W UNIVERSITY of WASHINGTON L20: Graph Algorithms

Graph Algorthms

CSE 332 Summer 2021

Instructor: Kristofer Wong

Teaching Assistants:

Alena Dickmann Arya GJ

Joon Chong Kimi Locke
Rahul Misal Winston Jodjana

Finn Johnson
Peyton Rapo

CSE332, Summer 2021

W UNIVERSITY of WASHINGTON L20: Graph Algorithms CSE332, Summer 2021

Announcements

+ Exercises 13, 14 out!
® Correct due dates listed on Ed

«» Midterm reflection Q1 resubmissions

W UNIVERSITY of WASHINGTON L20: Graph Algorithms CSE332, Summer 2021

Lecture Outline

<« Graph Representations
® Adjacency Matrix
® Adjacency List

« Topological Sort

« Traversals
® Breadth-first
® Depth-first
= Conclusion

W UNIVERSITY of WASHINGTON L20: Graph Algorithms CSE332, Summer 2021

What is the Data Structure?

« Is a Graph an ADT? Maybe!

= “Develop an algorithm over the graph, then use whatever data
structure is efficient”

+ The “best” data structure can depend on:
® Properties of the graph (e.g., dense versus sparse)

" Common queries
- e.g., “is (u,v) an edge?” vs “what are the neighbors of node u?”

+ There are two standard graph representations:
® Adjacency Matrix and Adjacency List
= Different trade-offs, particularly time vs space

W UNIVERSITY of WASHINGTON L20: Graph Algorithms CSE332, Summer 2021

Lecture Outline

« Graph Representations
= Adjacency Matrix
® Adjacency List

« Topological Sort

« Traversals
® Breadth-first
® Depth-first
= Conclusion

W UNIVERSITY of WASHINGTON L20: Graph Algorithms CSE332, Summer 2021

Adjacency Matrix: Representation

+ Assign each node a number from O to |V | -1
« Graphisa |V|x|V| matrix (ie, 2-D array) of booleans

" M[u] [v] == true meansthereisanedge fromutov
A B C D
A F T F F
D
O B T F F F

W UNIVERSITY of WASHINGTON

Adjacency Matrix: Properties (1 of 3)

+ Running time to:
" Get a vertex’s out-edges:
- O(V])
" Get a vertex’s in-edges:
- O(|V])
® Decide if some edge exists:
- O(1)
" Insert an edge:
- O(1)
® Delete an edge:
- 0(1)
+ Space requirements:
= |V]? bits
+ Best for sparse or dense graphs?
® Best for dense graphs

L20: Graph Algorithms

m M = M >

m = M - w

CSE332, Summer 2021

M M M M 0O

M = T M O

W UNIVERSITY of WASHINGTON L20: Graph Algorithms CSE332, Summer 2021

Adjacency Matrix: Properties (2 of 3)

+ How does the adjacency matrix vary for an undirected graph?
® Undirected graphs are symmetric about diagonal axis

® [anguages with array-of-array matrix representations can save % the
space by omitting the symmetric half
« Languages with “proper” 2D matrix representations (eg, C/C++) can’t do this

A B C D

D A°F T F F

A cEED s T [F T F
- cC'F [T F T

o F F T F

W UNIVERSITY of WASHINGTON L20: Graph Algorithms CSE332, Summer 2021

Adjacency Matrix: Properties (3 of 3)

+ How can we adapt the representation for weighted graphs?
m Store the weight in each cell

® Need some value to represent “not an edge”
« In some situations, O or -1 works

©O O wW o »r
O N O N w
O O O O o
o oo O O o

W UNIVERSITY of WASHINGTON L20: Graph Algorithms CSE332, Summer 2021

Lecture Outline

« Graph Representations
® Adjacency Matrix
= Adjacency List

« Topological Sort

« Traversals
® Breadth-first
® Depth-first
= Conclusion

10

W UNIVERSITY of WASHINGTON L20: Graph Algorithms CSE332, Summer 2021

Adjacency List: Representation

+ Assign each node a number from O to |V | -1

« Graph is an array of length |V |; each entry stores a list of all
adjacent vertices

= E.g. linked list

’ S) 4 mi

11

W UNIVERSITY of WASHINGTON L20: Graph Algorithms CSE332, Summer 2021

Adjacency List: Properties (1 of 3)

« Running time to:

" Get a vertex’s out-edges:
+ O(d) where d is out-degree of vertex

Get a vertex’s in-edges: A

— B
< O(]V] +E])
+ (but could keep a second adjacency list for this!) B > A
= Decide if some edge exists: C —— B D
+ O(d) where d is out-degree of source vertex
" |nsert an edge: D/
- 0(1)
+ (unless you need to check if it’s there; then O(d)) D

Delete an edge:

+ O(d) where d is out-degree of source vertex A
« Space requirements:
= O(|V|+|E])
<« Best for sparse or dense graphs?

= Best for sparse graphs, so usually just stick with linked lists for the buckets

W UNIVERSITY of WASHINGTON L20: Graph Algorithms CSE332, Summer 2021

Adjacency List: Properties (2 of 3)

+ How does the adjacency list vary for an undirected graph?
® Optionally, can double the entries to increase edge lookup speed

A —_— B

B = C

A B) S N

.. Oor ...

13

W UNIVERSITY of WASHINGTON L20: Graph Algorithms CSE332, Summer 2021

Adjacency List: Properties (3 of 3)

+ How can we adapt the representation for weighted graphs?
m Store the weight alongside the destination vertex
® No need for a special value to represent “not an edge”!

A =——B,7

B —— A3

C — B2 D, 6

14

W UNIVERSITY of WASHINGTON L20: Graph Algorithms CSE332, Summer 2021

Summary: Which is Better?

+ Graphs are often sparse:
® Road networks are often grids

- Every corner isn’t connected to every other corner

= Airlines rarely fly to all possible cities
- Orif they do it is to/from a hub

+ Adjacency lists should generally be your default choice
= Slower performance compensated by greater space savings
® Many graph algorithms rely heavily on getAllEdgesFrom(v)

_ getAllEdgesFrom(v) | hasEdge(v, w) | getAllEdges()

Adjacency
Matrix

Adjacency List O(degree(v)) O(degree(v)) O(E +V)

o(V) 0(1) o(Vv?)

15

W UNIVERSITY of WASHINGTON L20: Graph Algorithms CSE332, Summer 2021

Quick Detour: Overview of Graph Problems

16

W UNIVERSITY of WASHINGTON L20: Graph Algorithms CSE332, Summer 2021

Graph Problems

+ Lots of interesting questions we can ask about a graph:

® What is the shortest route from S to T? What is the longest route
without cycles?

= Are there cycles in this graph?
" |s there a cycle that uses each vertex exactly once?
" |s there a cycle that uses each edge exactly once?

Introduction to Network Visualization with GEPHI — Martin Grandjean

Examples .
‘-._.‘/f‘) o
%, ‘ P il
., o ® o
. erd 52
S :éi. 3 o %o°
$ e o
S e o
o cog®® O (] X0V
"-.-,...:0 ': .’,.: f/g:f'\‘ :
°3. ° o ,: L®% %
%o o] o *a”‘/.‘. oo oo
@ ¢ o SO o
-~ oo ®
T Pl 3 e g
¥ o i:‘p !
P NGO
3 b Lo
b4 2 o

W UNIVERSITY of WASHINGTON L20: Graph Algorithms CSE332, Summer 2021

Graph Problems More Theoretically

« Some well known graph problems and their common names:
" s-t Path. Is there a path between vertices s and t?
® Connectivity. Is the graph connected?

= Biconnectivity. Is there a vertex whose removal disconnects the
graph?

= Shortest s-t Path. What is the shortest path between vertices s and t?
" Cycle Detection. Does the graph contain any cycles?

" Euler Tour. Is there a cycle that uses every edge exactly once?

" Hamilton Tour. Is there a cycle that uses every vertex exactly once?

® Planarity. Can you draw the graph on paper with no crossing edges?
® Isomorphism. Are two graphs the same graph (in disguise)?

+ Often can’t tell how difficult a graph problem is without very
deep consideration.

W UNIVERSITY of WASHINGTON L20: Graph Algorithms CSE332, Summer 2021

Graph Problem Difficulty

+ Some well known graph problems:
" Euler Tour: Is there a cycle that uses every edge exactly once?
" Hamilton Tour: Is there a cycle that uses every vertex exactly once?

+ Difficulty can be deceiving

= An efficient Euler tour algorithm O(# edges) was found as early as
1873 [Link].

= Despite decades of intense study, no efficient algorithm for a
Hamilton tour exists. Best algorithms are exponential time.

« Graph problems are among the most mathematically rich areas
of CS theory

https://ethkim.github.io/TA/251/eulerian.pdf

W UNIVERSITY of WASHINGTON L20: Graph Algorithms CSE332, Summer 2021

Lecture Outline

« Graph Representations
® Adjacency Matrix
® Adjacency List

<+ Topological Sort

« Traversals
® Breadth-first
® Depth-first
= Conclusion

20

W UNIVERSITY of WASHINGTON

L20: Graph Algorithms

CSE332, Summer 2021

Topological Sort

Disclaimer: Do not use for official advising purposes!
Falsely implies CSE 332 is a prereq for CSE 312, etc.

+ Given a DAG, output all the vertices in an order such that no
vertex appears before any other vertex that has a path to it

« Example input:

CSE 311 » CSE 312 » CSE 440
7y
MATH 126 CSE 331 CSE 332
CSE 143
CSE 341 E
CSE 142 CSE 333
CSE 351 » CSE 352

« Example output:

" 126, 142, 143, 311, 331, 332, 312, 341, 351, 333, 352, 440

21

W UNIVERSITY of WASHINGTON L20: Graph Algorithms CSE332, Summer 2021

||I| gr a d e S C O p e gradescope.com/courses/275833

.

*

<,

<+ List 3 valid Topological sorts: 2 >|:
1 4
3 .

Why do we perform topological sorts only on DAGS?

= A cycle means there is no correct answer

Does a DAG always have a unique answer?

= No; there can be 1 or more answers, depending on the graph

KD
£ X4

5

%

.

- What DAGs have exactly 1 answer?

= Alist

Terminology: A DAG represents a partial order, and a topological sort
produces a total order that is consistent with it

%

KD
£ X4

22

W UNIVERSITY of WASHINGTON L20: Graph Algorithms CSE332, Summer 2021

Topological Sort: Applications

<« Figuring out how to finish your degree

+ Determining the order for recomputing spreadsheet cells
« Computing the order to compile files using a Makefile

+ Scheduling jobs in a big data pipeline

« Often: finding an order of execution for a dependency graph

23

W UNIVERSITY of WASHINGTON L20: Graph Algorithms CSE332, Summer 2021

TopoSort: A Naive Algorithm

1. Label (“mark”) each vertex with its in-degree
® Could write directly into a vertex’s field or a parallel data structure
(e.g., array)
2. While there are vertices not yet output:
" Choose a vertex v with labeled with in-degree of 0
® Qutput v and conceptually remove it from the graph

" Foreach vertex w adjacent to v: De';'ee pd
Decrement the in-degree of w 0
> 3
1 > 2 |=—» 3
2 > 4
3 > 4
4 /
24

W UNIVERSITY of WASHINGTON L20: Graph Algorithms CSE332, Summer 2021

TopoSort: Notes

+ Needed a vertex with in-degree of O to start
= Remember: graph must be acyclic!

+ If >1 vertex with in-degree=0, can break ties arbitrarily
® Potentially many different correct orders!

25

W UNIVERSITY of WASHINGTON L20: Graph Algorithms CSE332, Summer 2021

Naive TopoSort: Running Time?

labelEachVertexWithItsInDegree () ;
for (1i=0; i < numVertices; i++) {
v = findNewVertexOfDegreeZero () ;
put v next in output
for each w adjacent to v
w.lndegree--;

In- Adj
Degree List

0 > 3
1 > 2 = 3
2 > 4
3 > 4
4
2%

W UNIVERSITY of WASHINGTON L20: Graph Algorithms CSE332, Summer 2021

TopoSort’s Runtime: Doing Better

+ Avoid searching for a zero-degree node every time!
= Keep the “pending” 0-degree nodes in a list, stack, queue, table, etc

" The irder we process them affects output, but not correctness or
efficiency ()

+ Using a queue:
® Label each vertex with its in-degree, enqueuing 0-degree nodes
= While “pending” queue is not empty:
- v=dequeue()
« Output v and remove it from the graph

- For each vertex w adjacent to v (i.e. w such that (v,w) in E):
— decrement the in-degree of w
— if new degree is 0, enqueue it

27

W UNIVERSITY of WASHINGTON L20: Graph Algorithms CSE332, Summer 2021

Better TopoSort: Running Time?

labelAllAndEnqueueZeros () ;
for (i=0; 1 < numVertices; i++) {
v = dequeue () ;
put v next in output
for each w adjacent to v
w.lndegree--;
if (w.indegree == 0)
enqueue (w) ;

In- Adj
Degree List

0 > 3
1 > 2 |=—» 3
2 > 4
3 > 4
4
28

W UNIVERSITY of WASHINGTON L20: Graph Algorithms CSE332, Summer 2021

Lecture Outline

« Graph Representations
® Adjacency Matrix
® Adjacency List

« Topological Sort

<+ Traversals
® Breadth-first
® Depth-first
= Conclusion

29

W UNIVERSITY of WASHINGTON L20: Graph Algorithms CSE332, Summer 2021

||I| gr a d e S C O p e gradescope.com/courses/275833

+ You've seen a graph traversal before in 143. List all three.

30

W UNIVERSITY of WASHINGTON L20: Graph Algorithms CSE332, Summer 2021

Tree and Graph Reachability

+ Find all nodes reachable from a starting node v
" je, there exists a path

" Might “do something” at each visited node (an iterator!)

- “Do something” is called visiting or processing a node
— eg, print to output, set some field, etc.

- Traversing a node or iterating over a node is different!
— Just fetch adjacent/child nodes

+ Related Questions:
® |s an undirected graph connected?

" |s a directed graph weakly / strongly connected?
- For strongly, need a cycle back to starting node

31

W UNIVERSITY of WASHINGTON L20: Graph Algorithms CSE332, Summer 2021

Tree and Graph Traversals

+ Can answer reachability with a tree traversal or graph
traversal
" |terates over every node in a graph in some defined ordering
= “Processes” or “visits” its contents

+ There are several types of tree traversals
® Level Order Traversal aka Breadth-First Traversal

® Depth-First Traversal
« Pre-order Traversal
+ In-order Traversal
- Post-order Traversal

32

W UNIVERSITY of WASHINGTON

Tree/Graph Traversal:

« High-level Algorithm:
" |nitialization:
- Create an empty data structure

(often called a “fringe”) to track
“remaining work”

- Mark start as visited
= While we still have work,
follow the nodes:
- Geta node
- Visit/process that node

« Update its neighbors (eg, add
to “remaining work” if it’s not
already there)

+ Memorize this 5-step
pattern!

L20: Graph Algorithms

CSE332, Summer 2021

High-level Algorithm

traverseGraph (Node start) {
pending = emptyFringe ()
pending.add(start)
mark start as visited
while (!pending.empty()) {
next = pending.remove ()
process (next) //marks visited
foreach u adjacent to next
if (!'u.marked)
mark u

pending.add (u)

33

W UNIVERSITY of WASHINGTON L20: Graph Algorithms CSE332, Summer 2021

Tree/Graph Traversal: Running Time

« Assuming add() and remove() are O(1), traversal is O(|E|)
= Remember: we default to using an adjacency list

34

W UNIVERSITY of WASHINGTON L20: Graph Algorithms CSE332, Summer 2021

Tree/Graph Traversal: Order

« The order we process() depends entirely on how pending.add()
and pending.remove() are implemented

" Queue:

- Tree: Level-order traversal

« Graph: Breadth-first graph search (BFS)
= Stack:

- Tree: Depth-first search (3 flavors!)

- Graph: Depth-first graph search (DFS)

« DFS and BFS are “big ideas” in computer science

® Depth: explore one part before exploring other unexplored parts

® Breadth: explore parts closer to the start before exploring farther
parts

35

W UNIVERSITY of WASHINGTON L20: Graph Algorithms CSE332, Summer 2021

Lecture Outline

« Graph Representations
® Adjacency Matrix
® Adjacency List

« Topological Sort

« Traversals
® Breadth-first
® Depth-first
= Conclusion

36

W UNIVERSITY of WASHINGTON L20: Graph Algorithms CSE332, Summer 2021

Graphs: Breadth-First Search

+ The fringe here is a Queue!

BFS (Node start) {
g.enqueue (start)
mark start as visited

while (!g.empty())
next = g.dequeue ()
process (next)
foreach u adjacent to next
if (!'u.marked)
mark u

g.enqueue (u)

37

W UNIVERSITY of WASHINGTON L20: Graph Algorithms CSE332, Summer 2021

Trees: Level-Order
(D)

+ Process top-to-bottom, left-to-right 0
® Like reading in English

(F)
®w ©0® ©

® Goes “broad” instead of “deep”

« Resembles how we converted our binary heap (ie, a complete
tree) to its array representation

38

W UNIVERSITY of WASHINGTON

Breadth-First Search on a Graph

Queue:

Marked:

Order Processed:

BFS (Node start) {
g.enqueue (start)

mark start as visited

while (!g.empty())
next = g.dequeue ()
process (next)
foreach u adjacent to next
if (!'u.marked)
mark u

g.enqueue (u)

L20: Graph Algorithms

CSE332, Summer 2021

39

W UNIVERSITY of WASHINGTON L20: Graph Algorithms CSE332, Summer 2021

Breadth-First Search on a Graph

Queue:
A

Marked:
A

Order Processed:

BFS (Node start) {
g.enqueue (start)

mark start as visited

while (!g.empty())
next = g.dequeue ()
process (next)

foreach u adjacent to next

if (!u.marked)
mark u

g.enqueue (u)

W UNIVERSITY of WASHINGTON L20: Graph Algorithms CSE332, Summer 2021

Breadth-First Search on a Graph

Queue:
B,C,D

Marked:
A B,C D

Order Processed:
A

BFS (Node start) {
g.enqueue (start)

mark start as visited

while (!g.empty())
next = g.dequeue ()
process (next)

foreach u adjacent to next

if (!u.marked)
mark u

g.enqueue (u)

W UNIVERSITY of WASHINGTON L20: Graph Algorithms CSE332, Summer 2021

Breadth-First Search on a Graph

Queue:
C,D,E F

Marked:
A B,CD,E F

Order Processed:
A B

BFS (Node start) {
g.enqueue (start)

mark start as visited

while (!g.empty())
next = g.dequeue ()
process (next)

foreach u adjacent to next

if (!u.marked)
mark u

g.enqueue (u)

W UNIVERSITY of WASHINGTON L20: Graph Algorithms CSE332, Summer 2021

Breadth-First Search on a Graph

Queue:
D,E,F, G

Marked:
ABCD,EFG

Order Processed:
A, B,C

BFS (Node start) {
g.enqueue (start)

mark start as visited

while (!g.empty())
next = g.dequeue ()
process (next)

foreach u adjacent to next

if (!u.marked)
mark u

g.enqueue (u)

W UNIVERSITY of WASHINGTON L20: Graph Algorithms CSE332, Summer 2021

Breadth-First Search on a Graph

Queue:
E,F,G,H

Marked:
A BCD,EF G, H

Order Processed:
A B,C D

BFS (Node start) {
g.enqueue (start)

mark start as visited

while (!g.empty())
next = g.dequeue ()
process (next)

foreach u adjacent to next

if (!u.marked)
mark u

g.enqueue (u)

W UNIVERSITY of WASHINGTON L20: Graph Algorithms CSE332, Summer 2021

Breadth-First Search on a Graph

Queue:
F,G,H,]J

Marked:
A B,CD,E F G,H,]J

Order Processed:
A B,CDE

BFS (Node start) {
g.enqueue (start)

mark start as visited

while (!g.empty())
next = g.dequeue ()
process (next)

foreach u adjacent to next

if (!u.marked)
mark u

g.enqueue (u)

W UNIVERSITY of WASHINGTON L20: Graph Algorithms CSE332, Summer 2021

Breadth-First Search on a Graph

Queue:
G,H,)J

Marked:
A B,CD,E F G,H,]J

Order Processed:
A B,CD,EF

BFS (Node start) {
g.enqueue (start)

mark start as visited

while (!g.empty())
next = g.dequeue ()
process (next)

foreach u adjacent to next

if (!u.marked)
mark u

g.enqueue (u)

W UNIVERSITY of WASHINGTON L20: Graph Algorithms CSE332, Summer 2021

Breadth-First Search on a Graph

Queue:
H,)

Marked:
A B,CD,E F G,H,]J

Order Processed:
A BCD,EFG

BFS (Node start) {
g.enqueue (start)

mark start as visited

while (!g.empty())
next = g.dequeue ()
process (next)

foreach u adjacent to next

if (!u.marked)
mark u

g.enqueue (u)

W UNIVERSITY of WASHINGTON

Breadth-First Search on a Graph

Queue:
J, 1

Marked:
A BCD,EFG,H,]J I

Order Processed:
A BCD,E F G, H

BFS (Node start) {
g.enqueue (start)

mark start as visited

while (!g.empty())
next = g.dequeue ()
process (next)
foreach u adjacent to next
if (!'u.marked)
mark u

g.enqueue (u)

L20: Graph Algorithms

CSE332, Summer 2021

48

W UNIVERSITY of WASHINGTON

Breadth-First Search on a Graph

Queue:
|

Marked:
A BCD,EFG,H,]J I

Order Processed:
A B,CD,E F G,H,]J

BFS (Node start) {
g.enqueue (start)

mark start as visited

while (!g.empty())
next = g.dequeue ()
process (next)
foreach u adjacent to next
if (!'u.marked)
mark u

g.enqueue (u)

L20: Graph Algorithms

CSE332, Summer 2021

49

W UNIVERSITY of WASHINGTON L20: Graph Algorithms CSE332, Summer 2021

Breadth-First Search on a Graph

Queue:

Marked:
A BCD,EFG,H,]J I

Order Processed:
ABCD,EFG,H,]J I

BFS (Node start) {
g.enqueue (start)

mark start as visited

while (!g.empty())
next = g.dequeue ()
process (next)

foreach u adjacent to next

if (!u.marked)
mark u

g.enqueue (u)

W UNIVERSITY of WASHINGTON L20: Graph Algorithms CSE332, Summer 2021

Lecture Outline

« Graph Representations
® Adjacency Matrix
® Adjacency List

« Topological Sort

« Traversals
® Breadth-first
= Depth-first
= Conclusion

51

W UNIVERSITY of WASHINGTON L20: Graph Algorithms CSE332, Summer 2021

Graphs: Depth-First Search

« The fringe here is a Stack!

« Note: many algorithms that use a stack have an Iterative and a
Recursive solution...

DFSIterative (Node start) {
s.push (start)
mark start as visited

while (!s.empty())
next = s.pop/()
process (next)
foreach u adjacent to next
if (!u.marked)
mark u

g.push (u)

52

W UNIVERSITY of WASHINGTON L20: Graph Algorithms CSE332, Summer 2021

Depth-First Search on a Graph

Stack:
Marked:

Order Processed:

DFSIterative (Node start) {
s.push (start)
mark start as visited

while (!s.empty())
next = s.pop ()
process (next)
foreach u adjacent to next

if (!'u.marked)
mark u
g.push (u)

53

W UNIVERSITY of WASHINGTON L20: Graph Algorithms CSE332, Summer 2021

Depth-First Search on a Graph

Stack:
A

Marked:
A

Order Processed:

DFSIterative (Node start) {
s.push (start)
mark start as visited

while (!s.empty())
next = s.pop ()
process (next)
foreach u adjacent to next
if (!'u.marked)
mark u
g.push (u)

54

W UNIVERSITY of WASHINGTON L20: Graph Algorithms CSE332, Summer 2021

Depth-First Search on a Graph

Stack:
B,C,D

Marked:
A B,C D

Order Processed:
A

DFSIterative (Node start) {
s.push (start)
mark start as visited

while (!s.empty())
next = s.pop ()
process (next)
foreach u adjacent to next
if (!'u.marked)
mark u
g.push (u)

55

W UNIVERSITY of WASHINGTON L20: Graph Algorithms CSE332, Summer 2021

Depth-First Search on a Graph

Stack:
B,C G,H

Marked:
A B,CD,G,H

Order Processed:
A, D

DFSIterative (Node start) {
s.push (start)
mark start as visited

while (!s.empty())
next = s.pop ()
process (next)
foreach u adjacent to next
if (!'u.marked)
mark u
g.push (u)

56

W UNIVERSITY of WASHINGTON L20: Graph Algorithms CSE332, Summer 2021

Depth-First Search on a Graph

Stack:
B,C,G,I

Marked:
A B,C D,G,H,I

Order Processed:
A,D,H

DFSIterative (Node start) {
s.push (start)
mark start as visited

while (!s.empty())
next = s.pop ()
process (next)
foreach u adjacent to next
if (!'u.marked)
mark u
g.push (u)

57

W UNIVERSITY of WASHINGTON L20: Graph Algorithms CSE332, Summer 2021

Depth-First Search on a Graph

Stack:
B,C, G,

Marked:
A B,CD,GH,IJ

Order Processed:
A,D,H,I

DFSIterative (Node start) {
s.push (start)
mark start as visited

while (!s.empty())
next = s.pop ()
process (next)
foreach u adjacent to next
if (!'u.marked)
mark u
g.push (u)

58

W UNIVERSITY of WASHINGTON L20: Graph Algorithms CSE332, Summer 2021

Depth-First Search on a Graph

Stack:
B,C G

Marked:
A B,CD,GH,IJ

Order Processed:
A,DHIJ

DFSIterative (Node start) {
s.push (start)
mark start as visited

while (!s.empty())
next = s.pop ()
process (next)
foreach u adjacent to next
if (!'u.marked)
mark u
g.push (u)

59

W UNIVERSITY of WASHINGTON L20: Graph Algorithms CSE332, Summer 2021

Depth-First Search on a Graph

Stack:
B, C,

Marked:
A B,CD,GH,IJ

Order Processed:
A,D,HIJ G

DFSIterative (Node start) {
s.push (start)
mark start as visited

while (!s.empty())
next = s.pop ()
process (next)
foreach u adjacent to next
if (!'u.marked)
mark u
g.push (u)

60

W UNIVERSITY of WASHINGTON L20: Graph Algorithms CSE332, Summer 2021

Depth-First Search on a Graph

Stack:
B,

Marked:
A B,CD,GH,IJ

Order Processed:
A,D,HIJG,C

DFSIterative (Node start) {
s.push (start)
mark start as visited

while (!s.empty())
next = s.pop ()
process (next)
foreach u adjacent to next
if (!'u.marked)
mark u
g.push (u)

61

W UNIVERSITY of WASHINGTON L20: Graph Algorithms CSE332, Summer 2021

Depth-First Search on a Graph

Stack:
E, F

Marked:
AB,CD,G,H,IJEF

Order Processed:
A,D,HIJ G C B

DFSIterative (Node start) {
s.push (start)
mark start as visited

while (!s.empty())
next = s.pop ()
process (next)
foreach u adjacent to next
if (!'u.marked)
mark u
g.push (u)

62

W UNIVERSITY of WASHINGTON L20: Graph Algorithms CSE332, Summer 2021

Depth-First Search on a Graph

Stack:
E

Marked:
AB,CD,G,H,IJEF

Order Processed:
A,D,HIJ GCB,F

DFSIterative (Node start) {
s.push (start)
mark start as visited

while (!s.empty())
next = s.pop ()
process (next)
foreach u adjacent to next
if (!'u.marked)
mark u
g.push (u)

63

W UNIVERSITY of WASHINGTON L20: Graph Algorithms CSE332, Summer 2021

Depth-First Search on a Graph

Stack:

Marked:
AB,CD,G,H,IJEF

Order Processed:
A,D,HIJ GCB,F

DFSIterative (Node start) {
s.push (start)
mark start as visited

while (!s.empty())
next = s.pop ()
process (next)
foreach u adjacent to next
if (!'u.marked)
mark u
g.push (u)

64

W UNIVERSITY of WASHINGTON L20: Graph Algorithms CSE332, Summer 2021

||I| gr a d e S C O p e gradescope.com/courses/275833

« Were the Pre/In/Post-Order Traversals from 143 examples of BFS or
DFS?

65

W UNIVERSITY of WASHINGTON L20: Graph Algorithms CSE332, Summer 2021

Lecture Outline

« Graph Representations
® Adjacency Matrix
® Adjacency List

« Topological Sort

« Traversals
® Breadth-first
® Depth-first
® Conclusion

66

W UNIVERSITY of WASHINGTON L20: Graph Algorithms CSE332, Summer 2021

Saving the Path

+ These graph traversals can answer the “reachability question”:
= “Is there a path from node x to node y?”

+ But what if we want to output the actual path or its length?
= Eg, getting driving directions vs knowing it’s possible to get there

<« Modifications:
" Instead of just “marking” a node, store the path’s previous node

- ie: when processing u, if we add v to the “remaining work” set v.prevtou
= When you reach the goal, follow prev fields backwards to start

- (don’t forget to reverse the answer)
® Path length:

- Same idea, but also store integer distance at each node

67

W UNIVERSITY of WASHINGTON L20: Graph Algorithms CSE332, Summer 2021

Saving the Path: Example using BFS (1 of 2)

+ Find the shortest path from Seattle to Austin
= Remember marked nodes are not re-enqueued
® Shortest paths may not be unique

68

W UNIVERSITY of WASHINGTON L20: Graph Algorithms CSE332, Summer 2021

Saving the Path: Example using BFS (2 of 2)

+ Find the shortest path from Seattle to Austin
= Remember marked nodes are not re-enqueued
® Shortest paths may not be unique

San Fra

Dallas

69

W UNIVERSITY of WASHINGTON L20: Graph Algorithms CSE332, Summer 2021

DFS/BFS Comparison

« Breadth-first search:

= Always finds shortest paths, i.e., finds “optimal solutions”
- Better for “what is the shortest path from x to y?”

" But queue may hold up to O(|V|) nodes
- Eg, at the bottom level of perfect binary tree, queue contains |V|/2 nodes

<« Depth-first search:

® Can use less space when finding a path

- If longest path in the graph is p and highest out-degree is d then stack never
has more than d*p elements

70

W UNIVERSITY of WASHINGTON

L20: Graph Algorithms

CSE332, Summer 2021

It Doesn’t Have to be Either/Or

+ A third approach: Iterative deepening (IDDFS):
" Try DFS, but don’t allow recursion more than K levels deep

= |f fails to find a solution, increment K and start the entire search over

+ Like BFS, finds shortest paths. Like DFS, less space

71

W UNIVERSITY of WASHINGTON L20: Graph Algorithms CSE332, Summer 2021

Summary

+ Two very different “standard” graph representations
® Must understand tradeoffs to choose between adj list and adj matrix

+ TopoSort finds a total ordering in a DAG representing a partial
ordering

® Runtime for TopoSort was dependent on graph representation and a
helper data structure!

+ We can traverse both trees and graphs

® Depth-first-style tree traversals have 3 flavors (named by when the
processing happens)
® Breadth-first-style tree traversals are called “level-order”

® Graphs can have “pre-” and “post-” style traversals, but ordering is
less important than in trees

72

