Abstract Data Types seen so far

e Stack * None of these support
— Push Find(x)
— Pop — Test if x is in the data

e Queue structure
_ Enqueue — Return data associated

with x
— Dequeue

* Priority Queue
— Insert
— DeleteMin

The chtlonary ADT

-+ seitz
. .~ Steve
Data.: Seitz
. . ~ CSE592
— a set of insert(seitz,)
(key, value) « anderson
: ~ Richard
palrs ~ Anderson
CSE 582
:] flnd(anderson) Vel (e T
* Operatlons' “anderson Ha;lgmy
Richard, And i
(R (key, ichard, Anderson (K:IgnE o
value)
— Find (key)
— Remove (key) The Dictionary ADT is also

10/10/2022 CSE 332 called the “Map ADT”,

Dictionary Implementations

Insert find delete
e Unsorted Linked List

* Unsorted Array

e Sorted Array

Binary Trees

* Binary tree is

— a root

— left subtree (maybe empty)

— right subtree (maybe empty)

* Representation: (D)

Data

left
pointer

right
pointer

Binary Tree: Representation

left | right
pointer | pointer
e ' e ri

left ght left ght
pointer | pointer pointer | pointer
left ght left | right left ght
pointer|pointer pointer | pointer pointer | pointer

Tree Traversals

A traversal Is an order for
visiting all the nodes of a tree &)

Three types:
* Pre-order: Root, left subtree, right subtree 9 @

* In-order: Left subtree, root, right subtree

(an expression tree)
» Post-order: Left subtree, right subtree, root

Inorder Traversal

void traverse (BNode t) {
if (t '= NULL)
traverse (t.left);
process t.element;

traverse (t.right);

Binary Trees: Special Cases

(A (A A (A
DEE O0OOME G 0 66 @G ©
Y0

Complete Tree Perfect Tree “List” Tree

Full Tree

Binary Tree of height h

Height of a tree: longest path from root to leaf
 max # of leaves:

e max # of nodes:
* min # of leaves:

e Min # of nodes:

Binary Search Tree Data Structure

« Structural property
— each node has < 2 children

« QOrder property

— all keys in left subtree smaller
than root’s key

— all keys in right subtree larger
than root’s key

Find In BST, Recursive

Node Find (Object key,
@ Node root) {
if (root == NULL)

6 @ return NULL;

if (key < root.key)

@ @ @ return Find (key,
root.left) ;

else if (key > root.key)

return Find (key,
@ @ @ root.right);

else
return root;

Runtime: }

Find In BST, lterative

Node Find (Object key,
Node root) {

while (root '= NULL &é&

root.key != key) ({
if (key < root.key) 6

root = root.left;

else @ @

root = root.right;

}

return root;

}

Runtime:

Bonus: FindMin/FindMax

* Find minimum

e Find maximum

Insert In BST

12
Insert(13)
Insert(8
(5 ® InsertEB)l)

)
QT QYD

Runtime:

Insertions happen only
at the leaves — easy!

BuilldTree for BST

« Suppose keys 1, 2, 3,4,5,6, 7, 8,9 are
Inserted into an initially empty BST.

If inserted in given order, what is
the tree? What big-O runtime for
this kind of sorted input?

If inserted in reverse order, what
IS the tree? What big-O runtime
for this kind of sorted input?

BuilldTree for BST

« Suppose keys 1, 2, 3,4,5,6, 7, 8,9 are
Inserted into an initially empty BST.

— If Inserted median first, then left median, right
median, etc., what is the tree? What is the
big-O runtime for this kind of sorted input?

Deletion in BST
12

)
QT QYD

Why might deletion be harder than insertion?

Deletion

 Removing an item disrupts the tree
structure.

» Basic idea: find the node that is to be
removed. Then “fix” the tree so that it is
still a binary search tree.

* Three cases:
— node has no children (leaf node)
— node has one child
— node has two children

Deletion — The Leaf Case

Delete(17) 12

)
QT) &9

Deletion — The One Child Case

Delete(15)

Deletion: The Two Child Case

Delete(5)

What can we replace 5 with?

Deletion — The Two Child Case

ldea: Replace the deleted node with a value
between the two child subtrees

Options:
« succ from right subtree: findMin(t.right)

» pred from left subtree: findMax(t.left)

Now delete the original node containing succ or pred
« Leaf or one child case — easy!

Finally. ..

12

7 replaces 5
G @ 20

® @
9

Original node containing
7 gets deleted

Balanced BST

Observations
« BST: the shallower the better!
e ForaBST with n nodes

— Average depth (averaged over all possible
Insertion orderings) is O(log n)
— Worst case maximum depth is O(n)

« Simple cases such as insert(1, 2, 3, ..., n)
lead to the worst case scenario

Solution: Require a Balance Condition that
1. ensures depth is O(log n) — strong enough!
2. IS easy to maintain — not too strong!

