
CSE332, Summer 2021L20: Graph Algorithms

Graph Algorthms
CSE 332 Summer 2021

Instructor: Kristofer Wong

Teaching Assistants:
Alena Dickmann Arya GJ Finn Johnson
Joon Chong Kimi Locke Peyton Rapo
Rahul Misal Winston Jodjana



CSE332, Summer 2021L20: Graph Algorithms

Announcements

v Exercises 13, 14 out!
§ Correct due dates listed on Ed

v Midterm reflection Q1 resubmissions
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CSE332, Summer 2021L20: Graph Algorithms

Lecture Outline

v Graph Representations
§ Adjacency Matrix
§ Adjacency List

v Topological Sort

v Traversals
§ Breadth-first
§ Depth-first
§ Conclusion
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What is the Data Structure?

v Is a Graph an ADT?  Maybe!
§ “Develop an algorithm over the graph, then use whatever data 

structure is efficient”

v The “best” data structure can depend on:
§ Properties of the graph (e.g., dense versus sparse)
§ Common queries
• e.g., “is (u,v) an edge?” vs “what are the neighbors of node u?”

v There are two standard graph representations:
§ Adjacency Matrix and Adjacency List
§ Different trade-offs, particularly time vs space
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Lecture Outline

v Graph Representations
§ Adjacency Matrix
§ Adjacency List

v Topological Sort

v Traversals
§ Breadth-first
§ Depth-first
§ Conclusion
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Adjacency Matrix: Representation

v Assign each node a number from 0 to |V|-1
v Graph is a |V|x|V| matrix (ie, 2-D array) of booleans
§ M[u][v] == true means there is an edge from u to v
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Adjacency Matrix: Properties (1 of 3)
v Running time to:
§ Get a vertex’s out-edges: 
• O(|V|)

§ Get a vertex’s in-edges: 
• O(|V|)

§ Decide if some edge exists: 
• O(1)

§ Insert an edge: 
• O(1)

§ Delete an edge: 
• O(1)

v Space requirements:
§ |V|2 bits

v Best for sparse or dense graphs?
§ Best for dense graphs 7
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Adjacency Matrix: Properties (2 of 3)

v How does the adjacency matrix vary for an undirected graph?
§ Undirected graphs are symmetric about diagonal axis
§ Languages with array-of-array matrix representations can save ½ the 

space by omitting the symmetric half
• Languages with “proper” 2D matrix representations (eg, C/C++) can’t do this
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Adjacency Matrix: Properties (3 of 3)

v How can we adapt the representation for weighted graphs?
§ Store the weight in each cell
§ Need some value to represent “not an edge”
• In some situations, 0 or -1 works
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Lecture Outline

v Graph Representations
§ Adjacency Matrix
§ Adjacency List

v Topological Sort

v Traversals
§ Breadth-first
§ Depth-first
§ Conclusion
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Adjacency List: Representation

v Assign each node a number from 0 to |V|-1
v Graph is an array of length |V|; each entry stores a list of all 

adjacent vertices
§ E.g. linked list
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Adjacency List: Properties (1 of 3)
v Running time to:

§ Get a vertex’s out-edges: 
• O(d) where d is out-degree of vertex

§ Get a vertex’s in-edges: 
• O(|V| + |E|)
• (but could keep a second adjacency list for this!)

§ Decide if some edge exists: 
• O(d) where d is out-degree of source vertex

§ Insert an edge: 
• O(1) 
• (unless you need to check if it’s there; then O(d))

§ Delete an edge: 
• O(d) where d is out-degree of source vertex

v Space requirements:
§ O(|V|+|E|)

v Best for sparse or dense graphs?
§ Best for sparse graphs, so usually just stick with linked lists for the buckets
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Adjacency List: Properties (2 of 3)

v How does the adjacency list vary for an undirected graph?
§ Optionally, can double the entries to increase edge lookup speed
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Adjacency List: Properties (3 of 3)

v How can we adapt the representation for weighted graphs?
§ Store the weight alongside the destination vertex
§ No need for a special value to represent “not an edge”!
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Summary: Which is Better?

v Graphs are often sparse:
§ Road networks are often grids
• Every corner isn’t connected to every other corner

§ Airlines rarely fly to all possible cities 
• Or if they do it is to/from a hub

v Adjacency lists should generally be your default choice
§ Slower performance compensated by greater space savings
§ Many graph algorithms rely heavily on getAllEdgesFrom(v)
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getAllEdgesFrom(v) hasEdge(v, w) getAllEdges()
Adjacency 

Matrix Θ(V) Θ(1) Θ(V2)

Adjacency List Θ(degree(v)) Θ(degree(v)) Θ(E + V)
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Quick Detour: Overview of Graph Problems 
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ST

Graph Problems

v Lots of interesting questions we can ask about a graph:
§ What is the shortest route from S to T? What is the longest route 

without cycles?
§ Are there cycles in this graph?
§ Is there a cycle that uses each vertex exactly once?
§ Is there a cycle that uses each edge exactly once?
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Graph Problems More Theoretically
v Some well known graph problems and their common names:
§ s-t Path. Is there a path between vertices s and t?
§ Connectivity. Is the graph connected?
§ Biconnectivity. Is there a vertex whose removal disconnects the 

graph?
§ Shortest s-t Path. What is the shortest path between vertices s and t?
§ Cycle Detection. Does the graph contain any cycles?
§ Euler Tour. Is there a cycle that uses every edge exactly once?
§ Hamilton Tour. Is there a cycle that uses every vertex exactly once?
§ Planarity. Can you draw the graph on paper with no crossing edges?
§ Isomorphism. Are two graphs the same graph (in disguise)?

v Often can’t tell how difficult a graph problem is without very 
deep consideration.
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Graph Problem Difficulty

v Some well known graph problems:
§ Euler Tour: Is there a cycle that uses every edge exactly once?
§ Hamilton Tour: Is there a cycle that uses every vertex exactly once?

v Difficulty can be deceiving
§ An efficient Euler tour algorithm O(# edges) was found as early as 

1873 [Link].
§ Despite decades of intense study, no efficient algorithm for a 

Hamilton tour exists. Best algorithms are exponential time.

v Graph problems are among the most mathematically rich areas 
of CS theory

https://ethkim.github.io/TA/251/eulerian.pdf
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Lecture Outline

v Graph Representations
§ Adjacency Matrix
§ Adjacency List

v Topological Sort

v Traversals
§ Breadth-first
§ Depth-first
§ Conclusion
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Topological Sort

v Given a DAG, output all the vertices in an order such that no 
vertex appears before any other vertex that has a path to it

v Example input:

v Example output:
§ 126, 142, 143, 311, 331, 332, 312, 341, 351, 333, 352, 440
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Disclaimer: Do not use for official advising purposes! 
Falsely implies CSE 332 is a prereq for CSE 312, etc.

MATH 126

CSE 142

CSE 143

CSE 351

CSE 311 CSE 312

CSE 331

CSE 341

CSE 332

CSE 440

CSE 352

CSE 333
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gradescope.com/courses/275833

L20: Graph Algorithms

v List 3 valid Topological sorts:

v Why do we perform topological sorts only on DAGs?
§ A cycle means there is no correct answer

v Does a DAG always have a unique answer?
§ No; there can be 1 or more answers, depending on the graph

v What DAGs have exactly 1 answer?
§ A list

v Terminology: A DAG represents a partial order, and a topological sort 
produces a total order that is consistent with it
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Topological Sort: Applications

v Figuring out how to finish your degree

v Determining the order for recomputing spreadsheet cells

v Computing the order to compile files using a Makefile

v Scheduling jobs in a big data pipeline

v Often: finding an order of execution for a dependency graph
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TopoSort: A Naïve Algorithm

1. Label (“mark”) each vertex with its in-degree
§ Could write directly into a vertex’s field or a parallel data structure 

(e.g., array)
2. While there are vertices not yet output:
§ Choose a vertex v with labeled with in-degree of 0
§ Output v and conceptually remove it from the graph
§ Foreach vertex w adjacent to v:
• Decrement the in-degree of w
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TopoSort: Notes

v Needed a vertex with in-degree of 0 to start
§ Remember: graph must be acyclic!

v If >1 vertex with in-degree=0, can break ties arbitrarily
§ Potentially many different correct orders!
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Naïve TopoSort: Running Time?
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labelEachVertexWithItsInDegree();
for (i=0; i < numVertices; i++){
v = findNewVertexOfDegreeZero();
put v next in output
for each w adjacent to v
w.indegree--;

}
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TopoSort’s Runtime: Doing Better

v Avoid searching for a zero-degree node every time!
§ Keep the “pending” 0-degree nodes in a list, stack, queue, table, etc
§ The irder we process them affects output, but not correctness or 

efficiency (as long as add/remove are both O(1))

v Using a queue:
§ Label each vertex with its in-degree, enqueuing 0-degree nodes
§ While “pending” queue is not empty:
• v = dequeue()
• Output v and remove it from the graph
• For each vertex w adjacent to v (i.e. w such that (v,w) in E):

– decrement the in-degree of w
– if new degree is 0, enqueue it
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Better TopoSort: Running Time?
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labelAllAndEnqueueZeros();
for (i=0; i < numVertices; i++){

v = dequeue();
put v next in output
for each w adjacent to v
w.indegree--;
if (w.indegree == 0) 
enqueue(w);

}
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Lecture Outline

v Graph Representations
§ Adjacency Matrix
§ Adjacency List

v Topological Sort

v Traversals
§ Breadth-first
§ Depth-first
§ Conclusion
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gradescope.com/courses/275833

L20: Graph Algorithms

v You’ve seen a graph traversal before in 143. List all three.
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Tree and Graph Reachability

v Find all nodes reachable from a starting node v 
§ ie, there exists a path
§ Might “do something” at each visited node (an iterator!)
• “Do something” is called visiting or processing a node

– eg, print to output, set some field, etc.

• Traversing a node or iterating over a node is different!
– Just fetch adjacent/child nodes

v Related Questions:
§ Is an undirected graph connected?
§ Is a directed graph weakly / strongly connected?
• For strongly, need a cycle back to starting node
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Tree and Graph Traversals

v Can answer reachability with a tree traversal or graph 
traversal
§ Iterates over every node in a graph in some defined ordering
§ “Processes” or “visits” its contents

v There are several types of tree traversals
§ Level Order Traversal aka Breadth-First Traversal
§ Depth-First Traversal
• Pre-order Traversal
• In-order Traversal
• Post-order Traversal
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Tree/Graph Traversal: High-level Algorithm

v High-level Algorithm: 
§ Initialization:
• Create an empty data structure 

(often called a “fringe”) to track 
“remaining work”

• Mark start as visited
§ While we still have work, 

follow the nodes:
• Get a node
• Visit/process that node
• Update its neighbors (eg, add 

to “remaining work” if it’s not 
already there)

v Memorize this 5-step 
pattern!
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traverseGraph(Node start) {
pending = emptyFringe()
pending.add(start)

mark start as visited

while (!pending.empty()) {
next = pending.remove()
process(next) //marks visited

foreach u adjacent to next
if (!u.marked)
mark u
pending.add(u)

}



CSE332, Summer 2021L20: Graph Algorithms

Tree/Graph Traversal: Running Time

v Assuming add() and remove() are O(1), traversal is O(|E|)
§ Remember: we default to using an adjacency list
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Tree/Graph Traversal: Order

v The order we process() depends entirely on how pending.add() 
and pending.remove() are implemented
§ Queue:
• Tree: Level-order traversal
• Graph: Breadth-first graph search (BFS)

§ Stack:
• Tree: Depth-first search (3 flavors!)
• Graph: Depth-first graph search (DFS)

v DFS and BFS are “big ideas” in computer science
§ Depth: explore one part before exploring other unexplored parts
§ Breadth: explore parts closer to the start before exploring farther 

parts
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Lecture Outline

v Graph Representations
§ Adjacency Matrix
§ Adjacency List

v Topological Sort

v Traversals
§ Breadth-first
§ Depth-first
§ Conclusion
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Graphs: Breadth-First Search

v The fringe here is a Queue!
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BFS(Node start) {
q.enqueue(start)
mark start as visited

while (!q.empty())

next = q.dequeue()
process(next)
foreach u adjacent to next
if (!u.marked)
mark u
q.enqueue(u)

}
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Trees: Level-Order

v Process top-to-bottom, left-to-right
§ Like reading in English
§ Goes “broad” instead of “deep”

v Resembles how we converted our binary heap (ie, a complete 
tree) to its array representation
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Breadth-First Search on a Graph
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BFS(Node start) {
q.enqueue(start)

mark start as visited

while (!q.empty())

next = q.dequeue()
process(next)

foreach u adjacent to next
if (!u.marked)

mark u

q.enqueue(u)
}

Queue:

Marked:

Order Processed:
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Breadth-First Search on a Graph
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BFS(Node start) {
q.enqueue(start)

mark start as visited

while (!q.empty())

next = q.dequeue()
process(next)

foreach u adjacent to next
if (!u.marked)

mark u

q.enqueue(u)
}

Queue:
A

Marked:
A

Order Processed:
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Breadth-First Search on a Graph
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BFS(Node start) {
q.enqueue(start)

mark start as visited

while (!q.empty())

next = q.dequeue()
process(next)

foreach u adjacent to next
if (!u.marked)

mark u

q.enqueue(u)
}

Queue:
B, C, D

Marked:
A, B, C, D

Order Processed:
A
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Breadth-First Search on a Graph
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BFS(Node start) {
q.enqueue(start)

mark start as visited

while (!q.empty())

next = q.dequeue()
process(next)

foreach u adjacent to next
if (!u.marked)

mark u

q.enqueue(u)
}

Queue:
C, D, E, F

Marked:
A, B, C, D, E, F

Order Processed:
A, B
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Breadth-First Search on a Graph
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BFS(Node start) {
q.enqueue(start)

mark start as visited

while (!q.empty())

next = q.dequeue()
process(next)

foreach u adjacent to next
if (!u.marked)

mark u

q.enqueue(u)
}

Queue:
D, E, F, G

Marked:
A, B, C, D, E, F, G

Order Processed:
A, B, C
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Breadth-First Search on a Graph

44

E F

B

A

G

D

H

J

I

C

BFS(Node start) {
q.enqueue(start)

mark start as visited

while (!q.empty())

next = q.dequeue()
process(next)

foreach u adjacent to next
if (!u.marked)

mark u

q.enqueue(u)
}

Queue:
E, F, G, H

Marked:
A, B, C, D, E, F, G, H

Order Processed:
A, B, C, D
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Breadth-First Search on a Graph
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BFS(Node start) {
q.enqueue(start)

mark start as visited

while (!q.empty())

next = q.dequeue()
process(next)

foreach u adjacent to next
if (!u.marked)

mark u

q.enqueue(u)
}

Queue:
F, G, H, J

Marked:
A, B, C, D, E, F, G, H, J

Order Processed:
A, B, C, D, E
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Breadth-First Search on a Graph
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BFS(Node start) {
q.enqueue(start)

mark start as visited

while (!q.empty())

next = q.dequeue()
process(next)

foreach u adjacent to next
if (!u.marked)

mark u

q.enqueue(u)
}

Queue:
G, H, J

Marked:
A, B, C, D, E, F, G, H, J

Order Processed:
A, B, C, D, E, F
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Breadth-First Search on a Graph
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BFS(Node start) {
q.enqueue(start)

mark start as visited

while (!q.empty())

next = q.dequeue()
process(next)

foreach u adjacent to next
if (!u.marked)

mark u

q.enqueue(u)
}

Queue:
H, J

Marked:
A, B, C, D, E, F, G, H, J

Order Processed:
A, B, C, D, E, F, G
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Breadth-First Search on a Graph
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BFS(Node start) {
q.enqueue(start)

mark start as visited

while (!q.empty())

next = q.dequeue()
process(next)

foreach u adjacent to next
if (!u.marked)

mark u

q.enqueue(u)
}

Queue:
J, I

Marked:
A, B, C, D, E, F, G, H, J, I

Order Processed:
A, B, C, D, E, F, G, H
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Breadth-First Search on a Graph
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BFS(Node start) {
q.enqueue(start)

mark start as visited

while (!q.empty())

next = q.dequeue()
process(next)

foreach u adjacent to next
if (!u.marked)

mark u

q.enqueue(u)
}

Queue:
I

Marked:
A, B, C, D, E, F, G, H, J, I

Order Processed:
A, B, C, D, E, F, G, H, J
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Breadth-First Search on a Graph
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BFS(Node start) {
q.enqueue(start)

mark start as visited

while (!q.empty())

next = q.dequeue()
process(next)

foreach u adjacent to next
if (!u.marked)

mark u

q.enqueue(u)
}

Queue:

Marked:
A, B, C, D, E, F, G, H, J, I

Order Processed:
A, B, C, D, E, F, G, H, J, I
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Lecture Outline

v Graph Representations
§ Adjacency Matrix
§ Adjacency List

v Topological Sort

v Traversals
§ Breadth-first
§ Depth-first
§ Conclusion
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Graphs: Depth-First Search

v The fringe here is a Stack!
v Note: many algorithms that use a stack have an Iterative and a 

Recursive solution…
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DFSIterative(Node start) {
s.push(start)
mark start as visited

while (!s.empty())
next = s.pop()
process(next)
foreach u adjacent to next

if (!u.marked)
mark u
q.push(u)

}
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Depth-First Search on a Graph

53

E F

B

A

G

D

H

J

I

C

Stack:

Marked:

Order Processed:

DFSIterative(Node start) {
s.push(start)
mark start as visited

while (!s.empty())
next = s.pop()
process(next)
foreach u adjacent to next
if (!u.marked)
mark u
q.push(u)

}
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Depth-First Search on a Graph
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Stack:
A

Marked:
A

Order Processed:

DFSIterative(Node start) {
s.push(start)
mark start as visited

while (!s.empty())
next = s.pop()
process(next)
foreach u adjacent to next
if (!u.marked)
mark u
q.push(u)

}



CSE332, Summer 2021L20: Graph Algorithms

Depth-First Search on a Graph
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Stack:
B, C, D

Marked:
A, B, C, D

Order Processed:
A

DFSIterative(Node start) {
s.push(start)
mark start as visited

while (!s.empty())
next = s.pop()
process(next)
foreach u adjacent to next
if (!u.marked)
mark u
q.push(u)

}
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Depth-First Search on a Graph
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DFSIterative(Node start) {
s.push(start)
mark start as visited

while (!s.empty())
next = s.pop()
process(next)
foreach u adjacent to next
if (!u.marked)
mark u
q.push(u)

}

Stack:
B, C, G, H

Marked:
A, B, C, D, G, H

Order Processed:
A, D



CSE332, Summer 2021L20: Graph Algorithms

Depth-First Search on a Graph
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DFSIterative(Node start) {
s.push(start)
mark start as visited

while (!s.empty())
next = s.pop()
process(next)
foreach u adjacent to next
if (!u.marked)
mark u
q.push(u)

}

Stack:
B, C, G, I

Marked:
A, B, C, D, G, H, I

Order Processed:
A, D, H
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Depth-First Search on a Graph
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DFSIterative(Node start) {
s.push(start)
mark start as visited

while (!s.empty())
next = s.pop()
process(next)
foreach u adjacent to next
if (!u.marked)
mark u
q.push(u)

}

Stack:
B, C, G, J

Marked:
A, B, C, D, G, H, I, J

Order Processed:
A, D, H, I
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Depth-First Search on a Graph
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DFSIterative(Node start) {
s.push(start)
mark start as visited

while (!s.empty())
next = s.pop()
process(next)
foreach u adjacent to next
if (!u.marked)
mark u
q.push(u)

}

Stack:
B, C, G

Marked:
A, B, C, D, G, H, I, J

Order Processed:
A, D, H, I, J
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Depth-First Search on a Graph
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DFSIterative(Node start) {
s.push(start)
mark start as visited

while (!s.empty())
next = s.pop()
process(next)
foreach u adjacent to next
if (!u.marked)
mark u
q.push(u)

}

Stack:
B, C,

Marked:
A, B, C, D, G, H, I, J

Order Processed:
A, D, H, I, J, G
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Depth-First Search on a Graph

61

E F

B

A

G

D

H

J

I

C

DFSIterative(Node start) {
s.push(start)
mark start as visited

while (!s.empty())
next = s.pop()
process(next)
foreach u adjacent to next
if (!u.marked)
mark u
q.push(u)

}

Stack:
B,

Marked:
A, B, C, D, G, H, I, J

Order Processed:
A, D, H, I, J, G, C
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Depth-First Search on a Graph
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DFSIterative(Node start) {
s.push(start)
mark start as visited

while (!s.empty())
next = s.pop()
process(next)
foreach u adjacent to next
if (!u.marked)
mark u
q.push(u)

}

Stack:
E, F

Marked:
A, B, C, D, G, H, I, J, E, F

Order Processed:
A, D, H, I, J, G, C, B
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Depth-First Search on a Graph
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DFSIterative(Node start) {
s.push(start)
mark start as visited

while (!s.empty())
next = s.pop()
process(next)
foreach u adjacent to next
if (!u.marked)
mark u
q.push(u)

}

Stack:
E

Marked:
A, B, C, D, G, H, I, J, E, F

Order Processed:
A, D, H, I, J, G, C, B, F
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Depth-First Search on a Graph

64

E F

B

A

G

D

H

J

I

C

DFSIterative(Node start) {
s.push(start)
mark start as visited

while (!s.empty())
next = s.pop()
process(next)
foreach u adjacent to next
if (!u.marked)
mark u
q.push(u)

}

Stack:

Marked:
A, B, C, D, G, H, I, J, E, F

Order Processed:
A, D, H, I, J, G, C, B, F
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L20: Graph Algorithms

v Were the Pre/In/Post-Order Traversals from 143 examples of BFS or 
DFS?
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Lecture Outline

v Graph Representations
§ Adjacency Matrix
§ Adjacency List

v Topological Sort

v Traversals
§ Breadth-first
§ Depth-first
§ Conclusion
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Saving the Path

v These graph traversals can answer the “reachability question”:
§ “Is there a path from node x to node y?”

v But what if we want to output the actual path or its length?
§ Eg, getting driving directions vs knowing it’s possible to get there

v Modifications:
§ Instead of just “marking” a node, store the path’s previous node 
• ie: when processing u, if we add v to the “remaining work” set v.prev to u

§ When you reach the goal, follow prev fields backwards to start
• (don’t forget to reverse the answer)

§ Path length:
• Same idea, but also store integer distance at each node
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Saving the Path: Example using BFS (1 of 2)

v Find the shortest path from Seattle to Austin
§ Remember marked nodes are not re-enqueued
§ Shortest paths may not be unique
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Seattle

San Francisco
Dallas

Chicago

Salt Lake City

Austin



CSE332, Summer 2021L20: Graph Algorithms

Saving the Path: Example using BFS (2 of 2)

v Find the shortest path from Seattle to Austin
§ Remember marked nodes are not re-enqueued
§ Shortest paths may not be unique
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DFS/BFS Comparison

v Breadth-first search:
§ Always finds shortest paths, i.e., finds “optimal solutions”
• Better for “what is the shortest path from x to y?”

§ But queue may hold up to O(|V|) nodes
• Eg, at the bottom level of perfect binary tree, queue contains |V|/2 nodes

v Depth-first search:
§ Can use less space when finding a path
• If longest path in the graph is p and highest out-degree is d then stack never 

has more than d*p elements
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It Doesn’t Have to be Either/Or

v A third approach: Iterative deepening (IDDFS): 
§ Try DFS, but don’t allow recursion more than K levels deep
§ If fails to find a solution, increment K and start the entire search over

v Like BFS, finds shortest paths.  Like DFS, less space
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Summary

v Two very different “standard” graph representations
§ Must understand tradeoffs to choose between adj list and adj matrix

v TopoSort finds a total ordering in a DAG representing a partial 
ordering
§ Runtime for TopoSort was dependent on graph representation and a 

helper data structure!

v We can traverse both trees and graphs
§ Depth-first-style tree traversals have 3 flavors (named by when the 

processing happens)
§ Breadth-first-style tree traversals are called “level-order”
§ Graphs can have “pre-” and “post-” style traversals, but ordering is 

less important than in trees
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