
CSE 332: Data Structures and Parallelism Winter 2021
P3: Where are the People? Checkpoint 1: Due Tue, February 23

Checkpoint 2: Due Tue, March 2
P3 Due Date: Due Tue, March 9

The purpose of this project is to get familiar with writing sequential code and then using
parallelism to potentially speed up that code. You will be using the ForkJoin framework and
Java threads to achieve parallelism.

Overview
The file CenPop2010.txt (distributed with the project files) contains real data published by the U.S.
Census Bureau. The data divides the U.S. into 2,100,333 geographic areas called "census-block-groups"
and reports for each such group the population in 2010 and the latitude/longitude of the group. It
actually reports the average latitude/longitude of the people in the group, but that will not concern us:
just assume everyone in the group lived on top of each other at this single point.

Latitude/longitude is a system used to locate things and places on Earth. Lines of latitude run East/West
and are parallel to the equator, but measure the angle vertically North/South between a location and the
equator. Lines of longitude run North/South between the poles, but they measure the angle horizontally
East/West between a location and Greenwich England. The entire U.S. is contained North of the equator,
and between 0◦ and 180◦W of Greenwich. We recommend doing some additional research to understand
latitude/longitude if needed before moving on.

Given this data, we can imagine the entire U.S. as a giant rectangle bounded by the minimum and
maximum latitude/longitude of all the census-block-groups. Most of this rectangle will not have any
population:

• The rectangle includes all of Alaska, Hawaii, and Puerto Rico and therefore, since it is a rectangle,
a lot of ocean and Canada that have no U.S. popluation.

• The continental U.S. is not a rectangle. For example, Maine is well East of Florida, adding more
ocean.

Note that the code we provide you reads in the input data and changes the latitude for each census group.
That is because the Earth is spherical but our grid is rectangular. Our code uses the Mercator Projection
to map a portion of a sphere onto a rectangle. It stretches latitudes more as you move North. You do
not have to understand this except to know that the latitudes you will compute with are not the latitudes
in the input file.

We can next imagine answering queries related to areas inside the U.S.:

• For some rectangle inside the U.S. rectangle, what is the 2010 census population total?

• For some rectangle inside the U.S. rectangle, what percentage of the total 2010 census U.S. popu-
lation is in it?

Such questions can reveal that population density varies dramatically in different regions, which explains,
for example, how a presidential candidate can win despite losing the states that account for most of the
country’s geographic area. By supporting only rectangles as queries, we can answer queries more quickly
than if more complex shapes were used.

Your program will first process the data to find the four corners of the rectangle containing the United
States. Some versions of the program will then further preprocess the data to build a data structure

1



that can efficiently answer the queries described above. The program will then prompt the user for such
queries and answer them until the user chooses to quit. For testing and timing purposes, you may also
wish to provide an alternative where queries are read from a second file.

We have provided the code to take care of parsing the input file (sequentially), performing the Mercator
Projection, and putting the data into a large array as well as printing the query responses. You will write
the algorithms that support all of the code we’ve written.

IMPORTANT NOTICE: For this project, we will not be using Gitlab for submission of the project, only
to distribute and store the project. You will turn in your code to Gradescope along with the write-up.
There are also no Gitlab pipelines or static analysis for this project.

Project Restrictions
• You must work in a group of two unless you successfully petition to work by yourself.

• You may not use any of the built-in Java data structures or related methods like Arrays.copyOf().
One of the main learning outcomes is to write everything yourself.

• You may use the math package.

• You may not edit any file in the cse332.* packages.

• The design and architecture of your code are important, but will not be directly graded.

• The Write-Up is a substantial part of your grade; do not leave it to the last minute.

• DO NOT MIX any of your experiment or above and beyond files with the normal code. Before
changing your code for experiments or above and beyond, copy the relevant files into the corre-
sponding package (e.g., aboveandbeyond, experiments). If your code does not compile because
you did not follow these instructions, you will receive a 0 for all automated tests.

• Make sure to not duplicate fields that are in super-classes (e.g., size). This will lead to unexpected
behavior and failures of tests.

Provided Code
IMPORTANT NOTICE: Do NOT modify anything in the provided code as it will break the tests. If
you do modify something by accident and cannot undo it, let staff know or go back to the Git history to
recover it.

• cse332.interfaces
– QueryResponder.java: Defines a class that responds to population queries. It also stores

the total population and has a getter method for it.
• cse332.types

– CensusData.java: A resizing array that temporarily holds multiple CensusGroups.
– CensusGroup.java: A single census data point, storing latitude, longitude, and population

for that location.
– CornerFindingResult.java: A simple pair object that holds a MapCorners and an int. It

is intended to be used as a return type for CornerFindingTask.java.
– MapCorners.java: MapCorners represents a rectangular space defined by latitude and longi-

tude. It has a useful encompass method to combine two MapCorners objects.
• main

– PopulationQuery.java: The main driver program that gets user queries. It also parses the
census data

2



You will implement SimpleSequential, SimpleParallel, ComplexSequential, ComplexParallel,
and ComplexLockBased (in queryresponders). You will also need to implement CornerFindingTask,
GetPopulationTask, PopulateGridTask, MergeGridTask and PopulateLockedGridTask (in paralleltasks)
which are used in the parallel query responders.

3



How does Population Query work?
The main way you will be interacting with your program is through PopulationQuery.java. You will
be passing the following 4 arguments to the main method of PopulationQuery.java:

1. The file containing the input data
For the 2010 US Census data, this will be CenPop2010.txt.

2. Two integers numColumns and numRows describing the size of a grid that is used to execute user
queries. This grid will be an abstract idea that partitions the U.S. map, and you will need to deter-
mine within which grid cell each census-block-group lies as you implement your query responders.
In the unlikely case that a census-block-group falls exactly on the border of more than one grid cell,
tie-break by assigning it to the North and/or East.
Let’s say that numColumns = 100 and numRows = 50. That would mean we want to think of the
the entire U.S. as being a grid with 100 columns (the x-axis) numbered 1 through 100 from West
to East and 50 rows (the y-axis) numbered 1 through 50 from South to North. (Note we choose
to be "user friendly" by not using zero-based indexing.) So, the grid would have 100 · 50 = 5, 000
little rectangles in it (a grid cell). Providing larger values for numColumns and numRows will let us
answer queries more precisely but will require more time and/or space.

3. One of -v1, -v2, -v3, -v4, -v5 corresponding to which version of your implementation to use.

For example, the following arguments would read the input file CenPop2010.txt, allow the user to specify
queries using a grid containing 100 columns and 50 rows, and run version 1 of your implementation
(SimpleSequential):

To insert command line arguments to IntelliJ, run PopulationQuery.java first (it should give an error
about not having enough arguments). Next, go to Run | Edit Configurations. On the left side of the
window that pops up, click on PopulationQuery then insert as shown above into Program arguments.

After reading these arguments, PopulationQuery.java will prompt the user in the terminal, asking
what query rectangle they would like PopulationQuery.java to provide population data for:

>> Please give west, south, east, north coordinates of your query rectangle:
>> west south east north

A query rectangle is simply four integers that describes a rectangle within the US map that we want to
grab population data from. These integers must be valid rows and columns:

1. west, the western-most grid column that is part of the query rectangle; error if this is less than 1
or greater than numColumns.

2. south, the southern-most grid row that is part of the query rectangle; error if this is less than 1 or
greater than numRows.

3. east, the eastern-most grid column that is part of the query rectangle; error if this is less than the
Western-most column (equal is okay) or greater than numColumns.

4. north, the northern-most grid row that is part of the query rectangle; error if this is less than the
Southern-most column (equal is okay) or greater than numRows.

4



The program will then use the requested version of your implementation to calculate the query and output
3 numbers:

1. The total population in the U.S.

2. The total population in the query rectangle

3. The percentage of the U.S. population in the query rectangle, rounded to two decimal points (e.g.
8.90%)

If numColumns is 100 and numRows is 50, the following are examples of querying the entire grid (1 1 100
50) and then half the grid (1 1 50 50):

>> Please give west, south, east, north coordinates of your query rectangle:
>> 1 1 100 50
>> population of the U.S.: 312471327
>> population of rectangle: 312471327
>> percent of total population: 100.00
>> Please give west, south, east, north coordinates of your query rectangle:
>> 1 1 50 50
>> population of the U.S.: 312471327
>> population of rectangle: 27820072
>> percent of total population: 8.90
>> Please give west, south, east, north coordinates of your query rectangle:
>> this can be anything - just press enter and the program will exit
>>
>> Process finished with exit code 0

Note: PopulationQuery.java will safely exit if it sees anything that isn’t 4 integers.

By this point, this is the image that you should visually have in mind for the grid:

(a) We start with the US map warped using the Mercator Projection (notice how the northern parts of
the map appear larger than the southern parts)

5



(b) We have the numColumns and numRows so we can form the grid in mind (in this case, we use the
same example of 100 numColumns and 50 numRows)

(c) Finally, we pass in the 4 integers that represent the query rectangle (in this case, we arbitrarily
choose 1 1 50 50 - this is half the grid)

From there, you will calculate what the population of the query rectangle (highlighted yellow) is.

6



Project Checkpoints
This project will have two checkpoints (and a final due date). A checkpoint is a check-in on a certain
date to make sure you are making reasonable progress on the project. For each checkpoint, you (and
your partner) will turn in a Gradescope survey individually.

As long as you turn in the checkpoint survey, the checkpoint will not affect your grade in any way.

Checkpoint 1: (1), (2) Tue, February 23
Checkpoint 2: (3), (4) Tue, March 2
P3 Due Date: (5), (6) Tue, March 9

Part 1: Simple Brute Force Algorithms
(1) Simple & Sequential
To make PopulationQuery.java work, you will work on 5 different versions of QueryResponders. This
will be the first implementation (version 1) of a QueryResponder. Take a look at QueryResponder.java.
In every version of QueryResponder, you will be implementing both the constructor (the preprocessing
step) and the getPopulation() method (the calculating step).

The constructor for each of these QueryResponders will take in an array of CensusGroups, and two
integers numColumns and numRows (due to Java restrictions, we cannot enforce a constructor and its pa-
rameters but take a look at SimpleSequential.java to see the parameters). The CensusGroup[] will
hold all the data parsed from the 2010 U.S. Census. Take a look at CensusGroup.java to see how the
data is organized. We suggest printing out the array to visually see what the data looks like. The two inte-
gers numColumns and numRows correspond to the same two integers passed into PopulationQuery.java.
For each of these versions, you will create a constructor that ensures the totalPopulation field is cor-
rectly updated to the total U.S. population and also does the preprocessing (if any) required by this
version. This preprocessing step will be different in every version.

The getPopulation() method will allow PopulationQuery.java to get the population at a specified
query rectangle, which will be the 4 int parameters west, south, east, and north. These correspond
to the 4 integers passed into PopulationQuery.java. If a CensusGroup object is on the western or
southern border of a query rectangle, the population is included in the query. If it is on the eastern or
northern border, then it is excluded. The only exception is when the eastern or northern border is at the
edge of the map. In that case, the population of the CensusGroup object is included. Using these 4
values, you will calculate and return what the population of the query rectangle is. Again, this calculating
step will be different in every version.

Below are some images illustrating some edge cases using a hypothetical grid of 10 latitude and 10
longitude (marked by the X and Y axis) divided into a grid with 5 rows and 5 columns (separated by the
blue and teal lines). The query rectangle highlighted in yellow includes the populations of red triangles,
but not green circles.

7



In SimpleSequential.java, you will be implementing version 1 of a QueryResponder.

In the constructor, process the data to find the four corners of the U.S. rectangle using a sequential O(n)
algorithm where n is the number of census-block-groups. You are free to do this in any way you think
is best but we suggest using the MapCorners.java class to help you process the CensusGroups more
easily.

In the getPopulation() method, do another sequential O(n) traversal to answer the query by deter-
mining if each census-block-group is in the query rectangle. The simplest and most reusable approach
for each census-block-group is probably to first compute which grid cell it belongs to and then see if that
grid cell is in the query rectangle. To do this you may need to store some additional fields and calculate
them in the constructor. Important note: make sure you are using double’s instead of float’s to
calculate or store latitude and longitude as there may be rounding issues when using float’s.

8



(2) Simple & Parallel
This version is the same as version 1 except both the initial corner-finding and the traversal for each query
should use the ForkJoin Framework effectively. The work will remain O(n), but the span should lower to
O(log n). Finding the corners should require only one data traversal which will happen in parallel, and
each query should require only one additional data traversal, also in parallel.

For this part, you will need to implement SimpleParallel.java as well two ForkJoin tasks found in the
paralleltasks folder of src, CornerFindingTask.java and GetPopulationTask.java.

Part 2: Preprocessed Grid Algorithms
(3) Complex & Sequential
This version will, like version 1, not use any parallelism, but it will perform additional preprocessing so
that each query can be answered in O(1) time. This involves two additional steps:

• First create a grid of size numRows · numColumns (use an array of arrays) where each element is
an int that will hold the total population for that grid cell. Recall numColumns and numRows are
the command-line arguments for the grid size. Compute the grid using a single traversal over the
input data.

• Now modify the grid so that instead of each grid element holding the total for that grid cell, it
instead holds the total for all grid cell ’s to the west and to the south of the current grid cell. In
other words, in the modified grid, the grid cell (x, y) stores the total population of the rectangle
whose lower-left corner is the South-West corner of the country (1, 1) and the upper-right corner
is (x, y). This can be done in time O(numColumns·numRows) but you need to be careful about the
order you process the elements.

For example, if numColumns and numRows are both 4, suppose after step 1 we have this grid containing
the total population for each grid cell :

grid1 =


9 1 1 1
2 2 0 0
1 7 4 3
0 11 1 9


Then step 2 would update the grid to be (e.g. 24 is 1 + 7 + 4 + 0 + 11 + 1):

grid2 =


12 33 39 52
3 23 28 40
1 19 24 36
0 11 12 21


There is an arithmetic trick to completing the second step in a single pass over the grid. Suppose our
grid cells are labeled starting from (1, 1) in the bottom-left corner. (You can implement it differently, but
this is how queries are given.) So our grid is:

(1, 4) (2, 4) (3, 4) (4, 4)
(1, 3) (2, 3) (3, 3) (4, 3)
(1, 2) (2, 2) (3, 2) (4, 2)
(1, 1) (2, 1) (3, 1) (4, 1)


Now, using standard Java array notation, notice that after step 2, for any element not on the left or
bottom edge: grid2[i][j] = grid1[i][j] + grid2[i − 1][j] + grid2[i][j − 1] − grid2[i − 1][j − 1]. So you

9



can do all of step 2 in O(numColumns·numRows) by simply proceeding one grid row at a time bottom to
top – or one grid column at a time from left to right, or any number of other ways. The key is that you
update (i− 1, j), (i, j − 1) and (i− 1, j − 1) before (i, j).

Given this unusual grid, we can use a similar trick to answer queries in O(1) time. Remember a query
gives us the corners of the query rectangle. In our example above, suppose the query rectangle has corners
(3, 3), (4, 3), (3, 2), and (4, 2). The initial grid would give us the answer 7, but we would have to do work
proportional to the size of the query rectangle (small in this case, potentially large in general). After the
second preprocessing step, we can instead get 7 as 40− 21− 23 + 11. In general, the trick is to:

• Take the value in the top-right corner of the query rectangle.

• Subtract the value just below the bottom-right corner of the query rectangle (or 0 if it is outside
the grid).

• Subtract the value just left of the top-left corner of the query rectangle (or 0 if it is outside the
grid).

• Add the value just below and to the left of the bottom-left corner of the query rectangle (or 0 if it
is outside the grid).

Notice this is O(1) work. Drawing a picture will help convince yourself this works.

Tip: After understanding the concept of the trick, we recommend that you add an additional row and
column of 0s while implementing. This helps make the code and logic cleaner as our grid is 0-indexed
but the user queries are 1-indexed.

Note: A another approach to answering queries in O(1) time would be to pre-compute the answer to
every possible query. But that would take O(numColumns2·numRows2) space and pre-processing time,
and is not acceptable for version 3 of your program.

(4) Complex & Parallel
As in version 2, the initial corner finding should be done in parallel. You should use CornerFindingTask.java
that you wrote in part 2 to accomplish this. As in version 3, you should create the grid that allows O(1)
queries. The first step of building the grid should be done in parallel using the ForkJoin Framework. The
second step, where you calculate sums, should remain sequential; just use the code you wrote in version
3. Parallelizing it is part of the Above & Beyond.

To parallelize the first grid-building step, you will need each parallel subproblem to return a grid. This is
implemented in PopulateGridTask.java. To combine the results from two subproblems, you will need
to add the contents of one grid to the other. Although for small grids doing this sequentially may be okay,
you will need to parallelize this as well using another ForkJoin computation in MergeGridTask.java.
Remember, ForkJoin allows us to fork several tasks, so you will want to think about how to appropriately
divide up the grids. We would recommend dividing along both the rows and columns. Note though that
the sequential cutoff is the number of grid cells to process, not the number of rows or columns.

Part 3: Locks & The Write-Up
(5) Complex & Lock-Based
Version 4 may suffer from doing a lot of grid-copying in the first grid-building step. An alternative is
to have just one shared grid that is modified by different threads as they process different census-block-
groups. To avoid losing any of the data, grid elements need to be protected by locks and to allow
simultaneous updates to distinct grid elements, each element should have a different lock.

10



In version 5, you will implement this strategy in ComplexLockBased.java. You should not use the
ForkJoin Framework; it is not designed to allow synchronization operations inside of it other than join.
Instead you will need to take the "old-fashioned" approach of using Java threads. It is okay to set the
number of threads to be a static constant, such as 4, however your code should be able to support an
arbitrary number of threads.

How you manage locks is up to you. You could have the grid store objects (that contain a field for the
value at that grid cell) and lock those objects, or you could have a separate grid of just locks. You may
modify the fields of the constructor in PopulateLockedGridTask.java if you choose to go with the
former approach. You may NOT use the synchronized keyword as a workaround for locks. Note that
after the first grid-building step, you will not need to acquire locks anymore (use join to make sure the
grid-building threads are done!).

Note that you do not need to re-implement the code for finding corners of the country. Use the ForkJoin
Framework code from versions 2 and 4. You also do not need to re-implement the second grid-building
step. You are just re-implementing the first grid-building step using Java threads, a shared data structure,
and locks. You should write your parallel code in PopulateLockedGridTask.java

The structure of your parallel thread class will be slightly different from your other ForkJoin code. For
starters, you will be overriding the run() method instead of compute(). You may also notice that
you need to do a bit of exception handling when joining the threads. In the case that join() throws
an exception, you should catch it, print the stack trace using printStackTrace(), and exit using
System.exit(1).

Also notice that there is no sequential cutoff inside PopulateLockedGridTask.java. We are now
managing the number of threads we have running at a time, as indicated by the NUM_THREADS constant
inside ComplexLockBased.java. Because of this, the run() method should process all the census groups
between the low and high cutoffs during execution. To ensure the thread requirement is met, make sure
you are splitting off NUM_THREADS - 1 threads and running the last parallel task in the current thread.

(6) Write-Up
A significant portion of your grade will be based on your write-up. You will find the write-up questions
here in the P3 Write-up Template. Remember to follow the instructions on the first and second page to
receive full credit!

Some of the write-up questions will ask you to design and run some experiments to determine which im-
plementations are faster for various inputs. Answering these questions will require writing additional code
to run the experiments, collecting timing information and producing result tables and graphs, together
with relatively long answers. Do not wait until the last minute!

Insert tables and graphs into your write-up as appropriate, and be sure to give each one a title and label
the axes for the graphs. IMPORTANT: Place all your timing code into the package experiment.
Be careful not to leave any write-up related code in the normal files. To prevent losing points due to the
modifications made for the write-up experiments, you should copy all files that need to be modified for
the experiments into the package experiment, and start working from there. Files in different packages
can have the same name, but when editing be sure to check if you are using the correct file! If your code
does not compile because you did not follow these instructions, you will receive a 0 for all automated
tests.

Above and Beyond
For this project you can find the Above and Beyond parts in the write-up template linked above.

11

https://docs.google.com/document/d/10TThWA9308fJhz-luTjTD-Tw6mE-In15m2vXSaDw5bo/edit?usp=sharing


DO NOT MIX any of your above and beyond files with the normal code. Before changing your code
for above and beyond, copy the relevant files into the aboveandbeyond package. If your code does not
compile because you did not follow these instructions, you will receive a 0 for all automated tests.

12


	Simple & Sequential
	Simple & Parallel
	Complex & Sequential
	Complex & Parallel
	Complex & Lock-Based
	Write-Up

