Minimum Spanning Trees CSE 332 Summer 2021

Instructor: Kristofer Wong

Teaching Assistants:

Alena Dickmann Arya GJ
Joon Chong
Rahul Misal

Kimi Locke
Winston Jodjana

Finn Johnson
Peyton Rapo

Announcements

* Going to start importing grades from Gradescope to Canvas
- Do not panic!
- I'll be adjusting the points in canvas based on special cases in Canvas
- If I didn't adjust something for you that I said I would, please let me know
* Today's and Monday's material not testable
- Concepts that are casually thrown around, so you'll want to understand them

Lecture Outline

* Minimum Spanning Tree
- Prim's Algorithm
- Kruskal's Algorithm

Problem Statement

* Your friend at the electric company needs to connect all these cities to the power plant
* She knows the cost to lay wires between any pair of cities and wants the cheapest way to ensure electricity gets to every city

* Assume:
- The graph is connected and undirected
- (In general, edge weights can be negative; just not in this example)

Solution Statement

* We need a set of edges such that:
- Every vertex touches at least one edge ("the edges span the graph")
- The graph using just those edges is connected
- The total weight of these edges is minimized
* Claim: The set of edges we pick never forms a cycle. Why?
- V-1 edges is the exact number of edges to connect all vertices
- Taking away 1 edge breaks connectiveness
- Adding 1 edge makes a cycle

Solution Statement (v2)

* We need a set of edges such that Minimum Spanning Tree:
- Every vertex touches at least one edge ("the edges span the graph")
- The graph using just those edges is connected
- The total weight of these edges is minimized

Minimum Spanning Trees

* Given an undirected graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$, a minimum spanning tree is a graph $\mathrm{G}^{\prime}=\left(\mathrm{V}, \mathrm{E}^{\prime}\right)$ such that:
- E^{\prime} is a subset of E
- | $E^{\prime}|=|V|-1$
- G^{\prime} is connected

$(u, v) \in E^{\prime}$

Applications of MSTs

* Handwriting recognition
- http://dspace.mit.edu/bitstrea m/handle/1721.1/16727/4355 1593-MIT.pdf;sequence=2

Figure 4-3: A typical minimum spanning tree

* Medical imaging
- e.g. arrangement of nuclei in cancer cells

For more, see: http://www.ics.uci.edu/~eppstein/gina/mst.html

Exercise (not on Gradescope again..)

* Grab something to write with \& something to write on!
* Draw the MST for each of the following:

MST Algorithms: Two Different Approaches

Prim's Algorithm

Almost identical to Dijkstra's
Start with one node, grow greedily

Kruskals's Algorithm

Completely different!
Start with a forest of MSTs, union them together
(Need a new data structure for this)

Lecture Outline

* Minimum Spanning Tree
- Prim's Algorithm
- Kruskal's Algorithm

Prim's Algorithm**

* Intuition: a vertex-based greedy algorithm
- Builds MST by greedily adding vertices
* Summary: Grow a single tree by picking a vertex from the fringe that has the smallest cost
- Unlike Dijkstra's, cost is the edge weight into the known set

** This algorithm was developed in 1930 by Votěch Jarnik, then independently rediscovered by Robert Prim in 1957 and then Dijkstra in 1959. It's also known as Jarnik's, Prim-Jarnik, or DJP

Prim's Algorithm: Pseudocode

```
prims(Graph g) {
    foreach vertex v in g:
        v.distance = \infty
    start = g.getSomeArbitraryVertex()
    start.distance = 0
mmst = {}
\heap = buildHeap(g.vertices - {start})
foreach vertex v in start.neighbors():
    v.distance = g.weight(start, v)
    v.previous = start
    heap.decreaseKey(v, v.distance)
    while (! heap.empty()/):E
    V = heap.deleteMin()
    mst.addEdge(v, v.previous)
    foreach edge (v, u) in g:
        d1 = v.distance
        d2 = u.distance
        if (d1 < d2):
            u.previous = v
}
```

Remember our 5-step pattern for a graph traversal?

Prim's Algorithm vs. Dijkstra's Algorithm (1 of 2)

* Dijkstra's picks an unknown vertex with smallest distance to the source
- ie, path weights
. Prim's picks an unknown vertex with smallest distance to the known set
- i.e., edge weights
* Some differences in the initialization, but otherwise identical

Prim's Algorithm: Pseudocode

```
prims(Graph g) {
    foreach vertex v in g:
        v.distance = \infty
    start = g.getSomeArbitraryVertex()
    start.distance = 0
    mst = {}
    heap = buildHeap(g.vertices - {start})
    foreach vertex v in start.neighbors():
        v.distance = g.weight(start, v)
        v.previous = start
        heap.decreaseKey(v, v.distance)
    while (! heap.empty()) :
        v = heap.deleteMin()
    mst.addEdge(v, v.previous)
    foreach edge (v, u) in g:
        d1 = v.distance
        d2 = u.distance
        if (d1<d2):
            u.previous = v
```

```
dijkstra(Graph g, Vertex start) {
foreach vertex v in g:
    v.distance = \infty
start.distance = 0
heap = buildHeap(g.vertices)
```

```
while (! heap.empty()):
```

while (! heap.empty()):
v = heap.deleteMin()
v = heap.deleteMin()
foreach edge (v, u) in g:
foreach edge (v, u) in g:
d1 = v.dist + g.weight(v, u)
d1 = v.dist + g.weight(v, u)
d2 = u.dist
d2 = u.dist
if (d1 < d2):
if (d1 < d2):
heap.decreaseKey(u, d1)
heap.decreaseKey(u, d1)
u.previous = v

```
        u.previous = v
```


Prim's Algorithm: Example

Vertex	Known?	Distance	Previous
A		∞	
B		∞	
C		∞	
D		∞	
E		∞	
F		∞	
G		∞	

Prim's Algorithm: Example

Vertex	Known?	Distance	Previous
A	Y	0	I
B		2	A
C		2	A
D		1	A
E		∞	
F		∞	
G		∞	

Prim's Algorithm: Example

Vertex	Known?	Distance	Previous
A	Y	0	I
B		2	A
C		1	D
D	Y	1	A
E		1	D
F		6	D
G		5	D

Prim's Algorithm: Example

Vertex	Known?	Distance	Previous
A	Y	0	I
B		2	A
C	Y	1	D
D	Y	1	A
E		1	D
F		2	C
G		5	D

Prim's Algorithm: Example

Vertex	Known?	Distance	Previous
A	Y	0	I
B		1	E
C	Y	1	D
D	Y	1	A
E	Y	1	D
F		2	C
G		3	E

Prim's Algorithm: Example

Vertex	Known?	Distance	Previous
A	Y	0	I
B	Y	1	E
C	Y	1	D
D	Y	1	A
E	Y	1	D
F		2	C
G		3	E

Prim's Algorithm: Example

Vertex	Known?	Distance	Previous
A	Y	0	I
B	Y	1	E
C	Y	1	D
D	Y	1	A
E	Y	1	D
F	Y	2	C
G		3	E

Prim's Algorithm: Example

Prim's Algorithm Visualizations

* Dijkstra's Visualization
- https://www.youtube.com/watch?v=1oiQOhrVwJk
- Dijkstra's proceeds radially from its source, because it chooses edges by path length from source
* Prim's Visualization
- https://www.youtube.com/watch?v=6uq0cQZOyoY
- Prim's jumps around the MST-under-construction (the fringe), because it chooses edges by edge weight (there's no source)

Prim's Algorithm: Analysis

* Correctness:
- A bit tricky to prove, but intuitively similar to Dijkstra
- Proof on next slide, but left as an activity if you're curious
* Run-time:
- Same as Dijkstra’s! O(|E|log|V| + |V|log|V|) using a priority queue
- But since $\mathrm{E} \in \mathrm{O}\left(|\mathrm{V}|^{2}\right)$, can also state as $\mathrm{O}(|\mathrm{E}| \log |\mathrm{V}|)$)

Prim’s Algorithm: Correctness Proof

* Want to prove: If G is a connected, weighted graph with distinct edge weights, Prim's algorithm correctly finds an MST.
* Proof (credit: Stanford CS161, 13su); for more take CSE421!
- Let T be the spanning tree found by Prim's algorithm and T^{*} be the MST of G. We will prove $T=T^{*}$ by contradiction. Assume $T=T^{*}$. Therefore, $T-T^{*} \neq \emptyset$. Let (u, v) be any edge in $T-T^{*}$.
- When (u, v) was added to T, it was the least-cost edge crossing some cut ($S, V-$ S). Since T^{*} is an MST, there must be a path from u to v in T^{*}. This path begins in S and ends in $V-S$, so there must be some edge (x, y) along that path where $x \in S$ and $y \in V-S$. Since (u, v) is the least- cost edge crossing $(S, V-S)$, we have $c(u, v)<c(x, y)$.
- Let $T^{*}=T^{*} \cup\{(u, v)\}-\{(x, y)\}$. Since (x, y) isonthe cycle formed by adding (u, v), this means $T^{* '}$ is a spanning tree. However, $c\left(T^{* \prime}\right)=c\left(T^{*}\right)+c(u, v)-c(x, y)<c\left(T^{*}\right)$, contradicting that T^{*} is an MST.
- We have reached a contradiction, so our assumption must have been wrong. Thus $T=T^{*}$, so T is an MST.

Exercise \#2: Run through Prim's algorithm!

Vertex	Known?	Distance	Previous
A		∞	
B		∞	
C		∞	
D		∞	
E		∞	
F		∞	
G		∞	

Exercise \#2: Solution

Lecture Outline

* Minimum Spanning Tree
- Prim's Algorithm
- Kruskal's Algorithm

Kruskal's Algorithm: A Different Approach

* Prim's thinks vertex by vertex
- Eg, add the closest vertex to the currently reachable set
* What if you think edge by edge instead?
- Eg, start from the lightest edge; add it if it connects new things to each other (don't add it if it would create a cycle)

Kruskal's Algorithm

* Intuition: an edge-based greedy algorithm
- Builds MST by greedily adding edges
* Summary: Start with a forest of MSTs, and successively connect them by adding edges; do not create a cycle

Kruskal's Algorithm: Pseudo-pseudocode

kruskals (Graph g) \{ edgesAccepted $=0$ mst $=$ \{ \}
\rightarrow s $=$ buildDisjointSets(g.vertices)
edges = buildHeap(g.edges)
while (edgesAccepted < NUM VERTTCES - 1):
$(V, V) \leftarrow e=$ edges.deleteMin()
$u \quad i d=$ s.find (e.u)
$u_{\text {_id }}=s . f i n d(e . u)$
v_id $=$ s.find (e.v)
if (u_id != v_id):
mst.addEdge (e)
s.unionSets (e.u, e.v)
edgesAccepted++

Aside: Disjoint Sets ADT

* The Disjoint Sets ADT has two operations:

Union-
Find

- AKA Union-Find ADT
* Applications include percolation theory (computational chemistry) and Kruskal's algorithm
* Simplifying assumptions
- We can map elements to indices quickly
- We know all the items in advance; they're all disconnected initially

Disjoint Sets ADT

* union (x, y) : combines the set named x with the set named y; replaces x and y with ($x \cup y$)

Disjoint Sets ADT. A

collection of elements and sets of those elements.

- An element can only belong to a single set.
- Each set is identified by a unique id.
- Sets can be combined/ connected/ unioned.
- Given sets: $\{3,5,7\},\{4,2,8\},\{9\},\{1,6\}$
- Sets typically named after one of their elements
- union(5,1) will union the set $\{3,5,7\}$ with $\{1,6\}$
- Result: $\{3,5,7,1,6\}, ~\{4,2,8\},\{9\}$
- Implementation: can be done in constant time
* find(e): gets the name of the element's set
- Given sets: $\{3,5,7\},\{4,2,8\},\{9\},\{1,6\}$
- find(1) returns !
- find(7) returns 5
- Implementation: can be amortized constant time with worst case O(logn) for an individual find operation

Kruskal's Algorithm: Pseudocode

```
```

kruskals(Graph g) {

```
```

kruskals(Graph g) {
edgesAccepted = 0
edgesAccepted = 0
mst = {}
mst = {}
s = buildDisjointSets(g.vertices)
s = buildDisjointSets(g.vertices)
edges = buildHeap(g.edges)
edges = buildHeap(g.edges)
while (edgesAccepted < NUM_VERTICES _ 1) :
while (edgesAccepted < NUM_VERTICES _ 1) :
e = edges.deleteMin()
e = edges.deleteMin()
u_id = s.find(e.u)
u_id = s.find(e.u)
v_id = s.find(e.v)
v_id = s.find(e.v)
if (u_id != v_id):
if (u_id != v_id):
mst.addEdge(e)
mst.addEdge(e)
s.unionSets(e.u, e.v)
s.unionSets(e.u, e.v)
edgesAccepted++

```
```

 edgesAccepted++
    ```
```


\}

Runtime: $|\underline{E}|(\log |\mathrm{E}|+2 \log |\mathrm{~V}|+1)+|\mathrm{V}|(1+1+1) \in \mathrm{O}(|\mathrm{E}| \log |\mathrm{V}|+|\mathrm{E}| \log |\mathrm{E}|)$ Note: we know $|\mathrm{E}|<=|\mathrm{V}|^{2}$, so $\log |\mathrm{E}|<=2 \log |\mathrm{~V}|$. Therefore, $|\mathrm{E}| \log |\mathrm{V}|+$ $|\mathrm{E}| \log |\mathrm{E}|<=3|\mathrm{E}| \log |\mathrm{V}|$, so the runtime can be simplified to $\mathbf{O}(|\mathrm{E}| \log |\mathrm{V}|)$

Kruskal's Algorithm: Example

Kruskal's Algorithm Visualizations

* Prim's Visualization
- https://www.youtube.com/watch?v=6uq0cQZOyoY
- Prim's jumps around the fringe, adding edges by edge weight vertices
* Kruskal's Visualization:
- https://www.youtube.com/watch?v=ggLyKfBTABo
- Kruskal's jumps around the graph - not just the fringe - because it chooses edges by edge weight independent of the "tree under construction"

Kruskal’s Algorithm: Correctness

* Kruskal's algorithm is clever, simple, and efficient
- But does it generate a minimum spanning tree?
* First: it generates a spanning tree
- Intuition: Original graph was connected; we kept edges that didn't create a cycle
- Proof by contradiction:
- Suppose (u, v) is not in Kruskal's result
- Then there's a path from u to v in the original graph with a cheaper edge we could add without creating a cycle
- But Kruskal would have added that edge. Contradiction!
* Second: there is no spanning tree with lower total cost
- Requires a more complex proof by Induction \& Contradiction
- Won't provide in a slide (relies on graph properties we won't cover)
- Happy to prove in OH if you're curious; again, take CSE 421!

Summary

* Minimum Spanning Trees are a subset of the edges in an undirected connected graph
* Prim's looks a lot like the vertex-based graph traversals we've seen so far, except it uses edge weight instead of path weight
- And since edge weights don't change during the algorithm's execution, we don't need a decreaseKey() operation
* Kruskal's is an edge-based graph traversal (which we haven't seen so far), but still uses edge weight to choose edges
- Doesn't need decreaseKey() for the same reason
- Needs an auxiliary ADT - the Disjoint Sets ADT - to speed up execution

