
CSE 332: Data Structures and Parallelism
Section 1: WorkLists

WorkList ADT
add(work) Notifies the worklist that it must handle work
peek() Returns the next item to work on
next() Removes and returns the next item to work on
hasWork() Returns true if there’s any work left and false otherwise

0. Odd Jobs
For each of the following scenarios, choose
(1) an ADT: Stack or Queue , and
(2) a data structure: Array or LinkedList with front or LinkedList with front and back

Then, explain why your choice works better than the other options.

WorkList Situations
(a) You’re designing a tool that checks code to verify that all opening brackets, braces, parentheses, . . . have

closing counterparts.

(b) Disneyland has hired you to find a way to improve the processing efficiency of their long lines at attractions.
There is no way to forecast how long the lines will be.

(c) A sandwich shop wants to serve customers in the order that they arrived, but also wants to look ahead
to know what people have ordered (ej. 2nd person, 3rd person, ..., last person in line).

1



1. Trie to Delete 0’s and 1’s?
Suppose we inserted all possible binary strings of length 0-3 (ej. 1, 0, 10, ..., 110, 111) into a Trie.

(a) If we deleted all binary numbers of length 2, how many nodes would we have to delete?

(b) After part a, if we deleted all binary numbers of length 3, how many nodes would we have to delete?

2. Call Me Maybe
(a) Suppose you want to transfer someone’s phone book to a data structure so that you can call all the phone

numbers with a particular area code efficiently. What data structure would you use? How would you
implement it?

(b) What is the time complexity to build the phone book? To call all the numbers with a particular area
code? Is your solution the most space efficient? Explain why.

3. Let’s Trie to be Old School
Text on nine keys (T9)’s objective is to make it easier to type text messages with 9 keys. It allows words to be
entered by a single keypress for each letter in which several letters are associated with each key. T9 is backed by
a dictionary that associates number sequences with possible words. When the user types a number sequence,
it looks up in the dictionary all words corresponding to the sequence of keypresses. So for example, the input
’2665’ could be the words {book, cook, cool}. Describe how you would implement a T9 dictionary for a
mobile phone.

T9 Example

2


