Dijkstra & Shortest Paths CSE 332 Summer 2021

Instructor: Kristofer Wong

Teaching Assistants:

Alena DickmannArya GJFinn JohnsonJoon ChongKimi LockePeyton RapoRahul MisalWinston Jodjana

Announcements

- Regrades
- Resume review & guest lecture next week

Lecture Outline

Shortest Paths!

Dijkstra's Algorithm

- Introduction
- Correctness Proof
- Runtime

Exercise (No Gradescope today!)

- Without using any formal algorithms, find the shortest path from A to E
 - ... assuming this graph is unweighted
 - ... assuming this graph is weighted

Single-Source Shortest Paths

 $\ast\,$ We've seen BFS finds the minimum path length from ${\bf v}$ to ${\bf u}$

Runtime: O(|E|+|V|)

- Actually, BFS finds the min path length from v to every vertex
 - Worst-case runtime for single-destination is no faster than worstcase runtime for all-destinations

Still O(|E|+|V|)

```
BFS(Node start) {
  q.enqueue(start)
  mark start as visited
  while (!q.empty())
    next = q.dequeue()
    process(next)
    foreach u adjacent to next
    if (!u.marked)
       mark u
       q.enqueue(u)
}
```

Shortest Path: Applications

- Network routing
- Driving directions
- Cheap flight tickets
- Critical paths in project management (see textbook)

۰...

Wait, these are all weighted graphs!

Single-Source Shortest Paths ... for Weighted Graphs

Given a weighted graph and vertex **v**, find the minimum-cost path from **v** to every vertex

- As before:
 - All-destinations is asymptotically no harder than single-destination
- Unlike before:
 - BFS will not work

BFS for Weighted Graphs

- BFS doesn't work! Shortest path may not have fewest edges
 - Eg: cost of flight. May be cheaper to fly through a hub than fly direct

- * We will assume there are *no negative edge weights*
 - Entire problem is *ill-defined* if there are negative-cost cycles
 - Today's algorithm is *wrong* if there are negative-cost *edges*

Negative Cycles vs Negative Edges

- Negative cycles: no algorithm can find a finite optimal path
 - You can always decrease the distance by going through the negative cycle a few more times
- Negative edges: Dijkstra's can't guarantee correctness
 - But other algorithms might

Lecture Outline

- Shortest Paths!
- Dijkstra's Algorithm
 - Introduction
 - Correctness Proof
 - Runtime

Dijkstra's Algorithm

- Named after its inventor, Edsger Dijkstra (1930-2002)
 - Truly one of the "founders" of computer science
 - 1972 Turing Award
 - This algorithm is just one of his many contributions!
 - Example quote: "Computer science is no more about computers than astronomy is about telescopes"
- The idea: reminiscent of BFS, but adapted to handle weights
 - Grow the set of nodes whose shortest distance has been computed
 - Nodes not in the set will have a "best distance so far"

Dijkstra's Algorithm: Idea

Initialization:

- Start vertex has distance 0; all other vertices have distance ∞
- At each step:
 - Pick closest unknown vertex v
 - Add it to the "cloud" of known vertices
 - Update distances for nodes with edges from v

Dijkstra's Algorithm: Pseudocode

```
dijkstra(Graph q, Vertex start) {
  foreach vertex v in q:
   v.distance = \infty
   v.known = false
  start distance = 0
 while there are vertices in g that are not known:
    select vertex v with lowest cost
   v.known = true
    foreach edge (v, u) with weight w:
     d1 = v.distance + w // best path through v to u
     d2 = u.distance // previous best path to u
     if (d1 < d2): // if this is a better path to u
       u.distance = d1
       u.previous = v // backtracking info to
                          // recreate path
```

Remember our 5-step pattern for a graph traversal?

Dijkstra's Algorithm: Important Features

- Once a vertex is marked known, its shortest path is known
 - Can reconstruct path by following back-pointers ("previous" fields)
- While a vertex is not known, another shorter path might be found

Order Added to Known Set:

Vertex	Known?	Distance	Previous
А		∞	
В		∞	
С		∞	
D		∞	
Е		∞	
F		∞	
G		∞	
Н		∞	

<u>Order</u>	Added	to	Known	Set:
А				

Vertex	Known?	Distance	Previous
А	Y	0	/
В		≤2	Α
С		≤1	Α
D		≤4	Α
E		∞	
F		∞	
G		∞	
Н		∞	

Order Added to Known Set: A, C

Vertex	Known?	Distance	Previous
А	Y	0	/
В		≤ 2	А
С	Y	1	А
D		≤ 4	А
E		≤ 12	С
F		∞	
G		∞	
Н		∞	

Order Added to Known Set: A, C, B

Vertex	Known?	Distance	Previous
А	Y	0	/
В	Y	2	А
С	Y	1	А
D		≤ 4	А
E		≤ 12	С
F		≤4	В
G		∞	
Н		∞	

Order Added to Known Set: A, C, B, D

Vertex	Known?	Distance	Previous
А	Y	0	/
В	Y	2	А
С	Y	1	А
D	Y	4	А
Е		≤ 12	С
F		≤ 4	В
G		∞	
Н		∞	

Order Added to Known Set: A, C, B, D, F

Vertex	Known?	Distance	Previous
А	Y	0	/
В	Y	2	А
С	Y	1	А
D	Y	4	А
E		≤ 12	С
F	Y	4	В
G		∞	
Н		≤7	F

Order Added to Known Set: A, C, B, D, F, H

Vertex	Known?	Distance	Previous
А	Y	0	/
В	Y	2	А
С	Y	1	А
D	Y	4	А
E		≤ 12	С
F	Y	4	В
G		≤ 8	н
Н	Y	7	F

Order Added to Known Set: A, C, B, D, F, H, G

Vertex	Known?	Distance	Previous
А	Y	0	/
В	Y	2	А
С	Y	1	А
D	Y	4	А
E		≤11	G
F	Y	4	В
G	Y	8	Н
Н	Y	7	F

TADA!!!

Vertex	Known?	Distance	Previous
А	Y	0	/
В	Y	2	А
С	Y	1	А
D	Y	4	А
E	Y	11	G
F	Y	4	В
G	Y	8	Н
Н	Y	7	F

Order Added to Known Set:

A, C, B, D, F, H, G, E

Dijkstra's Algorithm: Interpreting the Results

Now that we're done, how do we get the path from A to E?

> Order Added to Known Set: A, C, B, D, F, H, G, E

Vertex	Known?	Distance	Previous
А	Y	0	/
В	Y	2	А
С	Y	1	А
D	Y	4	А
E	Y	11	G
F	Y	4	В
G	Y	8	Н
Н	Y	7	F

Dijkstra's Algorithm: Stopping Short

- Would this have been different if we only wanted:
 - The path from A to G?
 - The path from A to D?

Order Added to Known Set: A, C, B, D, F, H, G, E

Vertex	Known?	Distance	Previous
А	Y	0	/
В	Y	2	А
С	Y	1	А
D	Y	4	А
E	Y	11	G
F	Y	4	В
G	Y	8	Н
Н	Y	7	F

Review: Important Features

- Once a vertex is marked known, its shortest path is known
 - Can reconstruct path by following back-pointers ("previous" fields)
- While a vertex is not known, another shorter path might be found
- The "Order Added to Known Set" is unimportant
 - A detail about how the algorithm works (client doesn't care)
 - Not used by the algorithm (implementation doesn't care)
 - It is sorted by path-distance; ties are resolved "somehow"

Order Added to Known Set:

Vertex	Known?	Distance	Previous
А		∞	
В		∞	
С		∞	
D		∞	
Е		∞	
F		∞	
G		∞	

Order Add	ed to	Known	Set:
А			

Vertex	Known?	Distance	Previous
А	Y	0	/
В		∞	
С		≤ 2	Α
D		≤1	Α
E		∞	
F		∞	
G		∞	

Order Added to Known Set: A, D

Vertex	Known?	Distance	Previous
А	Y	0	/
В		≤6	D
С		≤ 2	А
D	Y	1	А
Е		≤ 2	D
F		≤7	D
G		≤6	D

Order Added to Known Set: A, D, C

Vertex	Known?	Distance	Previous
А	Y	0	/
В		≤6	D
С	Y	2	А
D	Y	1	А
Е		≤ 2	D
F		≤4	С
G		≤6	D

Order Added to Known Set: A, D, C, E

Vertex	Known?	Distance	Previous
А	Y	0	/
В		≤3	E
С	Y	2	А
D	Y	1	А
Е	Y	2	D
F		≤ 4	С
G		≤6	D

Order Added to Known Set: A, D, C, E, B

Vertex	Known?	Distance	Previous
А	Y	0	/
В	Y	3	Е
С	Y	2	А
D	Y	1	А
E	Y	2	D
F		≤ 4	С
G		≤6	D

Order Added to Known Set: A, D, C, E, B, F

Vertex	Known?	Distance	Previous
А	Y	0	/
В	Y	3	Е
С	Y	2	А
D	Y	1	А
E	Y	2	D
F	Y	4	С
G		≤6	D

Order Added to Known Set: A, D, C, E, B, F, G

😈 🗑 wooноо!!! 🗑 🗑

Vertex	Known?	Distance	Previous
А	Y	0	/
В	Y	3	Е
С	Y	2	А
D	Y	1	А
E	Y	2	D
F	Y	4	С
G	Y	6	D

- How will the best-pathlen-so-far for Y proceed?
 - 90, 81, 72, 63, 54, ...
- ✤ Is this expensive?
 - No, each <u>edge</u> is processed only once

Lecture Outline

- Shortest Paths!
- Dijkstra's Algorithm
 - Introduction
 - Correctness Proof
 - Runtime

A Greedy Algorithm

- Dijkstra's Algorithm
 - Single-source shortest paths in a weighted graph (directed or undirected) with no negative-weight edges
- Dijkstra's is an example of a greedy algorithm:
 - At each step, irrevocably does what seems best at that step
 - Makes locally optimal decision; decision isn't necessarily globally optimal
 - Once a vertex is known, it is not revisited
 - Turns out, the decision is globally optimal!

Where Are We?

- What should we do after learning an algorithm?
- Prove it is correct
 - Not obvious!
 - We will sketch the key ideas
- Analyze its efficiency
 - And improve it by using a data structure we learned earlier!

Correctness: Intuition

- Statement: all "known" vertices have the correct shortest path
 - True initially: shortest path to start vertex has cost 0
 - If the new vertex marked "known" also has the correct shortest path, then by induction this statement holds
 - Thus, when the algorithm terminates (ie, everything is "known"), we will have the correct shortest path to every vertex
- *Key fact we need*: when we mark a vertex "known", we won't discover a shorter path later!
 - This holds only because Dijkstra's algorithm picks the vertex with the next shortest path-so-far
 - The proof of this fact is by contradiction ...

Correctness: Rough Idea

- Let v be the next vertex marked known ("added to the cloud")
 - The *best-known path* to v only contains nodes "in the cloud" and has weight w
 - (we used Dijkstra's to select this path, and we only know about paths through the cloud to a vertex in the fringe)

Assume the actual shortest path to v is different

- It must use at least one non-cloud vertex (otherwise we'd know about it)
- Let u be the *first* non-cloud vertex on this path
- The path weight from u to v weight (u, v) must be ≥0 (no negative weights)
- Thus, the total weight of the path from src to u must be <w (otherwise weight (src, u) + weight (u, v) > w and this path wouldn't be shorter)
- But if weight (src, u) < w, then v would not have been picked

CONTRADICTION!!!

Lecture Outline

- Shortest Paths!
- Dijkstra's Algorithm
 - Introduction
 - Correctness Proof
 - Runtime

Runtime, First Approach

```
dijkstra(Graph q, Vertex start) {
  foreach vertex v in g:
                                                  O(|V|)
    v.distance = \infty
    v.known = false
  start.distance = 0
  while there are vertices in q
                                                  O(|V|^2)
  that are not known:
    select vertex v with lowest cost
    v.known = t.rue
    foreach unknown edge (v, u) in g:
      d1 = v.distance + g.weight(v, u)
      d2 = u.distance
                                                  O(|E|)
      if (d1 < d2):
                                                  (notice each edge is
        u.distance = d1
                                                  processed only once)
        u.previous = v
                                              Total: O(|V|^2 + |E|)_{12}
```

Improving Asymptotic Runtime

- ↔ Current runtime: O(|V|²+ |E|) ∈ O(|V|²)
- We had a similar "problem" with toposort being $O(|V|^2 + |E|)$
 - Caused by each iteration looking for the next vertex to process
 - Solved it with a queue of zero-degree vertex!
 - But here we need:
 - The lowest-cost vertex
 - Ability to change costs, since they can change as we process edges
- Solution?
 - A priority queue holding all unknown vertex sorted by cost
 - Must support decreaseKey operation
 - Conceptually simple, but a pain to code up

Runtime, Second Approach

```
dijkstra(Graph g, Vertex start) {
  foreach vertex v in q:
                                                   O(|V|)
    v.distance = \infty
  start.distance = 0
                                                   O(|V|)
  heap = buildHeap(g.vertices)
  while (! heap.empty()):
                                               \rightarrow O(|V| \log |V|)
    v = heap.deleteMin()
    foreach unknown edge (v, u) in g:
       d1 = v.distance + q.weight(v, u)
                                                    O(|E|)
       d2 = u.distance
                                                    (each edge processed once)
       if (d1 < d2):
         heap.decreaseKey(u, d1)
                                                   O(|E| \log |V|)
         u.previous = v
                                                   (|E| decreaseKey() calls)
```

Total: O(|V|log|V|+ |E|log|V|) 44

Runtime as a Function of Density

- * First approach (linear scan): $O(|V|^2 + |E|)$
- Second approach (heap): O(|V|log|V|+|E|log|V|)
- So which is better?
 - In a sparse graph, $|E| \in O(|V|)$
 - So second approach (heap) is better? O(|E|log|V|)
 - In a dense graph, $|E| \in \Theta(|V|^2)$
 - So first approach (linear scan) is better? O(|E|)
- But: remember these are worst-case and asymptotic
 - Heap might have worse constant factors
 - Maybe decreaseKey is cheap, making |E|log|V| more like |E|
 - It's called rarely, or vertices don't percolate far