
CSE332, Summer 2021L11: Comparison Sorts

Comparison Sorting Algorithms
CSE 332 Summer 2021

Instructor: Kristofer Wong

Teaching Assistants:
Alena Dickmann Arya GJ Finn Johnson
Joon Chong Kimi Locke Peyton Rapo
Rahul Misal Winston Jodjana

CSE332, Summer 2021L11: Comparison Sorts

Announcements

v P2 checkpoint 2 tomorrow – google form will release this
afternoon
§ QuickSort should be the only thing we haven’t covered in lecture yet

v Exercises 7 & 8 out!
§ Ex7 Canvas Groups: Join group and post in group discussion
§ Reflection questions subject to change before Wednesday

v Midterm out Wednesday!

v P1 Grades will release

2

CSE332, Summer 2021L11: Comparison Sorts

Lecture Outline
v Intro to Sorting

v Simple Sorts
§ InsertionSort
§ SelectionSort

v Fancier Sorts
§ HeapSort
§ “Data Structure Sorts”

v Divide & Conquer Sorts
§ MergeSort
§ QuickSort

3

CSE332, Summer 2021

gradescope.com/courses/275833

L11: Comparison Sorts

v When you play cards, how do you order them in your hand?

v Why do you think we learning about sorting in this class?

4

CSE332, Summer 2021L11: Comparison Sorts

Introduction to Sorting (1 of 2)

v Stacks, queues, priority queues, and dictionaries/sets all
provide one element at a time

v But often we want “all the items” in some order
§ Alphabetical list of people
§ Population list of countries
§ Search engine results by relevance

v Different sorting algorithms have different asymptotic and
constant-factor trade-offs
§ Knowing one way to sort just isn’t enough; no single “best sort”
§ Sorting is an excellent case-study in making trade-offs!

5

CSE332, Summer 2021L11: Comparison Sorts

Introduction to Sorting (2 of 2)

v Preprocessing (e.g. sorting) data to make subsequent
operations faster is a general technique in computing!
§ Example: Sort the items so that you can:
• Find the kth largest in constant time for any k
• Perform binary search to find an item in logarithmic time

§ Whether preprocessing is beneficial depends on
• How often the items will change
• How many items there are

v Preprocessing’s benefits depend on how often the items will
change and how many items there are
§ Sorting is an excellent case-study in making trade-offs!

6

CSE332, Summer 2021L11: Comparison Sorts

Comparison Sorting: Definition

v Problem: We have n comparable items in an array, and we
want to rearrange them to be in increasing order

v Input:
§ An array A of (key, value) pairs
§ A comparison function (consistent and total)
• Given keys a & b, what is their relative ordering? <, =, >?
• Ex: keys that implement Comparable or have a Comparator

v Output/Side-Effect:
§ Reorganize the elements of A such that for any index i and j,

if i < j then A[i] £ A[j]

§ [Usually unspoken] A must have all the same items it started with
§ Could also sort in reverse order, of course

7

CSE332, Summer 2021L11: Comparison Sorts

Comparison Sort: Variations (1 of 2)

1. Maybe elements are in a linked list
§ Could convert to array and back in linear time, but some algorithms

can still “work” on linked lists

2. Maybe if there are ties we should preserve the original
ordering
§ Sorts that do this naturally are called stable sorts

3. Maybe we must not use more than O(1) “auxiliary space”
§ These are called in-place sorts
§ Not allowed to allocate memory proportional to input (i.e., O(n)),

but can allocate O(1) # of variables
§ Work is done by swapping around in the array

8

CSE332, Summer 2021L11: Comparison Sorts

Comparison Sort: Variations (2 of 2)

4. Maybe we can do more with elements than just compare
§ Comparison sorts assume a binary ‘compare’ operator
§ In special cases we can sometimes get faster algorithms

5. Maybe we have too many items to fit in memory
§ Use an external sorting algorithm

9

CSE332, Summer 2021L11: Comparison Sorts

Big Picture of Comparison-Based Sorts

v Simple algorithms: O(n2)
§ InsertionSort, SelectionSort
§ BubbleSort, ShellSort

v Fancier algorithms: O(n log n)
§ HeapSort, MergeSort, QuickSort (randomized)

v Comparison-based sorting’s lower bound: W(n log n)

10

CSE332, Summer 2021L11: Comparison Sorts

Lecture Outline
v Intro to Sorting

v Simple Sorts
§ InsertionSort
§ SelectionSort

v Fancier Sorts
§ HeapSort
§ “Data Structure Sorts”

v Divide & Conquer Sorts
§ MergeSort
§ QuickSort

11

CSE332, Summer 2021L11: Comparison Sorts

InsertionSort

v Idea: At step k, insert the kth element in the correct position
§ Sort first two elements
§ Now insert 3rd element in order
§ …

v Loop invariant (“when loop index is i”):
§ First i elements are in sorted order

v Time:
Best-case: _______ Worst-case: _______

v Characteristics:
Stable: ______ In-place: ______

12

CSE332, Summer 2021L11: Comparison Sorts

SelectionSort

v Idea: At step k, select the smallest elt and put it at kth position
§ Find smallest element, put it 1st

§ Find next smallest element, put it 2nd

§ …

v Loop invariant (“when loop index is i”):
§ First i elements are the i smallest elements in sorted order

v Time:
Best-case: _______ Worst-case: _______

v Characteristics:
Stable: ______ In-place: ______

13

CSE332, Summer 2021L11: Comparison Sorts

InsertionSort vs. SelectionSort (1 of 2)

v InsertionSort
§ Loop invariant:
• First i elements are in sorted

order

§ Characteristics:
• Stable: yes

§ Time:
• Worst-case: O(n2)
• “Average” case: O(n2)

14

v SelectionSort
§ Loop invariant:
• First i elements are the i

smallest elements in sorted
order

§ Characteristics:
• Stable: no

§ Time:
• Worst-case: O(n2)
• “Average” case: O(n2)

Different algorithms, same problem

CSE332, Summer 2021L11: Comparison Sorts

InsertionSort vs. SelectionSort (2 of 2)

v InsertionSort has better best-case complexity
§ Best case is when input is “mostly sorted”

v Different constants
§ InsertionSort may do well on small arrays (empirically: N < ~15)
§ Java’s built-in sort prefers InsertionSort for arrays <47 items

15

CSE332, Summer 2021L11: Comparison Sorts

Lecture Outline
v Intro to Sorting

v Simple Sorts
§ InsertionSort
§ SelectionSort

v Fancier Sorts
§ HeapSort
§ “Data Structure Sorts”

v Divide & Conquer Sorts
§ MergeSort
§ QuickSort

16

CSE332, Summer 2021L11: Comparison Sorts

Naïve HeapSort

v Idea: Put everything in a MIN heap; successively deleteMin
§ add() all elements into heap – OR – better yet, use buildHeap
§ for(i=0; i < arr.length; i++)

arr[i] = deleteMin();

v Loop invariant (“when loop index is i”):
§ First i elements are the i smallest elements in sorted order

v Time: ______

v Characteristics:
Stable: ______ In-place: ______

17

CSE332, Summer 2021L11: Comparison Sorts

In-place HeapSort

v Idea: Put everything in a MAX heap ; successively deleteMax
§ insert each arr[i] –OR – better yet, use buildHeap
§ for(i=0; i < arr.length; i++)

arr[arr.length - i] = deleteMax();

v Loop invariant (“when loop index is i”): same as naïve version

v Time: ______

v Characteristics:
Stable: ______ In-place: ______

18

CSE332, Summer 2021L11: Comparison Sorts

Aside: “AVLSort” and “DataStructureSort”

v We can also use a balanced tree to:
§ add each element: total time O(n log n)
§ Do an in-order traversal O(n)

v But a balanced tree cannot be made in-place, and constants
worse than HeapSort
§ Both are O(n log n) in worst, best, and average case
§ Neither sorts parallelizes well

v Don’t even think about trying to sort with a hash table …

19

CSE332, Summer 2021

gradescope.com/courses/275833

L11: Comparison Sorts

v Why might I care about a sort being stable or in place? Would having
these two qualities ever be worth the tradeoff of having a slower
algorithm?

20

CSE332, Summer 2021L11: Comparison Sorts

Lecture Outline
v Intro to Sorting

v Simple Sorts
§ InsertionSort
§ SelectionSort

v Fancier Sorts
§ HeapSort
§ “Data Structure Sorts”

v Divide & Conquer Sorts
§ MergeSort
§ QuickSort

21

CSE332, Summer 2021L11: Comparison Sorts

Technique: Divide and Conquer

v Very important technique in algorithm design!
1. Divide problem into smaller parts
2. Solve the parts independently
• Recursion
• Or potentially parallelism!

3. Combine solution of parts to produce overall solution

v Examples:
§ Sort each half of the array, then combine together
§ Split the array into “small part” and “big part”, then sort the parts

22

CSE332, Summer 2021L11: Comparison Sorts

Sorting with Divide and Conquer

v Two great sorting methods are divide-and-conquer!
§ MergeSort:
• Sort the left half of the elements (recursively)
• Sort the right half of the elements (recursively)
• Merge the two sorted halves into a sorted whole

§ QuickSort:
• Pick a “pivot” element
• Partition elements into those less-than pivot and those greater-than pivot
• Sort the less-than elements (recursively)
• Sort the greater-than the elements (recursively)
• All done! Answer is [sorted-less-than] [pivot] [sorted-greater-than]

23

CSE332, Summer 2021L11: Comparison Sorts

MergeSort

v To sort array from position lo to position hi:
§ If range is 1 element long, it’s sorted! (Base case)
§ Else, split into two halves:
• “Somehow” sort from lo to (hi+lo)/2
• “Somehow” sort from (hi+lo)/2 to hi
• Merge the two halves together

v Merging takes two sorted parts and sorts everything
§ O(n) time but requires O(n) auxiliary space…

24

8 2 9 4 5 3 1 6

CSE332, Summer 2021L11: Comparison Sorts

MergeSort: Merging Example (1 of 10)

v Start with:

v Return from left and
right recursion
§ (pretend it works for now)

v Merge
§ Use 3 cursors and an extra

auxiliary array
§ When done, copy the

extra array back to the
original

25

arr 8 2 9 4 5 3 1 6

arr 2 4 8 9 1 3 5 6

aux

CSE332, Summer 2021L11: Comparison Sorts

MergeSort: Merging Example (2 of 10)

v Start with:

v Return from left and
right recursion
§ (not magic J)

v Merge
§ Use 3 cursors and an extra

auxiliary array
§ When done, copy the

extra array back to the
original

26

arr 2 4 8 9 1 3 5 6

aux 1

arr 8 2 9 4 5 3 1 6

CSE332, Summer 2021L11: Comparison Sorts

MergeSort: Merging Example (3 of 10)

v Start with:

v Return from left and
right recursion
§ (not magic J)

v Merge
§ Use 3 cursors and an extra

auxiliary array
§ When done, copy the

extra array back to the
original

27

arr 2 4 8 9 1 3 5 6

aux 1 2

arr 8 2 9 4 5 3 1 6

CSE332, Summer 2021L11: Comparison Sorts

MergeSort: Merging Example (4 of 10)

v Start with:

v Return from left and
right recursion
§ (not magic J)

v Merge
§ Use 3 cursors and an extra

auxiliary array
§ When done, copy the

extra array back to the
original

28

arr 2 4 8 9 1 3 5 6

aux 1 2 3

arr 8 2 9 4 5 3 1 6

CSE332, Summer 2021L11: Comparison Sorts

MergeSort: Merging Example (5 of 10)

v Start with:

v Return from left and
right recursion
§ (not magic J)

v Merge
§ Use 3 cursors and an extra

auxiliary array
§ When done, copy the

extra array back to the
original

29

arr 2 4 8 9 1 3 5 6

aux 1 2 3 4

arr 8 2 9 4 5 3 1 6

CSE332, Summer 2021L11: Comparison Sorts

MergeSort: Merging Example (6 of 10)

v Start with:

v Return from left and
right recursion
§ (not magic J)

v Merge
§ Use 3 cursors and an extra

auxiliary array
§ When done, copy the

extra array back to the
original

30

arr 2 4 8 9 1 3 5 6

aux 1 2 3 4 5

arr 8 2 9 4 5 3 1 6

CSE332, Summer 2021L11: Comparison Sorts

MergeSort: Merging Example (7 of 10)

v Start with:

v Return from left and
right recursion
§ (not magic J)

v Merge
§ Use 3 cursors and an extra

auxiliary array
§ When done, copy the

extra array back to the
original

31

arr 2 4 8 9 1 3 5 6

aux 1 2 3 4 5 6

arr 8 2 9 4 5 3 1 6

CSE332, Summer 2021L11: Comparison Sorts

MergeSort: Merging Example (8 of 10)

v Start with:

v Return from left and
right recursion
§ (not magic J)

v Merge
§ Use 3 cursors and an extra

auxiliary array
§ When done, copy the

extra array back to the
original

32

arr 2 4 8 9 1 3 5 6

aux 1 2 3 4 5 6 8

arr 8 2 9 4 5 3 1 6

CSE332, Summer 2021L11: Comparison Sorts

MergeSort: Merging Example (9 of 10)

v Start with:

v Return from left and
right recursion
§ (not magic J)

v Merge
§ Use 3 cursors and an extra

auxiliary array
§ When done, copy the

extra array back to the
original

33

arr 2 4 8 9 1 3 5 6

aux 1 2 3 4 5 6 8 9

arr 8 2 9 4 5 3 1 6

CSE332, Summer 2021L11: Comparison Sorts

MergeSort: Merging Example (10 of 10)

v Start with:

v Return from left and
right recursion
§ (not magic J)

v Merge
§ Use 3 cursors and an extra

auxiliary array
§ When done, copy the

extra array back to the
original

34

arr 2 4 8 9 1 3 5 6

aux 1 2 3 4 5 6 8 9

arr 1 2 3 4 5 6 8 9

arr 8 2 9 4 5 3 1 6

CSE332, Summer 2021L11: Comparison Sorts

MergeSort: Recursion Example (1 of 3)

35

8 2 9 4 5 3 1 6

5 3 1 68 2 9 4

8 2 9 4 5 3 1 6

8 2 9 1 64 5 3

Divide

Divide

One Element
(done recurring!)

CSE332, Summer 2021L11: Comparison Sorts

MergeSort: Recursion Example (2 of 3)

36

8 2 9 4 5 3 1 6

5 3 1 68 2 9 4

8 2 9 4 5 3 1 6

8 2 9 1 64 5 3

Divide

Divide

2 8 4 9 3 5 1 6Merge

1 3 5 62 4 8 9Merge

1 2 3 4 5 6 8 9

One Element
(done recurring!)

CSE332, Summer 2021L11: Comparison Sorts

MergeSort: Recursion Example (3 of 3)

37

8 2 9 1 64 5 3

2 8 4 9 3 5 1 6Merge

1 3 5 62 4 8 9Merge

1 2 3 4 5 6 8 9

When a recursive call ends, its sub-arrays are each in order;
we just need to merge them in order together

One Element
(done recurring!)

CSE332, Summer 2021L11: Comparison Sorts

Optimizations: Reducing “Dregs Copies” (1 of 2)

v Remember the final steps of our merge example?

v It’s wasteful to copy 8 & 9 to the auxiliary array, and then
immediately copy them back into the original array!

38

arr 2 4 8 9 1 3 5 6

aux 1 2 3 4 5 6

CSE332, Summer 2021L11: Comparison Sorts

Optimizations: Reducing “Dregs Copies” (2 of 2)

v If left side finishes first:
§ Stop the merge, and copy the auxiliary array back to the original

v If right side finishes first:
§ Stop the merge, and copy the dregs directly into right side
§ Then copy auxiliary array back to the original

39

arr 8 9

aux 1 2 3 4 5 6

arr 8 9

aux 1 2 3 4 5 6

CSE332, Summer 2021L11: Comparison Sorts

Optimizations: Reducing Temp Arrays (1 of 2)

v Simplest / worst approach:
§ Every divide: allocate two new auxiliary arrays of size (hi-lo)/2
§ Every merge: allocate another auxiliary array

v Better:
§ Allocate a single auxiliary array of size n at beginning to use

throughout
§ Reuse “slices” of size (hi-lo)/2 within that array at every merge

v Best (but a little tricky):
§ Don’t copy back! At 2nd, 4th, 6th, … merges, use the original array as

the auxiliary array; at odd-numbered merges, vice-versa
§ If the number of stages is odd, need one final copy at end

40

CSE332, Summer 2021L11: Comparison Sorts

Optimizations: Reducing Temp Arrays (2 of 2)

1. Recur down to sub-arrays of size 1 (no copies)
2. As we return from the recursion, switch off arrays

3. Arguably easier to code up without recursion at all

41

1st merge
(aux is dest)

2nd merge
(arr is dest)

3rd merge
(aux is dest)

4th merge
(arr is dest)

5th merge
(aux is dest)

Copy (if number of stages is odd)

CSE332, Summer 2021L11: Comparison Sorts

MergeSort: Runtime Analysis (1 of 3)

v MergeSort sorts n elements by:
§ Returning immediately if n=1
§ Doing 2 subproblems of size n/2 + then an O(n) merge otherwise

v Runtime expression?
§ T(1) = c1

§ T(n) = 2T(n/2) + c2n

42

CSE332, Summer 2021L11: Comparison Sorts

MergeSort: Runtime Analysis (2 of 3)

T(1) = c1

T(n) = 2T(n/2) + c2n

= 2(2T(n/4) + c2n/2) + c2n
= 4T(n/4) + 2c2n

= 4(2T(n/8) + c2n/4) + 2c2n
= 8T(n/8) + 3c2n

= 2kT(n/2k) + kc2n

43

If I want n/2k = 1, let k = log n
Then T(n) = 2kT(n/2k) + kc2n

= 2log nT(1) + log n c2n
= c1n+ c2n log n
= O(n log n)

First expansion

Second expansion

Third expansion

kth expansion

CSE332, Summer 2021L11: Comparison Sorts

MergeSort: Runtime Analysis (3 of 3)

v More intuitively, this recurrence comes up often enough you
should “just know” it’s O(n log n)

v MergeSort’s runtime is relatively easy to intuit
§ Best, worst, and “average” all have the same runtime
§ The recursion “tree” will have log n height and at each level we do

a total amount of merging equal to n

44

CSE332, Summer 2021L11: Comparison Sorts

MergeSort: Characteristics

v Execution:
§ Merge sorted subarrays as it

“recurs upward” (ie, returns
from recursive calls)

v Characteristics:
§ Stable: yes
§ In-place: no

v Time: always O(n log n)

45

mergeSort(arr, startIdx, endIdx) {
if (startIdx == endIdx

|| startIdx + 1 == endIdx) {
return;

}

midIdx = (endIdx – startIdx)/2

+ startIdx;
mergeSort(arr, startIdx, midIdx);
mergeSort(arr, midIdx, endIdx);
merge(arr, startIdx, midIdx,

endIdx);

}

CSE332, Summer 2021L11: Comparison Sorts

MergeSort: Final Thoughts

v We’ve discussed arrays, but you may need to sort linked lists
§ One approach:
• Convert to array: O(n)
• Sort: O(n log n)
• Convert back to list: O(n)

§ Alternatively: MergeSort works well on linked lists
• HeapSort and QuickSort do not L
• InsertionSort and SelectionSort can work, but they’re slower

v MergeSort is the best choice for external sorting
§ Linear merges minimize new disk accesses

46

CSE332, Summer 2021L11: Comparison Sorts

QuickSort Steps

1. Pick the pivot value(s)
§ Any choice is correct; data will end up sorted
§ For efficiency, these value(s) ought to approximate the median

2. Partition all the values into:
a. The values less than the pivot(s)
b. The pivot(s)
c. The values greater than the pivot(s)
d. .. In linear time? In-place? Stably?

3. Recursively QuickSort(A) and QuickSort(C)

✨TA-DA!✨
47

CSE332, Summer 2021L11: Comparison Sorts

QuickSort Steps

1. Pick the pivot value(s)
§ Any choice is correct; data will end up sorted
§ For efficiency, these value(s) ought to approximate the median

2. Partition all the values into:
a. The values less than the pivot(s)
b. The pivot(s)
c. The values greater than the pivot(s)
d. … In linear time? In-place? Stably?

3. Recursively QuickSort(A) and QuickSort(C)

✨TA-DA!✨
48

CSE332, Summer 2021L11: Comparison Sorts

QuickSort Intuition: Set Partitioning

49

13
81

92
43

65

31 57

26
75

0
S Select pivot value

6513 43 31

5726

0S1
8192

75
S2

Partition S

S1
65

S2
QuickSort(S1) and QuickSort(S2)

Presto! S is sorted

[Weiss]

0 13 26 31 43 57 75 81 92

0 13 26 31 43 57 65 75 81 92

S

CSE332, Summer 2021L11: Comparison Sorts

Recursive Call (1 of 3)

v After partitioning on 5:
§ 5 is in its “correct place” (ie, where it’d be if the array were sorted)

§ Can now sort two halves separately (eg, through recursive use of
partitioning)

5 3 2 1 7 8 4 6

3 2 1 4 5 7 8 6

3 2 1 4 7 8 6

1 2 3 4 6 7 8

Note: for the remainder of this
section, our pivot-selection algorithm

is “first item in the subarray”

50

CSE332, Summer 2021L11: Comparison Sorts

Recursive Call (2 of 3)
5 3 2 1 7 8 4 6

3 2 1 4 5 7 8 6

3 2 1 4 7 8 6

1 2 3 4 6 7 8

1 2 4 6 8

1 2

2
51

CSE332, Summer 2021L11: Comparison Sorts

1 2 3 4 5 7 8 6

Recursive Call (3 of 3)

1 2 3 4 6 7 8

1 2 4 6 8

2
52

CSE332, Summer 2021L11: Comparison Sorts

QuickSort Steps

1. Pick the pivot value(s)
§ Any choice is correct; data will end up sorted
§ For efficiency, these value(s) ought to approximate the median

2. Partition all the values into:
a. The values less than the pivot(s)
b. The pivot(s)
c. The values greater than the pivot(s)
d. … In linear time? In-place? Stably?

3. Recursively QuickSort(A) and QuickSort(C)

✨TA-DA!✨
53

CSE332, Summer 2021L11: Comparison Sorts

Pivot Selection: Pivot is the Median

T(0) = T(1) = c1

T(n) = 2T(n/2) + c2 n
(partition is linear-time)

Same recurrence as
MergeSort:
O(n log n)Only size 1 problems remain, so we’re done.

54

CSE332, Summer 2021L11: Comparison Sorts

Pivot Selection: Pivot is the Min/Max

T(0) = T(1) = c1

T(n) = T(n-1) + c2n

Basically same recurrence as
SelectionSort: O(n2)

55

CSE332, Summer 2021L11: Comparison Sorts

Pivot Selection: Pivot is Random

v Suppose pivot always ends up at least 10% from either edge

v Work at each level: O(N) and Runtime is O(NH)
§ Height is approximately log 10/9 N = O(log N)

v Runtime: O(N log N)
§ See proof in text

N

N/10 9N/10

N/100 9N/100 9N/100 81N/100

56

CSE332, Summer 2021L11: Comparison Sorts

Pivot Selection Dictates Runtime!

v If pivot lands “somewhere good”, Quicksort is Θ(N log N) 🥂

v However, the very rare Θ(N2) cases do happen in practice 👎
§ Bad ordering: Array already in (almost-)sorted order and pivot is first

or last index
§ Bad elements: Array with all duplicates

v Three philosophies for avoiding worst-case behavior:
1. Randomness: pick a random pivot; shuffle before sorting
• Elegant, but (pseudo)random number generation can be slow

2. Smarter Pivot Selection: calculate or approximate the median
• Median-of-3: median of arr[lo], arr[hi-1], arr[(hi+lo)/2]

3. Introspection: switch to safer sort if recursion goes too deep
57

CSE332, Summer 2021L11: Comparison Sorts

Avoiding Worst-Case Pivots

v Example worst-cases:
§ Bad ordering: Array already in (almost-)sorted order and pivot is first

or last index
§ Bad elements: Array with all duplicates

v Three philosophies for avoiding worst-case behavior:
1. Randomness: pick a random pivot; shuffle before sorting
• Elegant, but (pseudo)random number generation can be slow

2. Smarter Pivot Selection: calculate or approximate the median
• Median-of-3: median of arr[lo], arr[hi-1], arr[(hi+lo)/2]

3. Introspection: switch to safer sort if recursion goes too deep
• … what algorithm might be safer in the presence of badly-ordered elements?

58

