CSE 332: Data Structures and Parallelism

Section 2: Heaps and Asymptotics Solutions

0. Big-Oh Proofs

For each of the following, prove that $f \in \mathcal{O}(g)$.
(a)

$$
f(n)=7 n
$$

$$
g(n)=\frac{n}{10}
$$

Solution:

Recall that $f \in \mathcal{O}(g)$ is true if and only if there exists some constant c and some constant $n_{0}>0$ such that for all $n \geq n_{0}$, the expression $f(n) \leq c \cdot g(n)$ is true by definition of $\operatorname{Big}-\mathcal{O}$.
Now, we choose $c=70, n_{0}=1$. We must now show that $f(n) \leq 70 \cdot g(n)$ is true for all $n \geq 1$.
By chaining inequalities together, we see that if $n \geq 1$, then $f(n)=7 n \leq 70 * \frac{n}{10}=c g(n)$. This proves the claim, so we conclude that $f(n) \in O(g(n))$
(b)

$$
f(n)=1000 \quad g(n)=3 n^{3}
$$

Solution:

We follow the same approach as above.
We choose $c=1, n_{0}=1000$, and so must show that $1000 \leq 1 \cdot 3 n^{3}$ for all $n \geq 1000$.
Now, note that for all $n \geq 1000$ the inequalities $1000 \leq n, n \leq n^{3}$, and $n^{3} \leq 3 n^{3}$ are always true.
By chaining the inequalities together, we see that $f(n)=1000 \leq n \leq n^{3} \leq 3 n^{3}=c \cdot g(n)$ for all $n \geq 1000$ and so conclude that $f \in \mathcal{O}(g)$ is true.
(c)

$$
f(n)=7 n^{2}+3 n \quad g(n)=n^{4}
$$

Solution:

We choose $c=10, n_{0}=1$. Then, note that $f(n)=7 n^{2}+3 n \leq 7 n^{4}+3 n^{4} \leq 10 n^{4}=c \cdot g(n)$ for all $n \geq 1$. So, we conclude that $f \in \mathcal{O}(g)$ is true.
(As before, we construct and chain inequalities to establish a relationship between f and g).
(d)

$$
f(n)=n+2 n \lg n \quad g(n)=n \lg n
$$

Solution:

Choose $c=3, n_{0}=2$. Then, note that $f(n)=n+2 n \lg n \leq n \lg n+2 n \lg n=3 n \lg n=c \cdot g(n)$ for all $n \geq 2$. This is because when $n=2, \lg _{2}(n)=1$. So, we conclude that $f \in \mathcal{O}(g)$ is true.

1. Is Your Program Running? Better Catch It!

For each of the following, determine the tight $\Theta(\cdot)$ bound for the worst-case runtime in terms of the free variables of the code snippets.
(a)

```
int x = 0
for (int i = n; i >= 0; i--) {
    if ((i % 3) == 0) {
        break
    }
    else {
        x += n
    }
}
```

```
int x = 0
```

int x = 0
for (int i = 0; i < n; i++) {
for (int i = 0; i < n; i++) {
for (int j = 0; j < (n * n / 3); j++) {
for (int j = 0; j < (n * n / 3); j++) {
x += j
x += j
}
}
}

```
}
```

(b)
(c)

```
int x = 0
for (int i = 0; i < n; i++) {
    for (int j = 0; j < i; j++) {
        x += j
    }
}
```

```
int x = 0
```

int x = 0
for (int i = 0; i < n; i++) {
for (int i = 0; i < n; i++) {
if (n < 100000) {
if (n < 100000) {
for (int j = 0; j < i * i * n; j++) {
for (int j = 0; j < i * i * n; j++) {
x += 1
x += 1
}
}
} else {
} else {
x += 1
x += 1
}
}
}

```
}
```

(d)

Solution:

This is $\Theta(1)$ because exactly one of $n, n-1$, or $n-2$ will be divisible by three for all possible values of n. So, the loop runs at most 3 times.

Solution:

We can model the worst-case runtime as: $\sum_{i=0}^{n-1} \sum_{j=0}^{n^{2} / 3-1} 1$. This simplifies to: $\sum_{i=0}^{n-1} \sum_{j=0}^{n^{2} / 3-1} 1=$ $\sum_{i=0}^{n-1} \frac{n^{2}}{3}=n\left(\frac{n^{2}}{3}\right)=\frac{n^{3}}{3}$. So, the worst-case runtime is $\Theta\left(n^{3}\right)$.

Solution:

We can model the worst case runtime as $\sum_{i=0}^{n-1} \sum_{j=0}^{i-1} 1$ which simplifies to $\sum_{i=0}^{n-1} i=\left(\frac{n(n-1)}{2}\right)$. So, the worst-case runtime is $\Theta\left(n^{2}\right)$

Solution:

Recall that when computing the asymptotic complexity, we only care about the behavior as the input goes to infinity. Once n is large enough, we will only execute the second branch of the if statement, which means the runtime of the code can be modeled as $\sum_{i=0}^{n-1} 1=n$. So, the worst-case runtime is $\Theta(n)$.

Solution:

We know the runtime of the outer-most loop is $\sum_{i=0}^{n-1} ?$, where? is the (currently unknown) runtime of the middle and inner-most loops. We also know the
(e)

```
int x = 0
```

int x = 0
for (int i = 0; i < n; i++) {
for (int i = 0; i < n; i++) {
if (i % 5 == 0) {
if (i % 5 == 0) {
for (int j = 0; j < n; j++) {
for (int j = 0; j < n; j++) {
if (i == j) {
if (i == j) {
for (int k = 0; k < n; k++) {
for (int k = 0; k < n; k++) {
x += i * j * k
x += i * j * k
}
}
}
}
}
}
}
}
}

```
}
``` middle loop by itself has a runtime of \(\sum_{j=0}^{n-1} ?\) and runs only a fifth of the time. Therefore, we can refine our model to \(\sum_{i=0}^{n-1} \frac{1}{5}\left(\sum_{j=0}^{n-1} ?\right)\).
Now, note that the inner-most if statement is true exactly only once per each iteration of the middle loop. So, we can refine our model of the runtime to \(\sum_{i=0}^{n-1} \frac{1}{5}\left(\left(\sum_{j=0}^{n-1} 1\right)+\left(\sum_{k=0}^{n-1} 1\right)\right)\) which simplifies to \(\sum_{i=0}^{n-1} \frac{2 n}{5}=\frac{2 n^{2}}{5}\). Therefore, the worst- case asymptotic runtime will be \(\Theta\left(n^{2}\right)\).

\section*{2. Asymptotics Analysis}

Consider the following method which finds the number of unique Strings within a given array of length \(n\).
```

int numUnique(String[] values) {
boolean[] visited = new boolean[values.length]
for (int i = 0; i < values.length; i++) {
visited[i] = false
}
int out = 0
for (int i = 0; i < values.length; i++) {
if (!visited[i]) {
out += 1
for (int j = i; j < values.length; j++) {
if (values[i].equals(values[j])) {
visited[j] = true
}
}
}
}
return out;
}

```

Determine the tight \(\mathcal{O}(\cdot), \Omega(\cdot)\), and \(\Theta(\cdot)\) bounds of each function below. If there is no \(\Theta(\cdot)\) bound, explain why. Start by (1) constructing an equation that models each function then (2) simplifying and finding a closed form.
(a) \(f(n)=\) the worst-case runtime of numUnique

\section*{Solution:}

In the worst case, the array will contain entirely unique strings and so must run the inner loop \(n\) times.
So, \(f(n)=\sum_{i=0}^{n-1} 1+\sum_{i=0}^{n-1} \sum_{j=i}^{n-1} 1=n+\frac{n(n+1)}{2}\) which means \(f \in \mathcal{O}\left(n^{2}\right), f \in \Omega\left(n^{2}\right)\), and \(f \in \Theta\left(n^{2}\right)\).
(b) \(g(n)=\) the best-case runtime of numUnique

\section*{Solution:}

In the best case, the array will contain the exact same string repeated \(n\) times, causing the inner loop to run only once.
So, \(g(n)=\sum_{i=0}^{n-1} 1+\sum_{i=0}^{n-1} 1+\sum_{j=0}^{n-1} 1=3 n\) which means \(g \in \mathcal{O}(n), g \in \Omega(n)\), and \(g \in \Theta(n)\).
(c) \(h(n)=\) the amount of memory used by numUnique (the space complexity)

\section*{Solution:}
numUnique will create a boolean array of length \(n\) and allocate a few extra variables, which take up a constant and therefore negliable amount of memory.
So, \(h(n)=n+k\) (where \(k\) is some constant) which means \(h \in \mathcal{O}(n), h \in \Omega(n)\), and \(h \in \Theta(n)\).

\section*{3. Oh Snap!}

For each question below, explain what's wrong with the provided answer. The problem might be the reasoning, the conclusion, or both!
(a) Determine the tight \(\Theta(\cdot)\) bound for the worst-case runtime of the following piece of code:
```

public static int waddup(int n) {
if (n > 10000) {
return n
} else {
for (int i = 0; i < n; i++) {
System.out.println("It's dat boi!")
}
return 0
}
}

```

Bad answer: The runtime of this function is \(\mathcal{O}(n)\), because when searching for an upper bound, we always analyze the code branch with the highest runtime. We see the first branch is \(\mathcal{O}(1)\), but the second branch is \(\mathcal{O}(n)\).

\section*{Solution:}

The tightest upper bound is \(\mathcal{O}(1)\), not \(\mathcal{O}(n)\). Picking the code branch with the highest runtime is not necessarily the correct thing to do - instead, we must consider what the runtime is as the input grows towards by infinity.
In this case, we can see the first branch will be executed for when \(n>10000\), so we consider only that branch when computing the asymptotic complexity.
(b) Determine the tight \(\Theta(\cdot)\) worst-case runtime of the following piece of code:
```

public static void trick(int n) {
for (int i = 1; i < Math.pow(2, n); i *= 2) {
for (int j = 0; j < n; j++) {
System.out.println("(" + i + "," + j + ")")
}
}
}

```

Bad answer: The runtime of this function is \(\mathcal{O}\left(n^{2}\right)\), because the outer loop is conditioned on an expression with \(n\) and so is the inner loop.

\section*{Solution:}

While the runtime is \(\mathcal{O}\left(n^{2}\right)\), the explanation is incorrect. In particular, it glosses over the fact that we are iterating from 0 to \(2^{n}-1\) in the outer loop.
A more precise explanation should explain that while the outer loop terminates when \(i=2^{n}\), we are also multiplying \(i\) by 2 per each iteration. This means the outer loop does \(\lg \left(2^{n}\right)\) iterations, which is just equivalent to \(n\).
The inner loop does \(\sum_{j=0}^{n-1} 1=n\) iterations, so we conclude the overall runtime is \(\mathcal{O}\left(n^{2}\right)\).

\section*{4. Look Before You Heap}
(a) Insert 10, 7, 15, 17, 12, 20, 6, 32 into a min heap.

\section*{Solution:}

(b) Now, insert the same values into a max heap.

\section*{Solution:}

(c) Now, insert \(10,7,15,17,12,20,6,32\) into a min heap, but use Floyd's buildHeap algorithm.

\section*{Solution:}

(d) Insert 1, 0, 1, 1, 0 into a min heap.

\section*{Solution:}

\section*{5. \(\mathcal{O}\) My God!}

Recall the definition of \(f \in \Omega(g)\) is as follows:
\[
\exists\left(c, n_{0}>0\right) \cdot \forall\left(n \geq n_{0}\right) \cdot f(n) \geq c g(n)
\]

Prove that \(4 n^{2}+n^{5} \in \Omega(n)\).
Solution:
Choose \(c=5\) and \(n_{0}=1\).
Then, since \(n \geq 1,4 n^{2}+n^{5} \geq 4 n+n=5 n \geq c g(n)\).```

