CSE 332: Data Structures and Parallelism

Section 4: Balanced Trees Solutions

$\mathbf{0}$. The $A \mathbf{B C}$'s of $A \mathbf{V L}$ Trees

What are the constraints on the data types you can store in an AVL tree? When is an AVL tree preferred over another dictionary implementation, such as a HashMap?

Solution:

AVL trees are similar to TreeMaps. The constraint is that they require that keys be comparable. The value type can be anything, just like any other dictionary.
A perk over HashMaps is that keys can be iterated over in sorted order. AVL trees are also preferred over BSTs when there's a possibility of sorted input because the balancing prevents the worst case of a degenerate tree.

1. Let's Plant an AVL Tree.

Insert 10, 4, 5, 8, 9, 6, 11, 3, 2, 1, 14 into an initially empty AVL Tree.

Solution:

2. MinVL Trees

Draw an AVL tree of height 4 that contains the minimum possible number of nodes.
Solution:

3. AVL Trees

Insert 6, 5, 4, 3, 2, 1, 10, 9, 8, 7 into an initially empty AVL Tree.
Solution:

4. The $\mathbf{A} B \mathbf{C}$'s of B-Trees

(a) What properties must a B -tree of n values have with given values for M and L ?

Solution:

(a) B-Tree order property:
i. Every subtree between keys a and b contains all data x where $a \leq x<b$
ii. The values in the leaves are in key sorted order
iii. The keys in the internal nodes are stored in sorted order
(b) B-Tree structure property:
i. If $n \leq L$, the root is a leaf with n values, otherwise the root is an internal node that must have between 2 and M children
ii. All internal nodes must have between $\left\lceil\frac{M}{2}\right\rceil$ and M children (i.e., half-full)
iii. All leaf nodes must have between $\left\lceil\frac{L}{2}\right\rceil$ and L key-value pairs (i.e., half-full)
iv. All leaf nodes must be at the same depth
(b) Give an example of a situation that would be a good job for a B-tree. Furthermore, are there any constraints on the data that B-trees can store?

Solution:

B-trees are most appropriate for very, very large data stores, like databases, where the majority of the data lives on disk and cannot possibly fit into RAM all at once.
B-trees require orderable keys. B-trees are typically not implemented in Java because because what makes them worthwhile is their precise management of memory.

5. Implement a B-Tree? Nah, Let's Analyze!

Given the following parameters for a B-Tree with a page size of 256 bytes:

- Key Size $=8$ bytes
- Pointer Size $=2$ bytes
- Data Size $=14$ bytes per record (includes the key)

Assuming that M and L were chosen appropriately, what are M and L ? Recall that M is defined as the maximum number of pointers in an internal node, and L is defined as the maximum number of values in a leaf node. Give a numeric answer and a short justification based on two equations using the parameter values above.

Solution:

We start by defining the following variables.

- 1 page on disk is b bytes
- Keys are k bytes
- Pointers are t bytes
- Key/Value pairs are v bytes

We know that the amount of memory used by one leaf node is $v L$ and the amount of memory used by one internal node is $t M+k(M-1)$. We want select values for M and L such that both equations are $\leq b$.
If we solve both equations for M and L, we obtain $M=\left\lfloor\frac{b+k}{t+k}\right\rfloor$ and $L=\left\lfloor\frac{b}{v}\right\rfloor$
Plugging in the given values, we get $M=\left\lfloor\frac{256+8}{2+8}\right\rfloor=26$ and $L=\left\lfloor\frac{256}{14}\right\rfloor=18$

6. Oh, B-Trees

Find a tight upper bound on the worst case runtime of these operations on a B-tree. Your answers should be in terms of L, M, and n.
(a) Insert a key-value pair
(b) Look up the value of a key
(c) Delete a key-value pair

Solution:

Insertion, Deletion The steps for insert and delete are similar and have the same worst case runtime.
(a) Find the leaf: $\mathcal{O}\left(\lg (M) \log _{M}(n)\right)$. (For more details, see the next solution.)
(b) Insert/remove in the leaf - there are L elements, essentially stored in an array: $\mathcal{O}(L)$
(c) Split a leaf/merge neighbors: $\mathcal{O}(L)$
(d) Split/merge parents, in the worst case going up to the root: $\mathcal{O}\left(M \log _{M}(n)\right)$

The total cost is then $\lg (M) \log _{M}(n)+2 L+M \log _{M}(n)$.
We can simplify this to a worst-case runtime $\mathcal{O}\left(L+M \log _{M}(n)\right)$ by combining constants and observing that $M \log _{M}(n)$ dominates $\lg (M) \log _{M}(n)$. Note that in the average case, splits for any reasonably-sized B-tree are rare, so we can amortize the work of splitting over many operations.
However, if we're using a B-tree, it's because what concerns us the most is the penalty of disk accesses. In that case, we might find it more useful to look at the worst-case number of disk lookup operations in the B-tree, which is $\mathcal{O}\left(\log _{M}(n)\right)$.

Look up (a) We must do a binary search on a node containing M pointers, which takes $\mathcal{O}(\lg (M))$ time, once at each level of the tree.
(b) There are $\mathcal{O}\left(\log _{M}(n)\right)$ levels.
(c) We must do a binary search on a leaf of L elements, which takes $\mathcal{O}(\lg (L))$ time.
(d) Putting it all together, a tight bound on the runtime is $\mathcal{O}\left(\lg (M) \log _{M}(n)+\lg (L)\right)$.

7. B-Trees

(a) Insert the following into an empty B-Tree with $M=3$ and $L=3: 12,24,36,17,18,5,22,20$.

Solution:

(b) Delete 17, 12, 22, 5, 36

Solution:

18
20
24
(c) Given the following parameters for a B-Tree with $M=11$ and $L=8$

- Key Size = 10 bytes
- Pointer Size $=2$ bytes
- Data Size $=16$ bytes per record (includes the key)

Assuming that M and L were chosen appropriately, what is the likely page size on the machine where this implementation will be deployed? Give a numeric answer and a short justification based on two equations using the parameter values above.

Solution:

We use the following two equations to find M and L to fit as best as possible in the page size, where:

- 1 page on disk is p bytes
- Keys are k bytes
- Pointers are t bytes
- Key/Value pairs are v bytes
$M=\left\lfloor\frac{p+k}{t+k}\right\rfloor$ and $L=\left\lfloor\frac{p}{v}\right\rfloor$
Plugging in the given values, we get:
$M=\left\lfloor\frac{p+10}{2+10}\right\rfloor$ and $L=\left\lfloor\frac{p}{16}\right\rfloor$
And solving for p gives us an answer of 128 bytes.

8. It's Fun to B-Trees!

(a) Insert the following into an empty B-Tree with $M=3$ and $L=3: 3,32,9,26,6,21,8,4,5,30,31$.

Solution:

(b) Delete $4,5,21,9,31,3,26,8$

Solution:

