

Announcements

- Reading: Weiss, for Wednesday and Friday – Priority Queues, 6.1-6.5
- Checkpoint for P1 on Thursday.
- Exercise 2, due next Monday
- Quiz section
 - Big OH, Algorithm run time analysis, Heaps

Potential Implementations			
	Insert	DeleteMin	
Unsorted list (Array)			
Unsorted list (Linked list)			
Sorted list (Array)			
Sorted list (Linked list)			
Binary Search Tree			
10/5/2022	CSE 332	9	

DeleteMin Basic Idea: 1. Remove min element (the root) 2. Put "last" leaf node value at root 3. Find smallest child of node 4. Swap node with its smallest child if needed. 5. Repeat steps 3 & 4 until no swaps needed.

<pre>void insert(int v) { assert(!isFull()); size++; newPos = percolateUp(size,v);</pre>	<pre>int percolateUp(int hole,</pre>]) /2];
Heap[newPos] = v;	return hole; }	
10/5/2022	CSE 332	26

$$\begin{array}{l} \text{The Math:} \qquad \sum_{i \ge 1} \frac{i}{2^i} = 2 \\ \\ \frac{n}{4} + \frac{2n}{8} + \frac{3n}{16} + \frac{4n}{32} + \dots = \frac{n}{2} \left[\frac{1}{2} + \frac{2}{4} + \frac{3}{8} + \frac{4}{16} + \dots \right] = \frac{n}{2} \sum_{i \ge 1} \frac{i}{2^i} \\ \\ \\ S = \sum_{i \ge 1} \frac{i}{2^i} = \sum_{i \ge 1} \frac{1}{2^i} + \sum_{i \ge 1} \frac{i-1}{2^i} = 1 + \sum_{i \ge 1} \frac{i-1}{2^i} = 1 + \frac{1}{2} \sum_{i \ge 1} \frac{i-1}{2^{i-1}} \\ \\ \\ \\ = 1 + \frac{1}{2} \sum_{i \ge 0} \frac{i}{2^i} = 1 + \sum_{i \ge 1} \frac{i}{2^i} = 1 + \frac{S}{2^i} \\ \end{array}$$