Minimum Spanning Trees CSE 332 Summer 2021

Instructor: Kristofer Wong

Teaching Assistants:

Alena DickmannArya GJFinn JohnsonJoon ChongKimi LockePeyton RapoRahul MisalWinston Jodjana

Announcements

- * Going to start importing grades from Gradescope to Canvas
 - Do not panic!
 - I'll be adjusting the points in canvas based on special cases in Canvas
 - If I didn't adjust something for you that I said I would, please let me know
- Today's and Monday's material not testable
 - Concepts that are casually thrown around, so you'll want to understand them

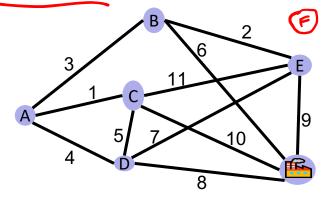
Lecture Outline

***** Minimum Spanning Tree

- Prim's Algorithm
- Kruskal's Algorithm

Problem Statement

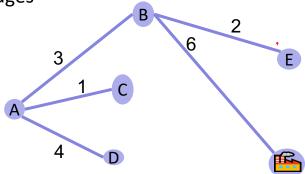
- Your friend at the electric company needs to connect all these cities to the power plant
- She knows the cost to lay wires between any pair of cities and wants the cheapest way to ensure electricity gets to every city



- Assume:
 - The graph is connected and undirected
 - (In general, edge weights can be negative; just not in this example)

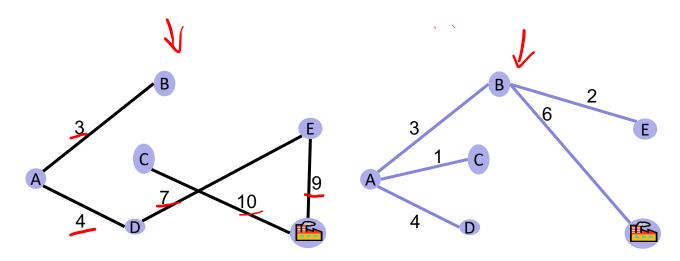
Solution Statement

- We need a set of edges such that:
 - Every vertex touches at least one edge ("the edges span the graph")
 - The graph using just those edges is connected
 - The total weight of these edges is minimized
- * Claim: The set of edges we pick never forms a cycle. Why?
 - V-1 edges is the exact number of edges to connect all vertices
 - Taking away 1 edge breaks connectiveness
 - Adding 1 edge makes a cycle



Solution Statement (v2)

- We need a set of edges such that Minimum Spanning Tree:
 - Every vertex touches at least one edge ("the edges span the graph")
 - The graph using just those edges is connected
 - The total weight of these edges is minimized



Minimum Spanning Trees

- Given an undirected graph G = (V,E), a minimum spanning tree is a graph G' = (V, E') such that:
 - E' is a subset of E
 - |E'| = |V| 1
 - G' is connected

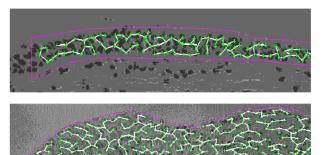
•
$$\sum_{(u,v)\in E'} \mathbf{C}_{uv}$$
 is minimal

Applications of MSTs

- Handwriting recognition
 - http://dspace.mit.edu/bitstrea m/handle/1721.1/16727/4355 1593-MIT.pdf;sequence=2

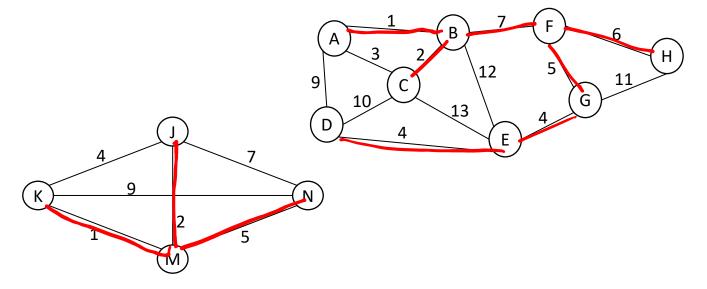
Figure 4-3: A typical minimum spanning tree

- Medical imaging
 - e.g. arrangement of nuclei in cancer cells

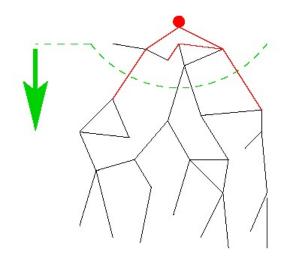


Exercise (not on Gradescope again..)

- Grab something to write with & something to write on!
- Draw the MST for each of the following:

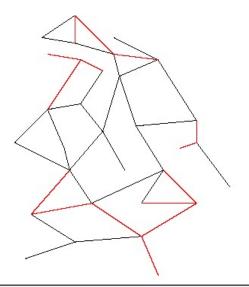


MST Algorithms: Two Different Approaches



Prim's Algorithm

Almost identical to Dijkstra's Start with one node, grow greedily



Kruskals's Algorithm

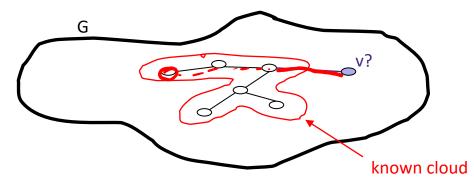
Completely different! Start with a *forest* of MSTs, union them together (Need a new data structure for this)

Lecture Outline

- Minimum Spanning Tree
 - Prim's Algorithm
 - Kruskal's Algorithm

Prim's Algorithm**

- Intuition: a vertex-based greedy algorithm
 - Builds MST by greedily adding vertices
- Summary: Grow a single tree by picking a vertex from the fringe that has the smallest cost
 - Unlike Dijkstra's, cost is the edge weight into the known set



** This algorithm was developed in 1930 by Votěch Jarník, then independently rediscovered by Robert Prim in 1957 and then Dijkstra in 1959. It's also known as Jarník's, Prim-Jarník, or DJP

Prim's Algorithm: Pseudocode

```
prims(Graph g) {
 foreach vertex v in q:
   v.distance = \infty
 start = g.getSomeArbitraryVertex()
 start.distance = 0
>mst = {}
heap = buildHeap(g.vertices - {start})
 foreach vertex v in start.neighbors():
    v.distance = g.weight(start, v)
   v.previous = start
    heap.decreaseKey(v, v.distance)
 while (! heap.empty()) :
    v = heap.deleteMin()
   mst.addEdge(v, v.previous
    foreach edge (v, u) in g:
      d1 = v.distance
      d2 = u.distance
      if (d1 < d2):
       u.previous = v
```

Remember our 5-step pattern for a graph traversal?

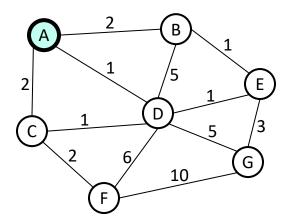
Prim's Algorithm vs. Dijkstra's Algorithm (1 of 2)

- Dijkstra's picks an unknown vertex with smallest distance to the source
 - ie, path weights
- Prim's picks an unknown vertex with smallest distance to the known set
 - i.e., edge weights
- * Some differences in the initialization, but otherwise identical

Prim's Algorithm: Pseudocode

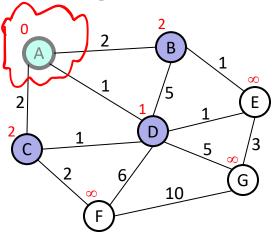
```
prims(Graph q) {
  foreach vertex v in q:
    v.distance = \infty
  start = g.getSomeArbitraryVertex()
  start.distance = 0
  mst = \{\}
  heap = buildHeap(g.vertices - {start})
  foreach vertex v in start.neighbors():
    v.distance = q.weight(start, v)
    v.previous = start
    heap.decreaseKey(v, v.distance)
  while (! heap.empty()):
    v = heap.deleteMin()
    mst.addEdge(v, v.previous)
    foreach edge (v, u) in g:
      d1 = v.distance
      d2 = u.distance
      if (d1 < d2):
        u.previous = v
```

```
dijkstra(Graph q, Vertex start) {
  foreach vertex v in q:
    v.distance = \infty
  start.distance = 0
  heap = buildHeap(g.vertices)
 while (! heap.empty()):
    v = heap.deleteMin()
    foreach edge (v, u) in g:
      d1 = v.dist + g.weight(v, u)
      d2 = u.dist
      if (d1 < d2):
        heap.decreaseKey(u, d1)
        u.previous = v
```



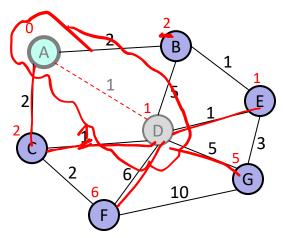
Order Added to Known Set:

Vertex	Known?	Distance	Previous
А		∞	
В		∞	
С		∞	
D		∞	
E		∞	
F		∞	
G		∞	



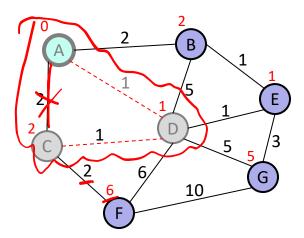
Order Added to Know	<u>'n Set:</u>
А	

Vertex	Known?	Distance	Previous
А	Y	0	\
В		2	А
С		2	А
D		1	А
E		∞	
F		∞	
G		∞	



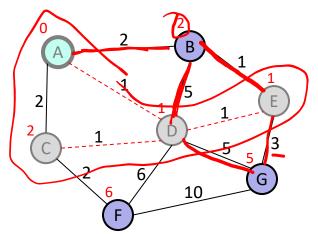
Order Added to Known Set: A, D

Vertex	Known?	Distance	Previous
А	Y	0	١
В		2	А
С		(\mathbf{I})	D
D	Y	1	А
E		1	D
F		6	D
G		5	D



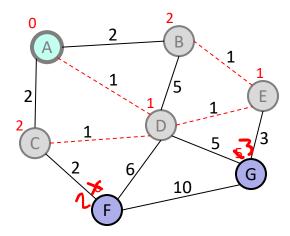
Order Added to Known Set: A, D, C

Vertex	Known?	Distance	Previous
А	Y	0	١
В		2	А
С	Y	1	D
D	Y	1	А
E		1	D
F		2	<u> </u>
G		5	D



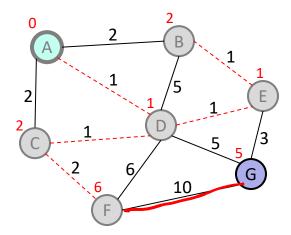
Order Added to Known Set: A, D, C, E

Vertex	Known?	Distance	Previous
А	Y	0	\
В		1	E.
С	Y	1	D
D	Y	1	А
E	Y	1	D
F		2	С
G		3	£



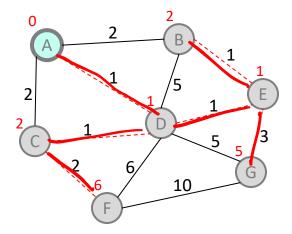
Order Added to Known Set: A, D, C, E, B

Vertex	Known?	Distance	Previous
А	Y	0	\
В	Y	1	E
С	Y	1	D
D	Y	1	А
E	Y	1	D
F		2	Ć
G		3	E



Order Added to Known Set: A, D, C, E, B, F

Vertex	Known?	Distance	Previous
А	Y	0	\
В	Y	1	E
С	Y	1	D
D	Y	1	А
E	Y	1	D
F	Y	2	С
G		3	Ę



Order Added to Known Set: A, D, C, E, B, F :D(one)

Total Cost: 9

Vertex	Known?	Distance	Previous
А	Y	0	\
В	Y	1	E
С	Y	1	D
D	Y	1	А
E	Y	1	D
F	Y	2	С
G	Y	3	E

Prim's Algorithm Visualizations

- Dijkstra's Visualization
 - https://www.youtube.com/watch?v=1oiQ0hrVwJk
 - Dijkstra's proceeds radially from its source, because it chooses edges by path length from source
- Prim's Visualization
 - https://www.youtube.com/watch?v=6uq0cQZOyoY
 - Prim's jumps around the MST-under-construction (the fringe), because it chooses edges by edge weight (there's no source)

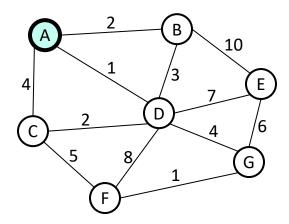
Prim's Algorithm: Analysis

- Correctness:
 - A bit tricky to prove, but intuitively similar to Dijkstra
 - Proof on next slide, but left as an activity if you're curious
- & Run-time:
 - Same as Dijkstra's! O(|E|log|V| + |V|log|V|) using a priority queue
 - But since $E \in O(|V|^2)$, can also state as $O(|E|\log|V|)$

Prim's Algorithm: Correctness Proof

- Want to prove: If G is a connected, weighted graph with distinct edge weights, Prim's algorithm correctly finds an MST.
- * Proof (credit: Stanford CS161, 13su); for more take CSE421!
 - Let T be the spanning tree found by Prim's algorithm and T* be the MST of G.
 We will prove T = T* by contradiction. Assume T =/T*. Therefore, T − T* ≠ Ø. Let (u, v) be any edge in T − T*.
 - When (u, v) was added to T, it was the least-cost edge crossing some cut (S, V − S). Since T* is an MST, there must be a path from u to v in T*. This path begins in S and ends in V − S, so there must be some edge (x, y) along that path where x ∈ S and y ∈ V − S. Since (u, v) is the least- cost edge crossing (S, V − S), we have c(u, v) < c(x, y).</p>
 - LetT*'=T*∪{(u,v)}--{(x,y)}. Since(x,y)isonthe cycle formed by adding (u, v), this means T*' is a spanning tree. However, c(T*') = c(T*) + c(u, v) − c(x, y) < c(T*), contradicting that T* is an MST.</p>
 - We have reached a contradiction, so our assumption must have been wrong. Thus T = T*, so T is an MST.

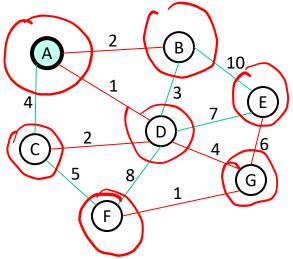
Exercise #2: Run through Prim's algorithm!



Order Added to Known Set:

Vertex	Known?	Distance	Previous
А		∞	
В		∞	
С		∞	
D		∞	
E		∞	
F		∞	
G		∞	

Exercise #2: Solution



Vertex	Known?	Distance	Previous
А	Y	0	/
В	Y	2	А
С	Y	2	D
D	Y	1	А
E	Y	6	G
F	Y	4	G
G	Y	1	D

Lecture Outline

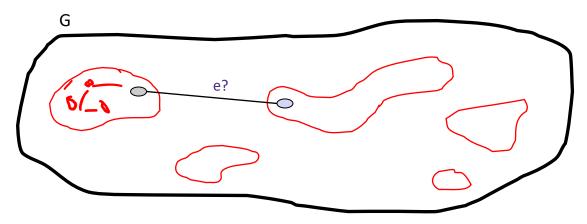
- Minimum Spanning Tree
 - Prim's Algorithm
 - Kruskal's Algorithm

Kruskal's Algorithm: A Different Approach

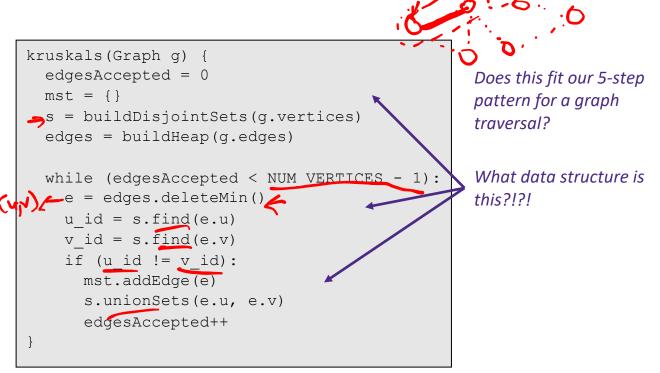
- Prim's thinks vertex by vertex
 - Eg, add the closest vertex to the currently reachable set
- What if you think edge by edge instead?
 - Eg, start from the lightest edge; add it if it connects new things to each other (don't add it if it would create a cycle)

Kruskal's Algorithm

- Intuition: an edge-based greedy algorithm
 - Builds MST by greedily adding edges
- Summary: Start with a *forest* of MSTs, and successively connect them by adding edges; do not create a cycle



Kruskal's Algorithm: Pseudo-pseudocode



Aside: Disjoint Sets ADT

- The Disjoint Sets ADT has two operations:
 Union
 - Find
 - AKA Union-Find ADT
- Applications include percolation theory (computational chemistry) and Kruskal's algorithm
- Simplifying assumptions
 - We can map elements to indices quickly
 - We know all the items in advance; they're all disconnected initially

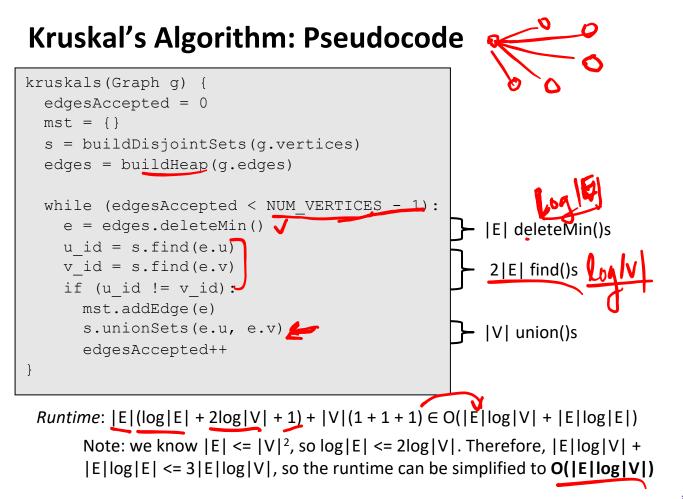
Disjoint Sets ADT

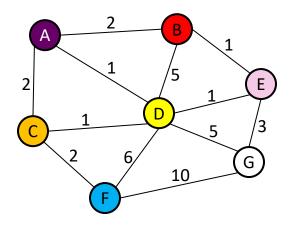
Disjoint Sets ADT. A

collection of elements and sets of those elements.

- An element can only belong to a single set.
- Each set is identified by a unique id.
- Sets can be combined/ connected/ unioned.

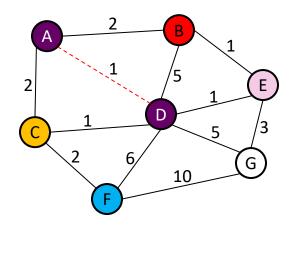
- w union(x, y): combines the set named x with the set named y; replaces x and y with (x ∪ y)
 - Given sets: {3,5,7} , {4,2,8}, {9}, {1,6}
 - Sets typically named after one of their elements
 - union(5,1) will union the set {3,5,7} with {1,6}
 - Result: {3,5,7,1,6}, {4,2,8}, {9}
 - Implementation: can be done in constant time
- find(e): gets the name of the element's set
 - Given sets: (3,5,7), {4,2,8}, {9}, {1,6}
 - find(1) returns 1
 - find(7) returns 5
 - Implementation: can be amortized constant time with worst case O(logn) for an individual find operation





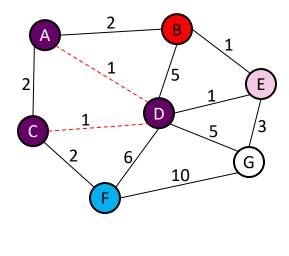
<u>MST</u>:

Weight	Edges	
1	(A,D), (C,D), (B,E), (D,E)	T
2	(A,B), (C,F), (A,C)	
3	(E <i>,</i> G)	
5	(D,G), (B,D)	
6	(D,F)	V
10	(F,G)	



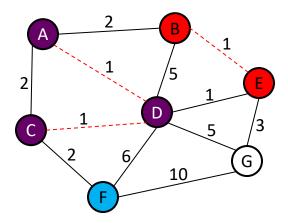
<u>MST</u>: (A, D)

Weight	Edges
1	(A,D), (C,D), (B,E), (D,E)
2	(A,B), (C,F), (A,C)
3	(E,G)
5	(D,G), (B,D)
6	(D,F)
10	(F,G)



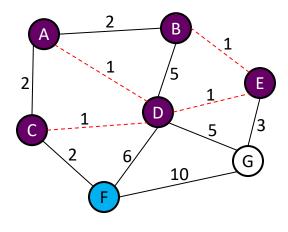
<u>MST</u>: (A, D), (C, D)

Weight	Edges
1	(A,D), (C,D), (B,E), (D,E)
2	(A,B), (C,F), (A,C)
3	(E,G)
5	(D,G), (B,D)
6	(D,F)
10	(F,G)



<u>MST</u>: (A, D), (C, D), (B, E)

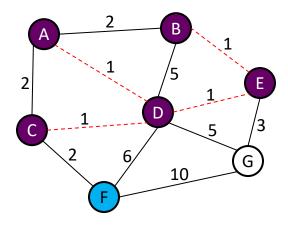
Weight	Edges
1	(A,D), (C,D), (B,E), (D,E)
2	(A,B), (C,F), (A,C)
3	(E,G)
5	(D,G), (B,D)
6	(D,F)
10	(F,G)



<u>MST</u>:

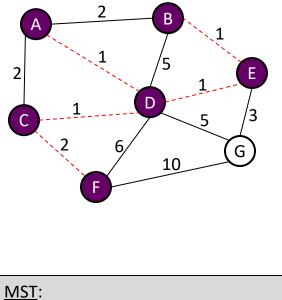
(A, D), (C, D), (B, E), (D, E)

Weight	Edges
1	(A,D), (C,D), (B,E), (D,E)
2	(A,B), (C,F), (A,C)
3	(E,G)
5	(D,G), (B,D)
6	(D,F)
10	(F,G)



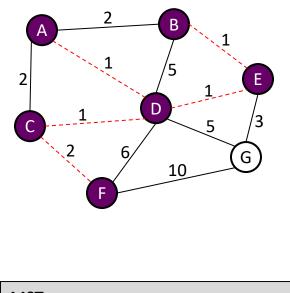
<u>MST</u>: (A, D), (C, D), (B, E), (D, E)

Weight	Edges
1	(A,D), (C,D), (B,E), (D,E)
2	(A,B), (C,F), (A,C)
3	(E,G)
5	(D,G), (B,D)
6	(D,F)
10	(F,G)



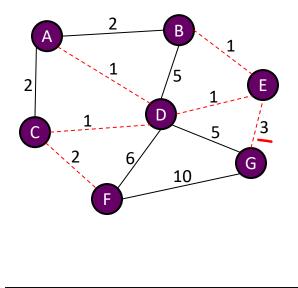
Weight	Edges
1	(A,D), (C,D), (B,E), (D,E)
2	(A,B), (C,F), (A,C)
3	(E,G)
5	(D,G), (B,D)
6	(D,F)
10	(F,G)

<u>MST</u>: (A, D), (C, D), (B, E), (D, E), (C, F)



<u>MST</u> :	
(A, D), (C, D), (B, E), (D, E), (C, F)	

Weight	Edges
1	(A,D), (C,D), (B,E), (D,E)
2	(A,B), (C,F), (A,C)
3	(E,G)
5	(D,G), (B,D)
6	(D,F)
10	(F,G)



<u>MST</u>: (A, D), (C, D), (B, E), (D, E), (C, F), (E, G) Yay!

Total Cost: 9

Weight	Edges
1	(A,D), (C,D), (B,E), (D,E)
2	(A,B), (C,F), (A,C)
3	(E,G)
5	(D,G), (B,D)
6	(D,F)
10	(F,G)

Kruskal's Algorithm Visualizations

- Prim's Visualization
 - https://www.youtube.com/watch?v=6uq0cQZOyoY
 - Prim's jumps around the fringe, adding edges by edge weight vertices
- Kruskal's Visualization:
 - https://www.youtube.com/watch?v=ggLyKfBTABo
 - Kruskal's jumps around the graph not just the fringe because it chooses edges by edge weight independent of the "tree under construction"

Kruskal's Algorithm: Correctness

- Kruskal's algorithm is clever, simple, and efficient
 - But does it generate a <u>minimum spanning</u> tree?
- First: it generates a <u>spanning</u> tree
 - Intuition: Original graph was connected; we kept edges that didn't create a cycle
 - Proof by contradiction:
 - Suppose (u, v) is not in Kruskal's result
 - Then there's a path from u to v in the original graph with a *cheaper* edge we could add without creating a cycle
 - But Kruskal would have added that edge. Contradiction!
- Second: there is no spanning tree with <u>lower total cost</u>
 - Requires a more complex proof by Induction & Contradiction
 - Won't provide in a slide (relies on graph properties we won't cover)
 - Happy to prove in OH if you're curious; again, take CSE 421!

Summary

- Minimum Spanning Trees are a subset of the edges in an undirected connected graph
- Prim's looks a lot like the vertex-based graph traversals we've seen so far, except it uses *edge weight* instead of *path weight*
 - And since edge weights don't change during the algorithm's execution, we don't need a decreaseKey() operation
- Kruskal's is an edge-based graph traversal (which we haven't seen so far), but still uses *edge weight* to choose edges
 - Doesn't need decreaseKey() for the same reason
 - Needs an auxiliary ADT the Disjoint Sets ADT to speed up execution