CSE 332: Data Structures and
Parallelism

Fall 2022
Richard Anderson

Lecture 5: Priority Queues, Part I

Priority Queues (or Heaps)

* Manage a set Insert and Delete Min

* Represent the data set as a binary tree
— Property 1: Completeness

* Tree is height |_Iog n.with all leaves as far to the left as
possible (for n elements in Heap)
— Property 2: Heap Condition

* For every non-root node X, the value of the parent of X
is less than or equal to the value of X (in other words,
children are bigger than their parents)

Nodes on level j are
number 2i to 2i*1 - 1

Node j has children
2j and 2j+1

Announcements

* Reading: Weiss, for Wednesday and Friday
— Priority Queues, 6.1-6.5

* P1 Due on Thursday, Oct 13.

* Exercise 2, due next Monday

* Longer term — beyond event horizon
— Midterm, Friday, Nov 4
— P2 due, Thursday, Nov 10

Heap operations, O(log n) time

Mapping a binary tree to an array
(2] Zero indexing

Node j has:

Left child 2j + 1
Right child 2j + 2
Parent |_(j—1)/2J

Why use an array

Insert: 16, 32, 4, 69, 105, 43, 2

Insert Code

int percolateUp(int hole,
int val) {
while (hole > 0 &&

void insert(int v) {
assert (!isFull());

size++; val < Heap[(hole-1)/2])
_ Heap[hole] = Heap[(hole-1)/2];
newPos = hole = (hole-1)/2;

percolateUp (size,v) ;
Heap [newPos] = v; } ST HEros

}

DeleteMin Code

int deleteMin() { int percolateDown (int hole,

. int val) {
assert (!'isEmpty()) ; while (2*hole <= size) {
returnVal = Heap[0]; left = 2*hole + 1;

right = left + 1;

Slze ol if (right < size &&
newPos = Heap[right] < Heap[left])
target = right;
percolateDown (0, else

Heap[size + 1]); target = left;

Heap[newPos] = if (Heap[target] < val) {
Heap[hole] = Heap[target];
hole = target;

}

} else

break;

Heap[size + 1];
return returnval;

return hole;

}

More Priority Queue Operations

decreaseKey(nodePtr, amount):
given a pointer to a node in the queue, reduce its key value

Binary heap: change priority of node and

increaseKey(nodePtr, amount):
given a pointer to a node in the queue, increase its key value

Binary heap: change priority of node and

Still More Priority Queue Operations

remove(objPtr):
given a pointer to an object in the queue, remove it

Binary heap:

findMax():
Find the object with the highest value in the queue

Binary heap:

Building a Heap

‘12‘5‘11‘3‘10‘6‘9‘4‘8‘1‘7‘2‘

BuildHeap: Floyd’s Method

‘12‘5‘11‘3‘10‘6‘9‘4‘8‘1‘7‘2‘

Add elements arbitrarily to form a complete tree.
Pretend it's a heap and fix the heap-order property!

B
Red nodes need
to percolate

/®\ -
P
down @
Key idea: fix red

nodes from @ @
bottom-up

oJolelole)

BuildHeap: Floyd’s Method

A N

Finally . ..

o n
AL

OOOOO

Buildheap pseudocode

private void buildHeap () {
for (int i = currentSize/2; i >= 0; i--)
percolateDown(i);

runtime:

Buildheap Analysis

n/4 nodes percolate at most 1 level
n/8 percolate at most 2 levels
n/16 percolate at most 3 levels

00000

runtime:

The Math: Z i =9

T
1>1
n+lu+lin in n l+‘_ 3 1 on i
1 632" 20248716 2 £ 2P

Heap Sort

HeapSort (int[] A)({
BuildHeap (3) ;
for (int i = A.Length - 1; i >= 0; i--){
A[i] = DeleteMin(A) ;

This version sorts in decreasing order — for increasing order, either reverse the result,
or use a MaxHeap.

Why Heapsort is great

Relatively easy to code
O(n log n) worst case runtime
In place

Elegant use of space to store results as heap
shrinks

