CSE 332: Data Structures and Parallelism

Fall 2022

Richard Anderson

Lecture 6: Binary Search Trees

Announcements

- Reading: Weiss
 - Today: Binary Search Trees, 4.1-4.3, 4.6
 - Wednesday: AVL Trees, 4.4
 - Friday: AVL Trees and B-Trees, 4.7
- Project 1, Due Thursday
- Exercises 3 and 4, Due next week
- Minor change in lecture schedule

Abstract Data Types seen so far

- Stack
 - Push
 - Pop
- Queue
 - Enqueue
 - Dequeue
- Priority Queue
 - Insert
 - DeleteMin

- None of these support Find(x)
 - Test if x is in the data structure
 - Return data associated with x

The Dictionary ADT

- Data:
 - a set of (key, value)pairs
- Operations:
 - Insert (key, value)
 - Find (key)
 - Remove (key)

insert(seitz,)

Steve Seitz CSE 592

seitz

anderson
 Richard
 Anderson
 CSE 582

find(anderson), anderson

Richard, Anderson,...

kainby87 HyeIn Kim CSE 220

• ...

The Dictionary ADT is also called the "Map ADT" 4

Dictionary Implementations

insert

find

delete

Unsorted Linked List

Unsorted Array

Sorted Array

Binary Trees

- Binary tree is
 - a root
 - left subtree (maybe empty)
 - right subtree (maybe empty)
- Representation:

Data	
left	right
pointer	pointer

Binary Tree: Representation

Tree Traversals

A traversal is an order for visiting all the nodes of a tree

Three types:

- Pre-order: Root, left subtree, right subtree
- In-order: Left subtree, root, right subtree
- Post-order: Left subtree, right subtree, root

(an expression tree)

Inorder Traversal

```
void traverse(BNode t) {
if (t != NULL)
  traverse (t.left);
 process t.element;
  traverse (t.right);
```

Binary Trees: Special Cases

Full Tree

Binary Tree of height h

Height of a tree: longest path from root to leaf

max # of leaves:

max # of nodes:

min # of leaves:

min # of nodes:

Binary Search Tree Data Structure

- Structural property
 - each node has ≤ 2 children
- Order property
 - all keys in left subtree smaller than root's key
 - all keys in right subtree larger than root's key

Find in BST, Recursive

Runtime:

```
Node Find (Object key,
           Node root) {
if (root == NULL)
  return NULL;
if (key < root.key)</pre>
  return Find(key,
               root.left);
else if (key > root.key)
  return Find (key,
               root.right);
else
  return root;
```

Find in BST, Iterative

```
Node Find (Object key,
          Node root) {
while (root != NULL &&
       root.key != key) {
  if (key < root.key)</pre>
    root = root.left;
  else
    root = root.right;
return root;
```


Runtime:

CSE 332 14

Bonus: FindMin/FindMax

Find minimum

Find maximum

Insert in BST

Insert(13) Insert(8) Insert(31)

Insertions happen only at the leaves – easy!

Runtime:

BuildTree for BST

 Suppose keys 1, 2, 3, 4, 5, 6, 7, 8, 9 are inserted into an initially empty BST.

If inserted in given order, what is the tree? What big-O runtime for this kind of sorted input?

If inserted in reverse order, what is the tree? What big-O runtime for this kind of sorted input?

BuildTree for BST

 Suppose keys 1, 2, 3, 4, 5, 6, 7, 8, 9 are inserted into an initially empty BST.

– If inserted median first, then left median, right median, etc., what is the tree? What is the big-O runtime for this kind of sorted input?

Deletion in BST

Why might deletion be harder than insertion?

Deletion

- Removing an item disrupts the tree structure.
- Basic idea: find the node that is to be removed. Then "fix" the tree so that it is still a binary search tree.
- Three cases:
 - node has no children (leaf node)
 - node has one child
 - node has two children

Deletion – The Leaf Case

Deletion - The One Child Case

Deletion: The Two Child Case

What can we replace 5 with?

Deletion – The Two Child Case

Idea: Replace the deleted node with a value between the two child subtrees

Options:

- succ from right subtree: findMin(t.right)
- pred from left subtree: findMax(t.left)

Now delete the original node containing succ or pred

Leaf or one child case – easy!

Finally...

Original node containing 7 gets deleted

Balanced BST

Observations

- BST: the shallower the better!
- For a BST with n nodes
 - Average depth (averaged over all possible insertion orderings) is O(log n)
 - Worst case maximum depth is O(n)
- Simple cases such as insert(1, 2, 3, ..., n) lead to the worst case scenario

Solution: Require a Balance Condition that

- 1. ensures depth is $O(\log n)$ strong enough!
- 2. is easy to maintain not too strong!