
1

CSE 332: Data Structures and
Parallelism

Fall 2022

Richard Anderson

Lecture 4: Priority Queues

10/5/2022 CSE 332 1

Announcements

• Reading: Weiss, for Wednesday and Friday

– Priority Queues, 6.1-6.5

• Checkpoint for P1 on Thursday.

• Exercise 2, due next Monday

• Quiz section

– Big OH, Algorithm run time analysis, Heaps

10/5/2022 CSE 332 2

Today

• Priority Queues

• Binary Tree Implementation

• Array implementation

10/5/2022 CSE 332 3

Summary of Monday

• We need a rigorous way of talking about the
performance of an algorithm
– Real world to math world

• Ideas
– Measure run time on an input by counting “steps”

– Run time function for an algorithm, R(n): Worst
case run time on input of size n

– Only consider the rate of growth of run time
functions by ignoring constants with big-Oh

10/5/2022 CSE 332 4

Change of base of logs

Base of the log can be ignored in big-Oh
(provided the base is a constant)

10/5/2022 CSE 332 5

Priority Queues

• Manage a set, with insert item and get highest
priority item

– We will work with “MinHeaps” – where the
smallest key has the highest priority

• Straight forward changes to handle MaxHeaps

– This is interesting in the case where inserts and
selects are intermixed

10/5/2022 CSE 332 6

2

Priority Queue ADT

• Need a new ADT

• Operations: Insert an Item,

Remove the “Best” Item

insert deleteMin

6 2
15 23

12 18
45 3
7

10/5/2022 CSE 332 7

Priority Queue ADT

1. PQueue data : collection of data with priority

2. PQueue operations

– insert

– deleteMin

(also: create, destroy, is_empty)

3. PQueue property: if x has a smaller key than

y, x will be returned before y

10/5/2022 CSE 332 8

Potential Implementations

Insert DeleteMin

Unsorted list (Array)

Unsorted list (Linked list)

Sorted list (Array)

Sorted list (Linked list)

Binary Search Tree

10/5/2022 CSE 332 9

Binary Heap data structure

• Binary Heap (a kind of binary tree) for priority

queues:

– O(log n) worst case for both insert and deleteMin

• It’s optimized for priority queues. Lousy for some

other types of operations (e.g., searching)

10/5/2022 CSE 332 10

Tree Review

A

E

B

D F

C

G

IH

LJ MK N

root(T): A

leaves(T): D-F, I-N

children(B): D-F

parent(H): G

siblings(E): D,F

ancestors(F):

descendants(G):

subtree(C):

Tree T

10/5/2022 CSE 332 11

More Tree Terminology

10/5/2022 CSE 332 12

depth(B):

height(G):

height(T):

degree(B):

branching
factor(T):

n-ary tree:

A

E

B

D F

C

G

IH

LJ MK N

Tree T

3

Binary Heap Properties

A binary heap is a binary tree with two important

properties that make it a good choice for priority

queues:

1. Completeness

2. Heap Order

10/5/2022 CSE 332 13

Completeness

A binary heap is a complete binary tree

All levels are full, except the bottom, which is
filled to the right

Completeness guarantees that heap with n
items is a tree with height log n

10/5/2022 CSE 332 14

Heap Order Property

10/5/2022 CSE 332 15

For every non-root node X, the value of the parent of
X is less than or equal to the value of X

2030

8015

10

996040

8020

10

50 700

85

Heap Operations

• Main operations: insert, deleteMin

• Key is to maintain

– Completeness

– Heap Order

• Basic idea is to propagate changes

up/down the tree, fixing order as we go

10/5/2022 CSE 332 16

Insert (val)

• Create a new leaf at the bottom of the tree for
val

• Percolate up by exchange with parent as long
as is needed

10/5/2022 CSE 332 17

Insert: Percolate Up

10/5/2022 CSE 332 18

996040

8020

10

50 700

85

65 15

992040

8015

10

50 700

85

65 60

4

DeleteMin

Basic Idea:

1. Remove min element (the root)

2. Put “last” leaf node value at root

3. Find smallest child of node

4. Swap node with its smallest child if needed.

5. Repeat steps 3 & 4 until no swaps needed.

10/5/2022 CSE 332 19

DeleteMin: Percolate Down

10/5/2022 CSE 332 20

996040

1520

10

50 700

85

65

DeleteMin: percolate down

996040

6520

15

50 700

85

10/5/2022 CSE 332 21

Correctness Proofs

• Show operations preserve heap properties

• Insert
– Complete tree

– Parent smaller than children

• DeleteMin
– Return smallest element

– Complete tree

– Parent smaller than children

4/6/2022 CSE 332 22

CSE 332 23

16 17

8

18 19

9

4

20 21

10

22 23

11

5

2

24 25

12

26 27

13

6

28 29

14

30 31

15

7

3

1

32 33

Nodes on level j are
number 2j to 2j+1 - 1

Node j has children
2j and 2j+1

Mapping a binary tree to an array
Zero indexing

24

7 8

3

9 10

4

1

11 12

5

13 14

6

2

0

15 16

Node j has:

Left child 2j + 1

Right child 2j + 2

Parent (j-1)/2

5

Why use an array

4/6/2022 CSE 332 25

Insert Code

10/5/2022 CSE 332 26

void insert(int v) {

assert(!isFull());

size++;

newPos =

percolateUp(size,v);

Heap[newPos] = v;

}

int percolateUp(int hole,

int val) {

while (hole > 0 &&

val < Heap[(hole-1)/2])

Heap[hole] = Heap[(hole-1)/2];

hole = (hole-1)/2;

}

return hole;

}

DeleteMin Code

10/5/2022 CSE 332 27

int deleteMin() {

assert(!isEmpty());

returnVal = Heap[0];

size--;

newPos =

percolateDown(0,

Heap[size + 1]);

Heap[newPos] =

Heap[size + 1];

return returnVal;

}

int percolateDown(int hole,

int val) {

while (2*hole <= size) {

left = 2*hole + 1;

right = left + 1;

if (right ≤ size &&

Heap[right] < Heap[left])

target = right;

else

target = left;

if (Heap[target] < val) {

Heap[hole] = Heap[target];

hole = target;

}

else

break;

}

return hole;

}

0 1 2 3 4 5 6 7 8

Insert: 16, 32, 4, 69, 105, 43, 2

4/6/2022 CSE 332 28

More Priority Queue Operations

decreaseKey(nodePtr, amount):
given a pointer to a node in the queue, reduce its key value

Binary heap: change priority of node and ________________

increaseKey(nodePtr, amount):
given a pointer to a node in the queue, increase its key value

Binary heap: change priority of node and ________________

10/5/2022 CSE 332 29

Still More Priority Queue Operations

remove(objPtr):
given a pointer to an object in the queue, remove it

Binary heap: ______________________________________

findMax():
Find the object with the highest value in the queue

Binary heap: ______________________________________

10/5/2022 CSE 332 30

6

Building a Heap

5 11 3 10 6 9 4 8 1 7 212

4/6/2022 CSE 332 31

BuildHeap: Floyd’s Method

Add elements arbitrarily to form a complete tree.
Pretend it’s a heap and fix the heap-order property!

27184

96103

115

12
Red nodes need
to percolate
down

Key idea: fix red
nodes from
bottom-up

5 11 3 10 6 9 4 8 1 7 212

4/6/2022 CSE 332 32

BuildHeap: Floyd’s Method

67184

92103

115

12

671084

9213

115

12

1171084

9613

25

12

1171084

9653

21

12

4/6/2022 CSE 332 33

Finally . . .

4/6/2022 CSE 332 34

11710812

9654

23

1

Buildheap pseudocode

private void buildHeap() {

for (int i = currentSize/2; i >= 0; i--)

percolateDown(i);

}

runtime:

4/6/2022 CSE 332 35

Buildheap Analysis

n/4 nodes percolate at most 1 level

n/8 percolate at most 2 levels

n/16 percolate at most 3 levels

...

runtime:

4/6/2022 CSE 332 36

7

The Math:

4/6/2022 CSE 332 37

