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Announcements

Reading: Weiss

— Today: Binary Search Trees, 4.1-4.3, 4.6
— Wednesday: AVL Trees, 4.4

— Friday: AVL Trees and B-Trees, 4.7

Project 1, Due Thursday
Exercises 3 and 4, Due next week
Minor change in lecture schedule



Abstract Data Types seen so far

e Stack * None of these support
— Push Find(x)
— Pop — Test if x is in the data

e Queue structure
_ Enqueue — Return data associated

with x
— Dequeue

* Priority Queue
— Insert
— DeleteMin



The chtlonary ADT
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Dictionary Implementations

Insert find delete
e Unsorted Linked List

* Unsorted Array

e Sorted Array



Binary Trees

* Binary tree is

— a root

— left subtree (maybe empty)

— right subtree (maybe empty)

* Representation: (D)

Data

left
pointer

right
pointer




Binary Tree: Representation
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Tree Traversals

A traversal Is an order for
visiting all the nodes of a tree &)

Three types:
* Pre-order: Root, left subtree, right subtree 9 @

* In-order: Left subtree, root, right subtree

(an expression tree)
» Post-order: Left subtree, right subtree, root




Inorder Traversal

void traverse (BNode t) {
if (t '= NULL)
traverse (t.left);
process t.element;

traverse (t.right);



Binary Trees: Special Cases
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Binary Tree of height h

Height of a tree: longest path from root to leaf
 max # of leaves:

e max # of nodes:
* min # of leaves:

e Min # of nodes:



Binary Search Tree Data Structure

« Structural property
— each node has < 2 children

« QOrder property

— all keys in left subtree smaller
than root’s key

— all keys in right subtree larger
than root’s key




Find In BST, Recursive

Node Find (Object key,
@ Node root) {
if (root == NULL)

6 @ return NULL;

if (key < root.key)

@ @ @ return Find (key,
root.left) ;

else if (key > root.key)

return Find (key,
@ @ @ root.right);

else
return root;

Runtime: }




Find In BST, lterative

Node Find (Object key,
Node root) {

while (root '= NULL &é&

root.key != key) ({
if (key < root.key) 6

root = root.left;

else @ @

root = root.right;

}

return root;

}

Runtime:



Bonus: FindMin/FindMax

* Find minimum

e Find maximum




Insert In BST
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Runtime:

Insertions happen only
at the leaves — easy!



BuilldTree for BST

« Suppose keys 1, 2, 3,4,5,6, 7, 8,9 are
Inserted into an initially empty BST.

If inserted in given order, what is
the tree? What big-O runtime for
this kind of sorted input?

If inserted in reverse order, what
IS the tree? What big-O runtime
for this kind of sorted input?



BuilldTree for BST

« Suppose keys 1, 2, 3,4,5,6, 7, 8,9 are
Inserted into an initially empty BST.

— If Inserted median first, then left median, right
median, etc., what is the tree? What is the
big-O runtime for this kind of sorted input?



Deletion in BST
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Why might deletion be harder than insertion?



Deletion

 Removing an item disrupts the tree
structure.

» Basic idea: find the node that is to be
removed. Then “fix” the tree so that it is
still a binary search tree.

* Three cases:
— node has no children (leaf node)
— node has one child
— node has two children




Deletion — The Leaf Case

Delete(17) 12
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Deletion — The One Child Case

Delete(15)




Deletion: The Two Child Case

Delete(5)

What can we replace 5 with?



Deletion — The Two Child Case

ldea: Replace the deleted node with a value
between the two child subtrees

Options:
« succ from right subtree: findMin(t.right)

» pred from left subtree: findMax(t.left)

Now delete the original node containing succ or pred
« Leaf or one child case — easy!



Finally. ..

12

7 replaces 5
G @ 20
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9

Original node containing
7 gets deleted



Balanced BST

Observations
« BST: the shallower the better!
e ForaBST with n nodes

— Average depth (averaged over all possible
Insertion orderings) is O(log n)
— Worst case maximum depth is O(n)

« Simple cases such as insert(1, 2, 3, ..., n)
lead to the worst case scenario

Solution: Require a Balance Condition that
1. ensures depth is O(log n) — strong enough!
2. IS easy to maintain — not too strong!




