
CSE332, Summer 2021L20: Graph Algorithms

Graph Algorthms
CSE 332 Summer 2021

Instructor: Kristofer Wong

Teaching Assistants:
Alena Dickmann Arya GJ Finn Johnson
Joon Chong Kimi Locke Peyton Rapo
Rahul Misal Winston Jodjana

CSE332, Summer 2021L20: Graph Algorithms

Announcements

v Exercises 13, 14 out!
§ Correct due dates listed on Ed

v Midterm reflection Q1 resubmissions

2

CSE332, Summer 2021L20: Graph Algorithms

Lecture Outline

v Graph Representations
§ Adjacency Matrix
§ Adjacency List

v Topological Sort

v Traversals
§ Breadth-first
§ Depth-first
§ Conclusion

3

CSE332, Summer 2021L20: Graph Algorithms

What is the Data Structure?

v Is a Graph an ADT? Maybe!
§ “Develop an algorithm over the graph, then use whatever data

structure is efficient”

v The “best” data structure can depend on:
§ Properties of the graph (e.g., dense versus sparse)
§ Common queries
• e.g., “is (u,v) an edge?” vs “what are the neighbors of node u?”

v There are two standard graph representations:
§ Adjacency Matrix and Adjacency List
§ Different trade-offs, particularly time vs space

4

CSE332, Summer 2021L20: Graph Algorithms

Lecture Outline

v Graph Representations
§ Adjacency Matrix
§ Adjacency List

v Topological Sort

v Traversals
§ Breadth-first
§ Depth-first
§ Conclusion

5

CSE332, Summer 2021L20: Graph Algorithms

Adjacency Matrix: Representation

v Assign each node a number from 0 to |V|-1
v Graph is a |V|x|V| matrix (ie, 2-D array) of booleans
§ M[u][v] == true means there is an edge from u to v

6

A

B

C

D

A B C D

A F T F F

B T F F F

C F T F T

D F F F F

CSE332, Summer 2021L20: Graph Algorithms

Adjacency Matrix: Properties (1 of 3)
v Running time to:
§ Get a vertex’s out-edges:
• O(|V|)

§ Get a vertex’s in-edges:
• O(|V|)

§ Decide if some edge exists:
• O(1)

§ Insert an edge:
• O(1)

§ Delete an edge:
• O(1)

v Space requirements:
§ |V|2 bits

v Best for sparse or dense graphs?
§ Best for dense graphs 7

A

B

C

D

A B C D

A F T F F
B T F F F
C F T F T
D F F F F

CSE332, Summer 2021L20: Graph Algorithms

Adjacency Matrix: Properties (2 of 3)

v How does the adjacency matrix vary for an undirected graph?
§ Undirected graphs are symmetric about diagonal axis
§ Languages with array-of-array matrix representations can save ½ the

space by omitting the symmetric half
• Languages with “proper” 2D matrix representations (eg, C/C++) can’t do this

8

A

B

C

D

A B C D

A F T F F

B T F T F

C F T F T

D F F T F

CSE332, Summer 2021L20: Graph Algorithms

Adjacency Matrix: Properties (3 of 3)

v How can we adapt the representation for weighted graphs?
§ Store the weight in each cell
§ Need some value to represent “not an edge”
• In some situations, 0 or -1 works

9

6

23

A

B

C

D

7

A B C D

A 0 7 0 0

B 3 0 0 0

C 0 2 0 6

D 0 0 0 0

CSE332, Summer 2021L20: Graph Algorithms

Lecture Outline

v Graph Representations
§ Adjacency Matrix
§ Adjacency List

v Topological Sort

v Traversals
§ Breadth-first
§ Depth-first
§ Conclusion

10

CSE332, Summer 2021L20: Graph Algorithms

Adjacency List: Representation

v Assign each node a number from 0 to |V|-1
v Graph is an array of length |V|; each entry stores a list of all

adjacent vertices
§ E.g. linked list

11

A

B

C

D A

B

C

D /

B

A

B D

CSE332, Summer 2021L20: Graph Algorithms

Adjacency List: Properties (1 of 3)
v Running time to:

§ Get a vertex’s out-edges:
• O(d) where d is out-degree of vertex

§ Get a vertex’s in-edges:
• O(|V| + |E|)
• (but could keep a second adjacency list for this!)

§ Decide if some edge exists:
• O(d) where d is out-degree of source vertex

§ Insert an edge:
• O(1)
• (unless you need to check if it’s there; then O(d))

§ Delete an edge:
• O(d) where d is out-degree of source vertex

v Space requirements:
§ O(|V|+|E|)

v Best for sparse or dense graphs?
§ Best for sparse graphs, so usually just stick with linked lists for the buckets

12

A

B

C

D

A

B

C

D /

B

A

B D

CSE332, Summer 2021L20: Graph Algorithms

Adjacency List: Properties (2 of 3)

v How does the adjacency list vary for an undirected graph?
§ Optionally, can double the entries to increase edge lookup speed

13

A

B

C

D

A

B

C

D /

B

C

D

A

B

C

D

B

A

B D

C

C

… or …

CSE332, Summer 2021L20: Graph Algorithms

Adjacency List: Properties (3 of 3)

v How can we adapt the representation for weighted graphs?
§ Store the weight alongside the destination vertex
§ No need for a special value to represent “not an edge”!

14

6

23

A

B

C

D

7

A

B

C

D /

B, 7

A, 3

B, 2 D, 6

CSE332, Summer 2021L20: Graph Algorithms

Summary: Which is Better?

v Graphs are often sparse:
§ Road networks are often grids
• Every corner isn’t connected to every other corner

§ Airlines rarely fly to all possible cities
• Or if they do it is to/from a hub

v Adjacency lists should generally be your default choice
§ Slower performance compensated by greater space savings
§ Many graph algorithms rely heavily on getAllEdgesFrom(v)

15

getAllEdgesFrom(v) hasEdge(v, w) getAllEdges()
Adjacency

Matrix Θ(V) Θ(1) Θ(V2)

Adjacency List Θ(degree(v)) Θ(degree(v)) Θ(E + V)

CSE332, Summer 2021L20: Graph Algorithms

Quick Detour: Overview of Graph Problems

16

CSE332, Summer 2021L20: Graph Algorithms

ST

Graph Problems

v Lots of interesting questions we can ask about a graph:
§ What is the shortest route from S to T? What is the longest route

without cycles?
§ Are there cycles in this graph?
§ Is there a cycle that uses each vertex exactly once?
§ Is there a cycle that uses each edge exactly once?

CSE332, Summer 2021L20: Graph Algorithms

Graph Problems More Theoretically
v Some well known graph problems and their common names:
§ s-t Path. Is there a path between vertices s and t?
§ Connectivity. Is the graph connected?
§ Biconnectivity. Is there a vertex whose removal disconnects the

graph?
§ Shortest s-t Path. What is the shortest path between vertices s and t?
§ Cycle Detection. Does the graph contain any cycles?
§ Euler Tour. Is there a cycle that uses every edge exactly once?
§ Hamilton Tour. Is there a cycle that uses every vertex exactly once?
§ Planarity. Can you draw the graph on paper with no crossing edges?
§ Isomorphism. Are two graphs the same graph (in disguise)?

v Often can’t tell how difficult a graph problem is without very
deep consideration.

CSE332, Summer 2021L20: Graph Algorithms

Graph Problem Difficulty

v Some well known graph problems:
§ Euler Tour: Is there a cycle that uses every edge exactly once?
§ Hamilton Tour: Is there a cycle that uses every vertex exactly once?

v Difficulty can be deceiving
§ An efficient Euler tour algorithm O(# edges) was found as early as

1873 [Link].
§ Despite decades of intense study, no efficient algorithm for a

Hamilton tour exists. Best algorithms are exponential time.

v Graph problems are among the most mathematically rich areas
of CS theory

https://ethkim.github.io/TA/251/eulerian.pdf

CSE332, Summer 2021L20: Graph Algorithms

Lecture Outline

v Graph Representations
§ Adjacency Matrix
§ Adjacency List

v Topological Sort

v Traversals
§ Breadth-first
§ Depth-first
§ Conclusion

20

CSE332, Summer 2021L20: Graph Algorithms

Topological Sort

v Given a DAG, output all the vertices in an order such that no
vertex appears before any other vertex that has a path to it

v Example input:

v Example output:
§ 126, 142, 143, 311, 331, 332, 312, 341, 351, 333, 352, 440

21

Disclaimer: Do not use for official advising purposes!
Falsely implies CSE 332 is a prereq for CSE 312, etc.

MATH 126

CSE 142

CSE 143

CSE 351

CSE 311 CSE 312

CSE 331

CSE 341

CSE 332

CSE 440

CSE 352

CSE 333

CSE332, Summer 2021

gradescope.com/courses/275833

L20: Graph Algorithms

v List 3 valid Topological sorts:

v Why do we perform topological sorts only on DAGs?
§ A cycle means there is no correct answer

v Does a DAG always have a unique answer?
§ No; there can be 1 or more answers, depending on the graph

v What DAGs have exactly 1 answer?
§ A list

v Terminology: A DAG represents a partial order, and a topological sort
produces a total order that is consistent with it

22

1

0

3

2
4

CSE332, Summer 2021L20: Graph Algorithms

Topological Sort: Applications

v Figuring out how to finish your degree

v Determining the order for recomputing spreadsheet cells

v Computing the order to compile files using a Makefile

v Scheduling jobs in a big data pipeline

v Often: finding an order of execution for a dependency graph

23

CSE332, Summer 2021L20: Graph Algorithms

TopoSort: A Naïve Algorithm

1. Label (“mark”) each vertex with its in-degree
§ Could write directly into a vertex’s field or a parallel data structure

(e.g., array)
2. While there are vertices not yet output:
§ Choose a vertex v with labeled with in-degree of 0
§ Output v and conceptually remove it from the graph
§ Foreach vertex w adjacent to v:
• Decrement the in-degree of w

24

In-
Degree

Adj
List

0

1

2

3

4 /

3

2

4

3

4

1

0
3

2
4

CSE332, Summer 2021L20: Graph Algorithms

TopoSort: Notes

v Needed a vertex with in-degree of 0 to start
§ Remember: graph must be acyclic!

v If >1 vertex with in-degree=0, can break ties arbitrarily
§ Potentially many different correct orders!

25

CSE332, Summer 2021L20: Graph Algorithms

Naïve TopoSort: Running Time?

26

labelEachVertexWithItsInDegree();
for (i=0; i < numVertices; i++){
v = findNewVertexOfDegreeZero();
put v next in output
for each w adjacent to v
w.indegree--;

}
In-

Degree
Adj
List

0

1

2

3

4

3

2

4

3

4

1

0
3

2
4

CSE332, Summer 2021L20: Graph Algorithms

TopoSort’s Runtime: Doing Better

v Avoid searching for a zero-degree node every time!
§ Keep the “pending” 0-degree nodes in a list, stack, queue, table, etc
§ The irder we process them affects output, but not correctness or

efficiency (as long as add/remove are both O(1))

v Using a queue:
§ Label each vertex with its in-degree, enqueuing 0-degree nodes
§ While “pending” queue is not empty:
• v = dequeue()
• Output v and remove it from the graph
• For each vertex w adjacent to v (i.e. w such that (v,w) in E):

– decrement the in-degree of w
– if new degree is 0, enqueue it

27

CSE332, Summer 2021L20: Graph Algorithms

Better TopoSort: Running Time?

28

labelAllAndEnqueueZeros();
for (i=0; i < numVertices; i++){

v = dequeue();
put v next in output
for each w adjacent to v
w.indegree--;
if (w.indegree == 0)
enqueue(w);

}
In-

Degree
Adj
List

0

1

2

3

4

3

2

4

3

4

1

0
3

2
4

CSE332, Summer 2021L20: Graph Algorithms

Lecture Outline

v Graph Representations
§ Adjacency Matrix
§ Adjacency List

v Topological Sort

v Traversals
§ Breadth-first
§ Depth-first
§ Conclusion

29

CSE332, Summer 2021

gradescope.com/courses/275833

L20: Graph Algorithms

v You’ve seen a graph traversal before in 143. List all three.

30

CSE332, Summer 2021L20: Graph Algorithms

Tree and Graph Reachability

v Find all nodes reachable from a starting node v
§ ie, there exists a path
§ Might “do something” at each visited node (an iterator!)
• “Do something” is called visiting or processing a node

– eg, print to output, set some field, etc.

• Traversing a node or iterating over a node is different!
– Just fetch adjacent/child nodes

v Related Questions:
§ Is an undirected graph connected?
§ Is a directed graph weakly / strongly connected?
• For strongly, need a cycle back to starting node

31

CSE332, Summer 2021L20: Graph Algorithms

Tree and Graph Traversals

v Can answer reachability with a tree traversal or graph
traversal
§ Iterates over every node in a graph in some defined ordering
§ “Processes” or “visits” its contents

v There are several types of tree traversals
§ Level Order Traversal aka Breadth-First Traversal
§ Depth-First Traversal
• Pre-order Traversal
• In-order Traversal
• Post-order Traversal

32

CSE332, Summer 2021L20: Graph Algorithms

Tree/Graph Traversal: High-level Algorithm

v High-level Algorithm:
§ Initialization:
• Create an empty data structure

(often called a “fringe”) to track
“remaining work”

• Mark start as visited
§ While we still have work,

follow the nodes:
• Get a node
• Visit/process that node
• Update its neighbors (eg, add

to “remaining work” if it’s not
already there)

v Memorize this 5-step
pattern!

33

traverseGraph(Node start) {
pending = emptyFringe()
pending.add(start)

mark start as visited

while (!pending.empty()) {
next = pending.remove()
process(next) //marks visited

foreach u adjacent to next
if (!u.marked)
mark u
pending.add(u)

}

CSE332, Summer 2021L20: Graph Algorithms

Tree/Graph Traversal: Running Time

v Assuming add() and remove() are O(1), traversal is O(|E|)
§ Remember: we default to using an adjacency list

34

CSE332, Summer 2021L20: Graph Algorithms

Tree/Graph Traversal: Order

v The order we process() depends entirely on how pending.add()
and pending.remove() are implemented
§ Queue:
• Tree: Level-order traversal
• Graph: Breadth-first graph search (BFS)

§ Stack:
• Tree: Depth-first search (3 flavors!)
• Graph: Depth-first graph search (DFS)

v DFS and BFS are “big ideas” in computer science
§ Depth: explore one part before exploring other unexplored parts
§ Breadth: explore parts closer to the start before exploring farther

parts

35

CSE332, Summer 2021L20: Graph Algorithms

Lecture Outline

v Graph Representations
§ Adjacency Matrix
§ Adjacency List

v Topological Sort

v Traversals
§ Breadth-first
§ Depth-first
§ Conclusion

36

CSE332, Summer 2021L20: Graph Algorithms

Graphs: Breadth-First Search

v The fringe here is a Queue!

37

BFS(Node start) {
q.enqueue(start)
mark start as visited

while (!q.empty())

next = q.dequeue()
process(next)
foreach u adjacent to next
if (!u.marked)
mark u
q.enqueue(u)

}

CSE332, Summer 2021L20: Graph Algorithms

Trees: Level-Order

v Process top-to-bottom, left-to-right
§ Like reading in English
§ Goes “broad” instead of “deep”

v Resembles how we converted our binary heap (ie, a complete
tree) to its array representation

38

A C

B
D

E
F

G

CSE332, Summer 2021L20: Graph Algorithms

Breadth-First Search on a Graph

39

E F

B

A

G

D

H

J

I

C

BFS(Node start) {
q.enqueue(start)

mark start as visited

while (!q.empty())

next = q.dequeue()
process(next)

foreach u adjacent to next
if (!u.marked)

mark u

q.enqueue(u)
}

Queue:

Marked:

Order Processed:

CSE332, Summer 2021L20: Graph Algorithms

Breadth-First Search on a Graph

40

E F

B

A

G

D

H

J

I

C

BFS(Node start) {
q.enqueue(start)

mark start as visited

while (!q.empty())

next = q.dequeue()
process(next)

foreach u adjacent to next
if (!u.marked)

mark u

q.enqueue(u)
}

Queue:
A

Marked:
A

Order Processed:

CSE332, Summer 2021L20: Graph Algorithms

Breadth-First Search on a Graph

41

E F

B

A

G

D

H

J

I

C

BFS(Node start) {
q.enqueue(start)

mark start as visited

while (!q.empty())

next = q.dequeue()
process(next)

foreach u adjacent to next
if (!u.marked)

mark u

q.enqueue(u)
}

Queue:
B, C, D

Marked:
A, B, C, D

Order Processed:
A

CSE332, Summer 2021L20: Graph Algorithms

Breadth-First Search on a Graph

42

E F

B

A

G

D

H

J

I

C

BFS(Node start) {
q.enqueue(start)

mark start as visited

while (!q.empty())

next = q.dequeue()
process(next)

foreach u adjacent to next
if (!u.marked)

mark u

q.enqueue(u)
}

Queue:
C, D, E, F

Marked:
A, B, C, D, E, F

Order Processed:
A, B

CSE332, Summer 2021L20: Graph Algorithms

Breadth-First Search on a Graph

43

E F

B

A

G

D

H

J

I

C

BFS(Node start) {
q.enqueue(start)

mark start as visited

while (!q.empty())

next = q.dequeue()
process(next)

foreach u adjacent to next
if (!u.marked)

mark u

q.enqueue(u)
}

Queue:
D, E, F, G

Marked:
A, B, C, D, E, F, G

Order Processed:
A, B, C

CSE332, Summer 2021L20: Graph Algorithms

Breadth-First Search on a Graph

44

E F

B

A

G

D

H

J

I

C

BFS(Node start) {
q.enqueue(start)

mark start as visited

while (!q.empty())

next = q.dequeue()
process(next)

foreach u adjacent to next
if (!u.marked)

mark u

q.enqueue(u)
}

Queue:
E, F, G, H

Marked:
A, B, C, D, E, F, G, H

Order Processed:
A, B, C, D

CSE332, Summer 2021L20: Graph Algorithms

Breadth-First Search on a Graph

45

E F

B

A

G

D

H

J

I

C

BFS(Node start) {
q.enqueue(start)

mark start as visited

while (!q.empty())

next = q.dequeue()
process(next)

foreach u adjacent to next
if (!u.marked)

mark u

q.enqueue(u)
}

Queue:
F, G, H, J

Marked:
A, B, C, D, E, F, G, H, J

Order Processed:
A, B, C, D, E

CSE332, Summer 2021L20: Graph Algorithms

Breadth-First Search on a Graph

46

E F

B

A

G

D

H

J

I

C

BFS(Node start) {
q.enqueue(start)

mark start as visited

while (!q.empty())

next = q.dequeue()
process(next)

foreach u adjacent to next
if (!u.marked)

mark u

q.enqueue(u)
}

Queue:
G, H, J

Marked:
A, B, C, D, E, F, G, H, J

Order Processed:
A, B, C, D, E, F

CSE332, Summer 2021L20: Graph Algorithms

Breadth-First Search on a Graph

47

E F

B

A

G

D

H

J

I

C

BFS(Node start) {
q.enqueue(start)

mark start as visited

while (!q.empty())

next = q.dequeue()
process(next)

foreach u adjacent to next
if (!u.marked)

mark u

q.enqueue(u)
}

Queue:
H, J

Marked:
A, B, C, D, E, F, G, H, J

Order Processed:
A, B, C, D, E, F, G

CSE332, Summer 2021L20: Graph Algorithms

Breadth-First Search on a Graph

48

E F

B

A

G

D

H

J

I

C

BFS(Node start) {
q.enqueue(start)

mark start as visited

while (!q.empty())

next = q.dequeue()
process(next)

foreach u adjacent to next
if (!u.marked)

mark u

q.enqueue(u)
}

Queue:
J, I

Marked:
A, B, C, D, E, F, G, H, J, I

Order Processed:
A, B, C, D, E, F, G, H

CSE332, Summer 2021L20: Graph Algorithms

Breadth-First Search on a Graph

49

E F

B

A

G

D

H

J

I

C

BFS(Node start) {
q.enqueue(start)

mark start as visited

while (!q.empty())

next = q.dequeue()
process(next)

foreach u adjacent to next
if (!u.marked)

mark u

q.enqueue(u)
}

Queue:
I

Marked:
A, B, C, D, E, F, G, H, J, I

Order Processed:
A, B, C, D, E, F, G, H, J

CSE332, Summer 2021L20: Graph Algorithms

Breadth-First Search on a Graph

50

E F

B

A

G

D

H

J

I

C

BFS(Node start) {
q.enqueue(start)

mark start as visited

while (!q.empty())

next = q.dequeue()
process(next)

foreach u adjacent to next
if (!u.marked)

mark u

q.enqueue(u)
}

Queue:

Marked:
A, B, C, D, E, F, G, H, J, I

Order Processed:
A, B, C, D, E, F, G, H, J, I

CSE332, Summer 2021L20: Graph Algorithms

Lecture Outline

v Graph Representations
§ Adjacency Matrix
§ Adjacency List

v Topological Sort

v Traversals
§ Breadth-first
§ Depth-first
§ Conclusion

51

CSE332, Summer 2021L20: Graph Algorithms

Graphs: Depth-First Search

v The fringe here is a Stack!
v Note: many algorithms that use a stack have an Iterative and a

Recursive solution…

52

DFSIterative(Node start) {
s.push(start)
mark start as visited

while (!s.empty())
next = s.pop()
process(next)
foreach u adjacent to next

if (!u.marked)
mark u
q.push(u)

}

CSE332, Summer 2021L20: Graph Algorithms

Depth-First Search on a Graph

53

E F

B

A

G

D

H

J

I

C

Stack:

Marked:

Order Processed:

DFSIterative(Node start) {
s.push(start)
mark start as visited

while (!s.empty())
next = s.pop()
process(next)
foreach u adjacent to next
if (!u.marked)
mark u
q.push(u)

}

CSE332, Summer 2021L20: Graph Algorithms

Depth-First Search on a Graph

54

E F

B

A

G

D

H

J

I

C

Stack:
A

Marked:
A

Order Processed:

DFSIterative(Node start) {
s.push(start)
mark start as visited

while (!s.empty())
next = s.pop()
process(next)
foreach u adjacent to next
if (!u.marked)
mark u
q.push(u)

}

CSE332, Summer 2021L20: Graph Algorithms

Depth-First Search on a Graph

55

E F

B

A

G

D

H

J

I

C

Stack:
B, C, D

Marked:
A, B, C, D

Order Processed:
A

DFSIterative(Node start) {
s.push(start)
mark start as visited

while (!s.empty())
next = s.pop()
process(next)
foreach u adjacent to next
if (!u.marked)
mark u
q.push(u)

}

CSE332, Summer 2021L20: Graph Algorithms

Depth-First Search on a Graph

56

E F

B

A

G

D

H

J

I

C

DFSIterative(Node start) {
s.push(start)
mark start as visited

while (!s.empty())
next = s.pop()
process(next)
foreach u adjacent to next
if (!u.marked)
mark u
q.push(u)

}

Stack:
B, C, G, H

Marked:
A, B, C, D, G, H

Order Processed:
A, D

CSE332, Summer 2021L20: Graph Algorithms

Depth-First Search on a Graph

57

E F

B

A

G

D

H

J

I

C

DFSIterative(Node start) {
s.push(start)
mark start as visited

while (!s.empty())
next = s.pop()
process(next)
foreach u adjacent to next
if (!u.marked)
mark u
q.push(u)

}

Stack:
B, C, G, I

Marked:
A, B, C, D, G, H, I

Order Processed:
A, D, H

CSE332, Summer 2021L20: Graph Algorithms

Depth-First Search on a Graph

58

E F

B

A

G

D

H

J

I

C

DFSIterative(Node start) {
s.push(start)
mark start as visited

while (!s.empty())
next = s.pop()
process(next)
foreach u adjacent to next
if (!u.marked)
mark u
q.push(u)

}

Stack:
B, C, G, J

Marked:
A, B, C, D, G, H, I, J

Order Processed:
A, D, H, I

CSE332, Summer 2021L20: Graph Algorithms

Depth-First Search on a Graph

59

E F

B

A

G

D

H

J

I

C

DFSIterative(Node start) {
s.push(start)
mark start as visited

while (!s.empty())
next = s.pop()
process(next)
foreach u adjacent to next
if (!u.marked)
mark u
q.push(u)

}

Stack:
B, C, G

Marked:
A, B, C, D, G, H, I, J

Order Processed:
A, D, H, I, J

CSE332, Summer 2021L20: Graph Algorithms

Depth-First Search on a Graph

60

E F

B

A

G

D

H

J

I

C

DFSIterative(Node start) {
s.push(start)
mark start as visited

while (!s.empty())
next = s.pop()
process(next)
foreach u adjacent to next
if (!u.marked)
mark u
q.push(u)

}

Stack:
B, C,

Marked:
A, B, C, D, G, H, I, J

Order Processed:
A, D, H, I, J, G

CSE332, Summer 2021L20: Graph Algorithms

Depth-First Search on a Graph

61

E F

B

A

G

D

H

J

I

C

DFSIterative(Node start) {
s.push(start)
mark start as visited

while (!s.empty())
next = s.pop()
process(next)
foreach u adjacent to next
if (!u.marked)
mark u
q.push(u)

}

Stack:
B,

Marked:
A, B, C, D, G, H, I, J

Order Processed:
A, D, H, I, J, G, C

CSE332, Summer 2021L20: Graph Algorithms

Depth-First Search on a Graph

62

E F

B

A

G

D

H

J

I

C

DFSIterative(Node start) {
s.push(start)
mark start as visited

while (!s.empty())
next = s.pop()
process(next)
foreach u adjacent to next
if (!u.marked)
mark u
q.push(u)

}

Stack:
E, F

Marked:
A, B, C, D, G, H, I, J, E, F

Order Processed:
A, D, H, I, J, G, C, B

CSE332, Summer 2021L20: Graph Algorithms

Depth-First Search on a Graph

63

E F

B

A

G

D

H

J

I

C

DFSIterative(Node start) {
s.push(start)
mark start as visited

while (!s.empty())
next = s.pop()
process(next)
foreach u adjacent to next
if (!u.marked)
mark u
q.push(u)

}

Stack:
E

Marked:
A, B, C, D, G, H, I, J, E, F

Order Processed:
A, D, H, I, J, G, C, B, F

CSE332, Summer 2021L20: Graph Algorithms

Depth-First Search on a Graph

64

E F

B

A

G

D

H

J

I

C

DFSIterative(Node start) {
s.push(start)
mark start as visited

while (!s.empty())
next = s.pop()
process(next)
foreach u adjacent to next
if (!u.marked)
mark u
q.push(u)

}

Stack:

Marked:
A, B, C, D, G, H, I, J, E, F

Order Processed:
A, D, H, I, J, G, C, B, F

CSE332, Summer 2021

gradescope.com/courses/275833

L20: Graph Algorithms

v Were the Pre/In/Post-Order Traversals from 143 examples of BFS or
DFS?

65

CSE332, Summer 2021L20: Graph Algorithms

Lecture Outline

v Graph Representations
§ Adjacency Matrix
§ Adjacency List

v Topological Sort

v Traversals
§ Breadth-first
§ Depth-first
§ Conclusion

66

CSE332, Summer 2021L20: Graph Algorithms

Saving the Path

v These graph traversals can answer the “reachability question”:
§ “Is there a path from node x to node y?”

v But what if we want to output the actual path or its length?
§ Eg, getting driving directions vs knowing it’s possible to get there

v Modifications:
§ Instead of just “marking” a node, store the path’s previous node
• ie: when processing u, if we add v to the “remaining work” set v.prev to u

§ When you reach the goal, follow prev fields backwards to start
• (don’t forget to reverse the answer)

§ Path length:
• Same idea, but also store integer distance at each node

67

CSE332, Summer 2021L20: Graph Algorithms

Saving the Path: Example using BFS (1 of 2)

v Find the shortest path from Seattle to Austin
§ Remember marked nodes are not re-enqueued
§ Shortest paths may not be unique

68

Seattle

San Francisco
Dallas

Chicago

Salt Lake City

Austin

CSE332, Summer 2021L20: Graph Algorithms

Saving the Path: Example using BFS (2 of 2)

v Find the shortest path from Seattle to Austin
§ Remember marked nodes are not re-enqueued
§ Shortest paths may not be unique

69

Seattle

San Francisco
Dallas

Chicago

Salt Lake City

Austin

0

1

1

1

2 3 Seattle

San Francisco
Dallas

Chicago

Salt Lake City

Austin

0

1

1

1

2 3

CSE332, Summer 2021L20: Graph Algorithms

DFS/BFS Comparison

v Breadth-first search:
§ Always finds shortest paths, i.e., finds “optimal solutions”
• Better for “what is the shortest path from x to y?”

§ But queue may hold up to O(|V|) nodes
• Eg, at the bottom level of perfect binary tree, queue contains |V|/2 nodes

v Depth-first search:
§ Can use less space when finding a path
• If longest path in the graph is p and highest out-degree is d then stack never

has more than d*p elements

70

CSE332, Summer 2021L20: Graph Algorithms

It Doesn’t Have to be Either/Or

v A third approach: Iterative deepening (IDDFS):
§ Try DFS, but don’t allow recursion more than K levels deep
§ If fails to find a solution, increment K and start the entire search over

v Like BFS, finds shortest paths. Like DFS, less space

71

CSE332, Summer 2021L20: Graph Algorithms

Summary

v Two very different “standard” graph representations
§ Must understand tradeoffs to choose between adj list and adj matrix

v TopoSort finds a total ordering in a DAG representing a partial
ordering
§ Runtime for TopoSort was dependent on graph representation and a

helper data structure!

v We can traverse both trees and graphs
§ Depth-first-style tree traversals have 3 flavors (named by when the

processing happens)
§ Breadth-first-style tree traversals are called “level-order”
§ Graphs can have “pre-” and “post-” style traversals, but ordering is

less important than in trees
72

