
CSE332, Summer 2021L22: Minimum Spanning Trees

Minimum Spanning Trees
CSE 332 Summer 2021

Instructor: Kristofer Wong

Teaching Assistants:
Alena Dickmann Arya GJ Finn Johnson
Joon Chong Kimi Locke Peyton Rapo
Rahul Misal Winston Jodjana

CSE332, Summer 2021L22: Minimum Spanning Trees

Announcements

v Going to start importing grades from Gradescope to Canvas
§ Do not panic!
§ I’ll be adjusting the points in canvas based on special cases in Canvas
• If I didn’t adjust something for you that I said I would, please let me know

v Today’s and Monday’s material not testable
§ Concepts that are casually thrown around, so you’ll want to

understand them

2

CSE332, Summer 2021L22: Minimum Spanning Trees

Lecture Outline

v Minimum Spanning Tree
§ Prim’s Algorithm
§ Kruskal’s Algorithm

3

CSE332, Summer 2021L22: Minimum Spanning Trees

Problem Statement

v Your friend at the electric company needs to connect all these
cities to the power plant

v She knows the cost to lay wires between any pair of cities and
wants the cheapest way to ensure electricity gets to every city

v Assume:
§ The graph is connected and undirected
§ (In general, edge weights can be negative; just not in this example)

4

A

B

D

E

C

3
6

11
1

4
5

8

9
107

2

CSE332, Summer 2021L22: Minimum Spanning Trees

Solution Statement

v We need a set of edges such that:
§ Every vertex touches at least one edge (“the edges span the graph”)
§ The graph using just those edges is connected
§ The total weight of these edges is minimized

v Claim: The set of edges we pick never forms a cycle. Why?
§ V-1 edges is the exact number of edges

to connect all vertices
§ Taking away 1 edge breaks

connectiveness
§ Adding 1 edge makes a cycle

5

A

B

D

E

C

3
6

1

4

2

CSE332, Summer 2021L22: Minimum Spanning Trees

Solution Statement (v2)

v We need a set of edges such that Minimum Spanning Tree:
§ Every vertex touches at least one edge (“the edges span the graph”)
§ The graph using just those edges is connected
§ The total weight of these edges is minimized

6

A

B

D

E

C

3
6

1

4

2

A

B

D

E

C

3

4

9
107

CSE332, Summer 2021L22: Minimum Spanning Trees

Minimum Spanning Trees

v Given an undirected graph G = (V,E), a minimum spanning tree
is a graph G’ = (V, E’) such that:
§ E’ is a subset of E
§ |E’| = |V| - 1
§ G’ is connected

§ is minimal

7

å
Î '),(
c
Evu
uv

CSE332, Summer 2021L22: Minimum Spanning Trees

Applications of MSTs

v Handwriting recognition
§ http://dspace.mit.edu/bitstrea

m/handle/1721.1/16727/4355
1593-MIT.pdf;sequence=2

v Medical imaging
§ e.g. arrangement of nuclei in

cancer cells

For more, see: http://www.ics.uci.edu/~eppstein/gina/mst.html

http://dspace.mit.edu/bitstream/handle/1721.1/16727/43551593-MIT.pdf;sequence=2
http://www.ics.uci.edu/~eppstein/gina/mst.html

CSE332, Summer 2021L22: Minimum Spanning Trees

v Grab something to write with & something to write on!
v Draw the MST for each of the following:

9

Exercise (not on Gradescope again..)

A

C

B

D

F

H

G

E

1 7
6

5 11

4

12

13

23
9

10

4J

M

NK

4 7

1 5

9

2

CSE332, Summer 2021L22: Minimum Spanning Trees

MST Algorithms: Two Different Approaches

10

Prim’s Algorithm
Almost identical to Dijkstra’s

Start with one node, grow greedily

Kruskals’s Algorithm
Completely different!

Start with a forest of MSTs, union them together
(Need a new data structure for this)

CSE332, Summer 2021L22: Minimum Spanning Trees

Lecture Outline

v Minimum Spanning Tree
§ Prim’s Algorithm
§ Kruskal’s Algorithm

11

CSE332, Summer 2021L22: Minimum Spanning Trees

Prim’s Algorithm**

v Intuition: a vertex-based greedy algorithm
§ Builds MST by greedily adding vertices

v Summary: Grow a single tree by picking a vertex from the
fringe that has the smallest cost
§ Unlike Dijkstra’s, cost is the edge weight into the known set

12

G

v?

known cloud
** This algorithm was developed in 1930 by Votěch Jarník, then independently rediscovered by
Robert Prim in 1957 and then Dijkstra in 1959. It’s also known as Jarník’s, Prim-Jarník, or DJP

CSE332, Summer 2021L22: Minimum Spanning Trees

Prim’s Algorithm: Pseudocode
prims(Graph g) {

foreach vertex v in g:
v.distance = ¥

start = g.getSomeArbitraryVertex()
start.distance = 0

mst = {}
heap = buildHeap(g.vertices – {start})
foreach vertex v in start.neighbors():

v.distance = g.weight(start, v)
v.previous = start
heap.decreaseKey(v, v.distance)

while (! heap.empty()):
v = heap.deleteMin()
mst.addEdge(v, v.previous)
foreach edge (v, u) in g:

d1 = v.distance
d2 = u.distance
if (d1 < d2):

u.previous = v
} 13

Remember our 5-step
pattern for a graph
traversal?

CSE332, Summer 2021L22: Minimum Spanning Trees

Prim’s Algorithm vs. Dijkstra’s Algorithm (1 of 2)

v Dijkstra’s picks an unknown vertex with smallest distance to
the source
§ ie, path weights

v Prim’s picks an unknown vertex with smallest distance to the
known set
§ i.e., edge weights

v Some differences in the initialization, but otherwise identical

14

CSE332, Summer 2021L22: Minimum Spanning Trees

Prim’s Algorithm: Pseudocode
prims(Graph g) {

foreach vertex v in g:
v.distance = ¥

start = g.getSomeArbitraryVertex()
start.distance = 0

mst = {}
heap = buildHeap(g.vertices – {start})
foreach vertex v in start.neighbors():

v.distance = g.weight(start, v)
v.previous = start
heap.decreaseKey(v, v.distance)

while (! heap.empty()):
v = heap.deleteMin()
mst.addEdge(v, v.previous)
foreach edge (v, u) in g:

d1 = v.distance
d2 = u.distance
if (d1 < d2):

u.previous = v
}

15

dijkstra(Graph g, Vertex start) {
foreach vertex v in g:

v.distance = ¥

start.distance = 0

heap = buildHeap(g.vertices)

while (! heap.empty()):
v = heap.deleteMin()

foreach edge (v, u) in g:
d1 = v.dist + g.weight(v, u)
d2 = u.dist
if (d1 < d2):

heap.decreaseKey(u, d1)
u.previous = v

}

CSE332, Summer 2021L22: Minimum Spanning Trees

Prim’s Algorithm: Example

16

Order Added to Known Set:

Vertex Known? Distance Previous
A ¥

B ¥

C ¥

D ¥

E ¥

F ¥

G ¥

A B

C
D

F

E

G

2

1
2 5

1
1

1

2 6
5 3

10

CSE332, Summer 2021L22: Minimum Spanning Trees

Prim’s Algorithm: Example

17

Order Added to Known Set:
A

Vertex Known? Distance Previous
A Y 0 \

B 2 A

C 2 A

D 1 A

E ¥

F ¥

G ¥

A B

C
D

F

E

G

0 2
2

1
2 5

1
1

1

2 6
5 3

10

¥

¥

1
2

¥

CSE332, Summer 2021L22: Minimum Spanning Trees

Prim’s Algorithm: Example

18

Order Added to Known Set:
A, D

Vertex Known? Distance Previous
A Y 0 \

B 2 A

C 1 D

D Y 1 A

E 1 D

F 6 D

G 5 D

A B

C
D

F

E

G

0 2
2

1
2 5

1
1

1

2 6
5 3

10

1

5

1
2

6

CSE332, Summer 2021L22: Minimum Spanning Trees

Prim’s Algorithm: Example

19

Order Added to Known Set:
A, D, C

Vertex Known? Distance Previous
A Y 0 \

B 2 A

C Y 1 D

D Y 1 A

E 1 D

F 2 C

G 5 D

A B

C
D

F

E

G

0 2
2

1
2 5

1
1

1

2 6
5 3

10

1

5

1
2

6

CSE332, Summer 2021L22: Minimum Spanning Trees

Prim’s Algorithm: Example

20

Order Added to Known Set:
A, D, C, E

Vertex Known? Distance Previous
A Y 0 \

B 1 E

C Y 1 D

D Y 1 A

E Y 1 D

F 2 C

G 3 E

A B

C
D

F

E

G

0 2
2

1
2 5

1
1

1

2 6
5 3

10

1

5

1
2

6

CSE332, Summer 2021L22: Minimum Spanning Trees

Prim’s Algorithm: Example

21

Order Added to Known Set:
A, D, C, E, B

Vertex Known? Distance Previous
A Y 0 \

B Y 1 E

C Y 1 D

D Y 1 A

E Y 1 D

F 2 C

G 3 E

A B

C
D

F

E

G

0 2
2

1
2 5

1
1

1

2 6
5 3

10

1

5

1
2

6

CSE332, Summer 2021L22: Minimum Spanning Trees

Prim’s Algorithm: Example

22

Order Added to Known Set:
A, D, C, E, B, F

Vertex Known? Distance Previous
A Y 0 \

B Y 1 E

C Y 1 D

D Y 1 A

E Y 1 D

F Y 2 C

G 3 E

A B

C
D

F

E

G

0 2
2

1
2 5

1
1

1

2 6
5 3

10

1

5

1
2

6

CSE332, Summer 2021L22: Minimum Spanning Trees

Prim’s Algorithm: Example

23

Order Added to Known Set:
A, D, C, E, B, F

Vertex Known? Distance Previous
A Y 0 \

B Y 1 E

C Y 1 D

D Y 1 A

E Y 1 D

F Y 2 C

G Y 3 E

A B

C
D

F

E

G

0 2
2

1
2 5

1
1

1

2 6
5 3

10

1

5

1
2

6

:D(one)

Total Cost: 9

CSE332, Summer 2021L22: Minimum Spanning Trees

Prim’s Algorithm Visualizations

v Dijkstra’s Visualization
§ https://www.youtube.com/watch?v=1oiQ0hrVwJk
§ Dijkstra’s proceeds radially from its source, because it chooses edges

by path length from source

v Prim’s Visualization
§ https://www.youtube.com/watch?v=6uq0cQZOyoY
§ Prim’s jumps around the MST-under-construction (the fringe),

because it chooses edges by edge weight (there’s no source)

24

https://www.youtube.com/watch?v=1oiQ0hrVwJk
https://www.youtube.com/watch?v=6uq0cQZOyoY

CSE332, Summer 2021L22: Minimum Spanning Trees

Prim’s Algorithm: Analysis

v Correctness:
§ A bit tricky to prove, but intuitively similar to Dijkstra
§ Proof on next slide, but left as an activity if you’re curious

v Run-time:
§ Same as Dijkstra’s! O(|E|log|V| + |V|log|V|) using a priority queue
§ But since E ∈ O(|V|2), can also state as O(|E|log|V|))

25

CSE332, Summer 2021L22: Minimum Spanning Trees

Prim’s Algorithm: Correctness Proof

v Want to prove: If G is a connected, weighted graph with dishnct edge
weights, Prim's algorithm correctly finds an MST.

v Proof (credit: Stanford CS161, 13su); for more take CSE421!
§ Let T be the spanning tree found by Prim's algorithm and T* be the MST of G.

We will prove T = T* by contradic^on. Assume T ≠ T*. Therefore, T – T* ≠ Ø. Let
(u, v) be any edge in T – T*.

§ When (u, v) was added to T, it was the least-cost edge crossing some cut (S, V –
S). Since T* is an MST, there must be a path from u to v in T*. This path begins
in S and ends in V – S, so there must be some edge (x, y) along that path where
x ∈ S and y ∈ V – S. Since (u, v) is the least- cost edge crossing (S, V – S), we
have c(u, v) < c(x, y).

§ LetT*'=T*∪{(u,v)}–{(x,y)}. Since(x,y)isonthe cycle formed by adding (u, v), this
means T*' is a spanning tree. However, c(T*') = c(T*) + c(u, v) – c(x, y) < c(T*),
contradic^ng that T* is an MST.

§ We have reached a contradic^on, so our assump^on must have been wrong.
Thus T = T*, so T is an MST.

26

CSE332, Summer 2021L22: Minimum Spanning Trees

Exercise #2: Run through Prim’s algorithm!

27

Order Added to Known Set:

Vertex Known? Distance Previous
A ¥

B ¥

C ¥

D ¥

E ¥

F ¥

G ¥

A B

C
D

F

E

G

2

1
4 3

2
7

10

5 8
4 6

1

CSE332, Summer 2021L22: Minimum Spanning Trees

Exercise #2: Solution

28

Order Added to Known Set:
A, D, B, C, G, F, E

Vertex Known? Distance Previous
A Y 0 /

B Y 2 A

C Y 2 D

D Y 1 A

E Y 6 G

F Y 4 G

G Y 1 D

A B

C
D

F

E

G

2

1
4 3

2
7

10

5 8
4 6

1

CSE332, Summer 2021L22: Minimum Spanning Trees

Lecture Outline

v Minimum Spanning Tree
§ Prim’s Algorithm
§ Kruskal’s Algorithm

29

CSE332, Summer 2021L22: Minimum Spanning Trees

Kruskal’s Algorithm: A Different Approach

v Prim’s thinks vertex by vertex
§ Eg, add the closest vertex to the currently reachable set

v What if you think edge by edge instead?
§ Eg, start from the lightest edge; add it if it connects new things to each other

(don’t add it if it would create a cycle)

CSE332, Summer 2021L22: Minimum Spanning Trees

Kruskal’s Algorithm

v Intuition: an edge-based greedy algorithm
§ Builds MST by greedily adding edges

v Summary: Start with a forest of MSTs, and successively
connect them by adding edges; do not create a cycle

31

e?

G

CSE332, Summer 2021L22: Minimum Spanning Trees

Kruskal’s Algorithm: Pseudo-pseudocode

kruskals(Graph g) {
edgesAccepted = 0
mst = {}
s = buildDisjointSets(g.vertices)
edges = buildHeap(g.edges)

while (edgesAccepted < NUM_VERTICES - 1):
e = edges.deleteMin()
u_id = s.find(e.u)
v_id = s.find(e.v)
if (u_id != v_id):

mst.addEdge(e)
s.unionSets(e.u, e.v)
edgesAccepted++

}

32

Does this fit our 5-step
pattern for a graph
traversal?

What data structure is
this?!?!

CSE332, Summer 2021L22: Minimum Spanning Trees

Aside: Disjoint Sets ADT

v The Disjoint Sets ADT has two operations:
§ Union
§ Find
§ AKA Union-Find ADT

v Applications include percolation theory (computational chemistry) and
…. Kruskal’s algorithm

v Simplifying assumptions
§ We can map elements to indices quickly
§ We know all the items in advance; they’re all disconnected initially

33

CSE332, Summer 2021L22: Minimum Spanning Trees

Disjoint Sets ADT
v union(x, y): combines the set named x with the

set named y; replaces x and y with (x ∪ y)
§ Given sets: {3,5,7} , {4,2,8}, {9}, {1,6}
• Sets typically named after one of their elements

§ union(5,1) will union the set {3,5,7} with {1,6}
• Result: {3,5,7,1,6} , {4,2,8}, {9}

§ Implementation: can be done in constant time
v find(e): gets the name of the element’s set

§ Given sets: {3,5,7} , {4,2,8}, {9}, {1,6}
§ find(1) returns 1
§ find(7) returns 5
§ Implementation: can be amortized constant time with

worst case O(logn) for an individual find operation

34

Disjoint Sets ADT. A
collection of
elements and sets
of those elements.

• An element can only
belong to a single set.

• Each set is identified by a
unique id.

• Sets can be combined/
connected/ unioned.

CSE332, Summer 2021L22: Minimum Spanning Trees

Kruskal’s Algorithm: Pseudocode

35

|E| deleteMin()s

2|E| find()s

|V| union()s

Runtime: |E|(log|E| + 2log|V| + 1) + |V|(1 + 1 + 1) ∈ O(|E|log|V| + |E|log|E|)
Note: we know |E| <= |V|2, so log|E| <= 2log|V|. Therefore, |E|log|V| +
|E|log|E| <= 3|E|log|V|, so the runtime can be simplified to O(|E|log|V|)

kruskals(Graph g) {
edgesAccepted = 0
mst = {}
s = buildDisjointSets(g.vertices)
edges = buildHeap(g.edges)

while (edgesAccepted < NUM_VERTICES - 1):
e = edges.deleteMin()
u_id = s.find(e.u)
v_id = s.find(e.v)
if (u_id != v_id):

mst.addEdge(e)
s.unionSets(e.u, e.v)
edgesAccepted++

}

CSE332, Summer 2021L22: Minimum Spanning Trees

Kruskal’s Algorithm: Example

36

Weight Edges
1 (A,D), (C,D), (B,E), (D,E)

2 (A,B), (C,F), (A,C)

3 (E,G)

5 (D,G), (B,D)

6 (D,F)

10 (F,G)

A B

C
D

F

E

G

2

1
2 5

1
1

1

2 6
5 3

10

MST:

CSE332, Summer 2021L22: Minimum Spanning Trees

Kruskal’s Algorithm: Example

37

Weight Edges
1 (A,D), (C,D), (B,E), (D,E)

2 (A,B), (C,F), (A,C)

3 (E,G)

5 (D,G), (B,D)

6 (D,F)

10 (F,G)

A B

C
D

F

E

G

2

1
2 5

1
1

1

2 6
5 3

10

MST:
(A, D)

CSE332, Summer 2021L22: Minimum Spanning Trees

Kruskal’s Algorithm: Example

38

Weight Edges
1 (A,D), (C,D), (B,E), (D,E)

2 (A,B), (C,F), (A,C)

3 (E,G)

5 (D,G), (B,D)

6 (D,F)

10 (F,G)

A B

C
D

F

E

G

2

1
2 5

1
1

1

2 6
5 3

10

MST:
(A, D), (C, D)

CSE332, Summer 2021L22: Minimum Spanning Trees

Kruskal’s Algorithm: Example

39

Weight Edges
1 (A,D), (C,D), (B,E), (D,E)

2 (A,B), (C,F), (A,C)

3 (E,G)

5 (D,G), (B,D)

6 (D,F)

10 (F,G)

A B

C
D

F

E

G

2

1
2 5

1
1

1

2 6
5 3

10

MST:
(A, D), (C, D), (B, E)

CSE332, Summer 2021L22: Minimum Spanning Trees

Kruskal’s Algorithm: Example

40

Weight Edges
1 (A,D), (C,D), (B,E), (D,E)

2 (A,B), (C,F), (A,C)

3 (E,G)

5 (D,G), (B,D)

6 (D,F)

10 (F,G)

A B

C
D

F

E

G

2

1
2 5

1
1

1

2 6
5 3

10

MST:
(A, D), (C, D), (B, E), (D, E)

CSE332, Summer 2021L22: Minimum Spanning Trees

Kruskal’s Algorithm: Example

41

Weight Edges
1 (A,D), (C,D), (B,E), (D,E)

2 (A,B), (C,F), (A,C)

3 (E,G)

5 (D,G), (B,D)

6 (D,F)

10 (F,G)

MST:
(A, D), (C, D), (B, E), (D, E)

A B

C
D

F

E

G

2

1
2 5

1
1

1

2 6
5 3

10

CSE332, Summer 2021L22: Minimum Spanning Trees

Kruskal’s Algorithm: Example

42

Weight Edges
1 (A,D), (C,D), (B,E), (D,E)

2 (A,B), (C,F), (A,C)

3 (E,G)

5 (D,G), (B,D)

6 (D,F)

10 (F,G)

A B

C
D

F

E

G

2

1
2 5

1
1

1

2 6
5 3

10

MST:
(A, D), (C, D), (B, E), (D, E), (C, F)

CSE332, Summer 2021L22: Minimum Spanning Trees

Kruskal’s Algorithm: Example

43

Weight Edges
1 (A,D), (C,D), (B,E), (D,E)

2 (A,B), (C,F), (A,C)

3 (E,G)

5 (D,G), (B,D)

6 (D,F)

10 (F,G)

MST:
(A, D), (C, D), (B, E), (D, E), (C, F)

A B

C
D

F

E

G

2

1
2 5

1
1

1

2 6
5 3

10

CSE332, Summer 2021L22: Minimum Spanning Trees

Kruskal’s Algorithm: Example

44

MST:
(A, D), (C, D), (B, E), (D, E), (C, F), (E, G)

Weight Edges
1 (A,D), (C,D), (B,E), (D,E)

2 (A,B), (C,F), (A,C)

3 (E,G)

5 (D,G), (B,D)

6 (D,F)

10 (F,G)

A B

C
D

F

E

G

2

1
2 5

1
1

1

2 6
5 3

10

Yay!

Total Cost: 9

CSE332, Summer 2021L22: Minimum Spanning Trees

Kruskal’s Algorithm Visualizations
v Prim’s Visualization
§ https://www.youtube.com/watch?v=6uq0cQZOyoY
§ Prim’s jumps around the fringe, adding edges by edge weight

v Kruskal’s Visualization:
§ https://www.youtube.com/watch?v=ggLyKfBTABo
§ Kruskal’s jumps around the graph – not just the fringe – because it

chooses edges by edge weight independent of the “tree under
construction”

45

https://www.youtube.com/watch?v=6uq0cQZOyoY
https://www.youtube.com/watch?v=ggLyKfBTABo

CSE332, Summer 2021L22: Minimum Spanning Trees

Kruskal’s Algorithm: Correctness

v Kruskal’s algorithm is clever, simple, and efficient
§ But does it generate a minimum spanning tree?

v First: it generates a spanning tree
§ Intuition: Original graph was connected; we kept edges that didn’t create a

cycle
§ Proof by contradiction:
• Suppose (u, v) is not in Kruskal’s result
• Then there’s a path from u to v in the original graph with a cheaper edge we could add

without creating a cycle
• But Kruskal would have added that edge. Contradiction!

v Second: there is no spanning tree with lower total cost
§ Requires a more complex proof by Induction & Contradiction
§ Won’t provide in a slide (relies on graph properties we won’t cover)
§ Happy to prove in OH if you’re curious; again, take CSE 421!

46

CSE332, Summer 2021L22: Minimum Spanning Trees

Summary

v Minimum Spanning Trees are a subset of the edges in an
undirected connected graph

v Prim’s looks a lot like the vertex-based graph traversals we’ve
seen so far, except it uses edge weight instead of path weight
§ And since edge weights don’t change during the algorithm’s

execution, we don’t need a decreaseKey() operation

v Kruskal’s is an edge-based graph traversal (which we haven’t
seen so far), but still uses edge weight to choose edges
§ Doesn’t need decreaseKey() for the same reason
§ Needs an auxiliary ADT – the Disjoint Sets ADT – to speed up

execution
47

