
Name:

7. You are designing a new social-networking site to take over the world. To handle all the volume you
expect, you want to support multiple threads with a fine-grained locking strategy in which each user’s
profile is protected with a different lock. At the core of your system is this simple class definition:

class UserProfile {
static int id_counter;
int id; // unique for each account
int[] friends = new int[9999]; // horrible style
int numFriends;
Image[] embarrassingPhotos = new Image[9999];
UserProfile() { // constructor for new profiles
id = id_counter++;
numFriends = 0;

}
synchronized void makeFriends(UserProfile newFriend) {

synchronized(newFriend) {
if(numFriends == friends.length

|| newFriend.numFriends == newFriend.friends.length)
throw new TooManyFriendsException();

friends[numFriends++] = newFriend.id;
newFriend.friends[newFriend.numFriends++] = id;

}
}
synchronized void removeFriend(UserProfile frenemy) {

...
}

}

(a) The constructor has a concurrency error. What is it and how would you fix it? A short English
anwser is enough – no code or details required.

(b) The makeFriends method has a concurrency error. What is it and how would you fix it? A short
English anwser is enough – no code or details required.

(c) Rather than throwing an exception in makeFriends if an array is full, give two alternatives.
Describe them only at a high level – a sentence or two is enough – without getting into any code
details. One alternative should be easy and have nothing to do with concurrency. The other
should involve concurrency.

Solution:

(a) There is a data race on id_counter. Two accounts could get the same id if they are created
simultaneously by different threads. Or even stranger things could happen. You could synchronize
on a lock for id_counter or mark id_counter volatile.

(b) There is a potential deadlock if there are two objects obj1 and obj2 and one thread calls
obj1.makeFriends(obj2) when another thread calls obj2.makeFriends(obj1). The fix is to
acquire locks in a consistent order based on the id fields, which are unique.

(c) First, you could resize the array. Second, you could use condition variables to wait until there is
room in the array and have removeFriend call notifyAll.
Note from instructor, not necessary for the exam: Getting this right is rather difficult
since you need room in both arrays but it would be inefficient and deadlock-prone to wait on one
object while still holding the lock for the other. Something like this pseudocode should work:

8

Hamsa Shankar

Maggie Jiang

Hamsa Shankar

Hamsa Shankar
0.

Maggie Jiang

Maggie Jiang
Section 8: Concurrency (Solutions)

Maggie Jiang

Maggie Jiang
.

8 of 13

6) [12 points] Concurrency: The BubbleTea class manages a bubble tea order assembled by

multiple workers. Multiple threads could be accessing the same BubbleTea object. Assume the

Stack objects ARE THREAD-SAFE, have enough space, and operations on them will not throw

an exception.

public class BubbleTea {

 private Stack<String> drink = new Stack<String>();

 private Stack<String> toppings = new Stack<String>();

 private final int maxDrinkAmount = 8;

 ReentrantLock drinkLock = new ReentrantLock();

 // Checks if drink has capacity

 public boolean hasCapacity() {

 return drink.size() < maxDrinkAmount;

 }

 // Adds liquid to drink

 public void addLiquid(String liquid) {

 drinkLock.acquire();

 if (hasCapacity()) {

 if (liquid.equals("Milk")) {

 while (hasCapacity()) {

 drink.push("Milk");

 }

} else {

 drink.push(liquid);

 }

 }

 drinkLock.release();

 }

 // Adds newTop to list of toppings to add to drink

 public void addTopping(String newTop) {

 if (newTop.equals("Boba") || newTop.equals("Tapioca")) {

 toppings.push("Bubbles");

 } else {

 toppings.push(newTop);

 }

 }

}

Hamsa Shankar

Hamsa Shankar

Hamsa Shankar

Hamsa Shankar

Hamsa Shankar

Hamsa Shankar

Hamsa Shankar

Hamsa Shankar

Hamsa Shankar
1.

 9 of 13

6) (Continued)

a) Does the BubbleTea class above have (circle all that apply):

a race condition, potential for deadlock, a data race, none of these

If there are any problems, give an example of when those problems could occur. Be specific!

Assuming stack is thread-safe, a race condition still exists. If two threads attempt to call

addLiquid() at the same time, they could potentially both pass the hasCapacity() test

with a value of 7 for drink.size(). Then both threads would be free to attempt to push

onto the drink stack, exceeding maxDrinkAmount.

Although this is not a data race, since a thread-safe stack can’t be modified from two

threads at the same time, it is definitely a bad interleaving (because exceeding

maxDrinkAmount violates the expected behavior of the class).

b) Suppose we made the addTopping method synchronized, and changed nothing else in the

code. Does this modified BubbleTea class above have (circle all that apply):

a race condition, potential for deadlock, a data race, none of these

If there are any FIXED problems, describe why they are FIXED. If there are any NEW

problems, give an example of when those problems could occur. Be specific!

Assuming stack is thread-safe, a race condition still exists as described above.

This change does reduce the effective concurrency in the code, however, so it actually

makes thing slightly worse.

c) Modify the code on the previous page to use locks to allow the most concurrent access and

to avoid all of the potential problems listed above. For full credit you must allow the most

concurrent access possible without introducing any errors. Create locks as needed. Use any

reasonable names for the locking methods you call. DO NOT use synchronized. You should

create re-entrant lock objects as follows:

ReentrantLock lock = new ReentrantLock();

d) Clearly circle all of the critical sections in your code on the previous page. DON’T FORGET

Hamsa Shankar

Hamsa Shankar

8 of 12

6) [12 points total] Concurrency: The PhoneMonitor class tries to help manage how

much you use your cell phone each day. Multiple threads can access the same PhoneMonitor

object. Remember that synchronized gives you reentrancy.
 1

public class PhoneMonitor { 2

 private int numMinutes = 0; 3

 private int numAccesses = 0; 4

 private int maxMinutes = 200; 5

 private int maxAccesses = 10; 6

 private boolean phoneOn = true; 7

 private Object accessesLock = new Object(); 8

 private Object minutesLock = new Object(); 9
 10

 public void accessPhone(int minutes) { 11
 12

 if (phoneOn) { // for part c REMOVE this line 13

 14

 synchronized (accessesLock) { 15

 16

 synchronized (minutesLock) { 17
 18

 if (phoneOn) { // for part c ADD this line 19

 20

 numAccesses++; 21

 numMinutes += minutes; 22

 checkLimits(); 23

 } 24

 } 25

 } 26

 } 27
 28

 private void checkLimits() { 29
 30

 synchronized (minutesLock) { // for part c swap line 31 & 33 31

 32

 synchronized (accessesLock) { 33
 34

 if ((numAccesses >= maxAccesses) || 35

 (numMinutes >= maxMinutes)) { 36

 phoneOn = false; 37

 } 38

 } 39

 } 40

 } 41

} 42

a) [4 pts] Does the PhoneMonitor class as shown above have (circle all that apply):

a race condition, potential for deadlock, a data race, none of these

Justify your answer. Refer to line numbers in your explanation. Be specific!

There is a data race on phoneOn. Thread 1 (not needing to hold any locks) could be at line

13 reading phoneOn, while Thread 2 is at line 35 (holding both of the locks) writing

phoneOn. A data race is by definition a type of race condition.

Maggie Jiang

Maggie Jiang

Maggie Jiang

Maggie Jiang

Maggie Jiang

Maggie Jiang

Maggie Jiang

Maggie Jiang

Maggie Jiang

Maggie Jiang

Maggie Jiang

Maggie Jiang

Maggie Jiang
if (phoneOn) {

Maggie Jiang

Maggie Jiang

Maggie Jiang
2)

Maggie Jiang

Maggie Jiang

Maggie Jiang

Maggie Jiang

Maggie Jiang

 9 of 12

6) (Continued)

b) [4 pts] Suppose we made the checkLimits method public, and changed nothing else in the

code. Does this modified PhoneMonitor class have (circle all that apply):

a race condition, potential for deadlock, a data race, none of these

If there are any FIXED problems, describe why they are FIXED. If there are any NEW

problems, give an example of when those problems could occur. Refer to line numbers in your

explanation. Be specific!

The same data race still exists, and thus so does the race condition.

By making checkLimits method public, it is possible for Thread 1 to call accessPhone

and be at line 17 holding the accessesLock lock and trying to get the minutesLock lock.

Thread 2 could now call checkLimits and be at line 31, holding the minutesLock lock

and trying to get the accessesLock lock

c) [4 pts] Assuming the checkLimits method is now public, add these two methods to the

class:

public int increaseMaxMinutes(int minutes) {

 synchronized(minutesLock) { // for part c add this

 maxMinutes += minutes;

 return maxMinutes;

 }

}

public int increaseMaxAccesses(int accesses) {

 synchronized(accessesLock) { // for part c add this

 maxAccesses += accesses;

 return maxAccesses;

 }

}

Now modify the code above and on the previous page to allow the most concurrent access and

to avoid all of the potential concurrency problems listed above. Use only synchronized

statements or methods. Create other objects or fields as needed. For full credit you must allow

the most concurrent access possible without introducing any of the synchronization

problems listed above.

Maggie Jiang

Maggie Jiang

Maggie Jiang
2)

Maggie Jiang

Maggie Jiang

