
Name:

7. You are designing a new social-networking site to take over the world. To handle all the volume you
expect, you want to support multiple threads with a fine-grained locking strategy in which each user’s
profile is protected with a different lock. At the core of your system is this simple class definition:

class UserProfile {
static int id_counter;
int id; // unique for each account
int[] friends = new int[9999]; // horrible style
int numFriends;
Image[] embarrassingPhotos = new Image[9999];
UserProfile() { // constructor for new profiles
id = id_counter++;
numFriends = 0;

}
synchronized void makeFriends(UserProfile newFriend) {

synchronized(newFriend) {
if(numFriends == friends.length

|| newFriend.numFriends == newFriend.friends.length)
throw new TooManyFriendsException();

friends[numFriends++] = newFriend.id;
newFriend.friends[newFriend.numFriends++] = id;

}
}
synchronized void removeFriend(UserProfile frenemy) {

...
}

}

(a) The constructor has a concurrency error. What is it and how would you fix it? A short English
anwser is enough – no code or details required.

(b) The makeFriends method has a concurrency error. What is it and how would you fix it? A short
English anwser is enough – no code or details required.

(c) Rather than throwing an exception in makeFriends if an array is full, give two alternatives.
Describe them only at a high level – a sentence or two is enough – without getting into any code
details. One alternative should be easy and have nothing to do with concurrency. The other
should involve concurrency.

8

Hamsa Shankar

Hamsa Shankar

Hamsa Shankar
0.

Hamsa Shankar

Maggie Jiang

Maggie Jiang
Section 8: Concurrency

8 of 14

6) [12 points] Concurrency: The BubbleTea class manages a bubble tea order assembled by

multiple workers. Multiple threads could be accessing the same BubbleTea object. Assume the

Stack objects ARE THREAD-SAFE, have enough space, and operations on them will not throw

an exception.

public class BubbleTea {

 private Stack<String> drink = new Stack<String>();

 private Stack<String> toppings = new Stack<String>();

 private final int maxDrinkAmount = 8;

 // Checks if drink has capacity

 public boolean hasCapacity() {

 return drink.size() < maxDrinkAmount;

 }

 // Adds liquid to drink

 public void addLiquid(String liquid) {

 if (hasCapacity()) {

 if (liquid.equals("Milk")) {

 while (hasCapacity()) {

 drink.push("Milk");

 }

} else {

 drink.push(liquid);

 }

 }

 }

 // Adds newTop to list of toppings to add to drink

 public void addTopping(String newTop) {

 if (newTop.equals("Boba") || newTop.equals("Tapioca")) {

 toppings.push("Bubbles");

 } else {

 toppings.push(newTop);

 }

 }

}

Maggie Jiang

Maggie Jiang

Maggie Jiang
1)

 9 of 14

6) (Continued)

a) Does the BubbleTea class above have (circle all that apply):

a race condition, potential for deadlock, a data race, none of these

If there are any problems, give an example of when those problems could occur. Be specific!

b) Suppose we made the addTopping method synchronized, and changed nothing else in the

code. Does this modified BubbleTea class above have (circle all that apply):

a race condition, potential for deadlock, a data race, none of these

If there are any FIXED problems, describe why they are FIXED. If there are any NEW

problems, give an example of when those problems could occur. Be specific!

c) Modify the code on the previous page to use locks to allow the most concurrent access and

to avoid all of the potential problems listed above. For full credit you must allow the most

concurrent access possible without introducing any errors. Create locks as needed. Use any

reasonable names for the locking methods you call. DO NOT use synchronized. You should

create re-entrant lock objects as follows:

ReentrantLock lock = new ReentrantLock();

d) Clearly circle all of the critical sections in your code on the previous page. DON’T FORGET

Maggie Jiang

Maggie Jiang

Maggie Jiang
1)

8 of 12

6) [12 points total] Concurrency: The PhoneMonitor class tries to help manage how much

you use your cell phone each day. Multiple threads can access the same PhoneMonitor object.

Remember that synchronized gives you reentrancy.
 1

public class PhoneMonitor { 2

 private int numMinutes = 0; 3

 private int numAccesses = 0; 4

 private int maxMinutes = 200; 5

 private int maxAccesses = 10; 6

 private boolean phoneOn = true; 7

 private Object accessesLock = new Object(); 8

 private Object minutesLock = new Object(); 9
 10

 public void accessPhone(int minutes) { 11
 12

 if (phoneOn) { 13
 14

 synchronized (accessesLock) { 15
 16

 synchronized (minutesLock) { 17
 18

 numAccesses++; 19

 numMinutes += minutes; 20

 checkLimits(); 21

 } 22

 } 23

 } 24

 } 25
 26

 private void checkLimits() { 27
 28

 synchronized (minutesLock) { 29
 30

 synchronized (accessesLock) { 31
 32

 if ((numAccesses >= maxAccesses) || 33

 (numMinutes >= maxMinutes)) { 34

 phoneOn = false; 35

 } 36

 } 37

 } 38

 } 39

} 40

a) [4 pts] Does the PhoneMonitor class as shown above have (circle all that apply):

a race condition, potential for deadlock, a data race, none of these

Justify your answer. Refer to line numbers in your explanation. Be specific!

Maggie Jiang

Maggie Jiang

Maggie Jiang
2)

Maggie Jiang

Maggie Jiang

Maggie Jiang

 9 of 12

6) (Continued)

b) [4 pts] Suppose we made the checkLimits method public, and changed nothing else in the

code. Does this modified PhoneMonitor class have (circle all that apply):

a race condition, potential for deadlock, a data race, none of these

If there are any FIXED problems, describe why they are FIXED. If there are any NEW

problems, give an example of when those problems could occur. Refer to line numbers in your

explanation. Be specific!

c) [4 pts] Assuming the checkLimits method is now public, add these two methods to the

class:

public int increaseMaxMinutes(int minutes) {

 maxMinutes += minutes;

 return maxMinutes;

}

public int increaseMaxAccesses(int accesses) {

 maxAccesses += accesses;

 return maxAccesses;

}

Now modify the code above and on the previous page to allow the most concurrent access and

to avoid all of the potential concurrency problems listed above. Use only synchronized

statements or methods. Create other objects or fields as needed. For full credit you must allow

the most concurrent access possible without introducing any of the synchronization

problems listed above.

Maggie Jiang

Maggie Jiang

Maggie Jiang
2)

Maggie Jiang

