Comparison Sorting Algorithms CSE 332 Summer 2021

Instructor: Kristofer Wong

Teaching Assistants:

Alena DickmannArya GJFinn JohnsonJoon ChongKimi LockePeyton RapoRahul MisalWinston Jodjana

Announcements

- P2 checkpoint 2 tomorrow google form will release this afternoon
 - QuickSort should be the only thing we haven't covered in lecture yet
- Exercises 7 & 8 out!
 - Ex7 Canvas Groups: Join group and post in *group discussion*
 - Reflection questions subject to change before Wednesday
- Midterm out Wednesday!
- P1 Grades will release

Lecture Outline

* Intro to Sorting

- Simple Sorts
 - InsertionSort
 - SelectionSort
- Fancier Sorts
 - HeapSort
 - "Data Structure Sorts"
- Divide & Conquer Sorts
 - MergeSort
 - QuickSort

Ill gradescope

gradescope.com/courses/275833

- When you play cards, how do you order them in your hand?
- Why do you think we learning about sorting in this class?

Introduction to Sorting (1 of 2)

- Stacks, queues, priority queues, and dictionaries/sets all provide one element at a time
- But often we want "all the items" in some order
 - Alphabetical list of people
 - Population list of countries
 - Search engine results by relevance
- Different sorting algorithms have different asymptotic and constant-factor trade-offs
 - Knowing one way to sort just isn't enough; no single "best sort"
 - Sorting is an excellent case-study in making trade-offs!

Introduction to Sorting (2 of 2)

- Preprocessing (e.g. sorting) data to make subsequent operations faster is a general technique in computing!
 - Example: Sort the items so that you can:
 - + Find the ${\bf k}^{\text{th}}$ largest in constant time for any ${\bf k}$
 - Perform binary search to find an item in logarithmic time
 - Whether preprocessing is beneficial depends on
 - How often the items will change
 - How many items there are
- Preprocessing's benefits depend on how often the items will change and how many items there are
 - Sorting is an excellent case-study in making trade-offs!

Comparison Sorting: Definition

 <u>Problem</u>: We have *n* comparable items in an array, and we want to rearrange them to be in increasing order

Input:

- An array A of (key, value) pairs
- A comparison function (consistent and total)
 - Given keys a & b, what is their relative ordering? <, =, >?
 - Ex: keys that implement Comparable or have a Comparator

Output/Side-Effect:

- Reorganize the elements of A such that for any index i and j, if i < j then $A[i] \le A[j]$
- [Usually unspoken] A must have all the same items it started with
- Could also sort in reverse order, of course

Comparison Sort: Variations (1 of 2)

- 1. Maybe elements are in a linked list
 - Could convert to array and back in linear time, but some algorithms can still "work" on linked lists
- 2. Maybe if there are ties we should preserve the original ordering
 - Sorts that do this naturally are called stable sorts
- 3. Maybe we must not use more than O(1) "auxiliary space"
 - These are called in-place sorts
 - Not allowed to allocate memory proportional to input (i.e., O(n)), but can allocate O(1) # of variables
 - Work is done by swapping around in the array

Comparison Sort: Variations (2 of 2)

- 4. Maybe we can do more with elements than just compare
 - Comparison sorts assume a binary 'compare' operator
 - In special cases we can sometimes get faster algorithms
- 5. Maybe we have too many items to fit in memory
 - Use an external sorting algorithm

Big Picture of Comparison-Based Sorts

- Simple algorithms: $O(n^2)$
 - InsertionSort, SelectionSort
 - BubbleSort, ShellSort
- Fancier algorithms: O(n log n)
 - HeapSort, MergeSort, QuickSort (randomized)
- * Comparison-based sorting's lower bound: $\Omega(n \log n)$

Lecture Outline

Intro to Sorting

* Simple Sorts

- InsertionSort
- SelectionSort
- Fancier Sorts
 - HeapSort
 - "Data Structure Sorts"
- Divide & Conquer Sorts
 - MergeSort
 - QuickSort

InsertionSort

- * Idea: At step k, insert the kth element in the correct position
 - Sort first two elements
 - Now insert 3rd element in order
- Loop invariant ("when loop index is i"):
 - First i elements are in sorted order
- * <u>Time:</u>

...

Best-case: _____ Worst-case: _____

<u>Characteristics</u>:

Stable: _____ In-place: _____

SelectionSort

- * Idea: At step k, select the smallest elt and put it at kth position
 - Find smallest element, put it 1st
 - Find next smallest element, put it 2nd
- Loop invariant ("when loop index is i"):
 - First i elements are the i smallest elements in sorted order
- Time:

...

Best-case: _____ Worst-case: _____

<u>Characteristics</u>:

Stable: _____ In-place: _____

InsertionSort vs. SelectionSort (1 of 2)

Different algorithms, same problem

- InsertionSort
 - Loop invariant:
 - First i elements are in sorted order
 - Characteristics:
 - Stable: yes
 - Time:
 - Worst-case: O(n²)
 - "Average" case: O(n²)

- SelectionSort
 - Loop invariant:
 - First i elements are the i smallest elements in sorted order
 - Characteristics:
 - Stable: no
 - Time:
 - Worst-case: O(n²)
 - "Average" case: O(n²)

InsertionSort vs. SelectionSort (2 of 2)

- InsertionSort has better best-case complexity
 - Best case is when input is "mostly sorted"
- Different constants
 - InsertionSort may do well on small arrays (empirically: N < ~15)</p>
 - Java's built-in sort prefers InsertionSort for arrays <47 items</p>

Lecture Outline

- Intro to Sorting
- Simple Sorts
 - InsertionSort
 - SelectionSort

* Fancier Sorts

- HeapSort
- "Data Structure Sorts"
- Divide & Conquer Sorts
 - MergeSort
 - QuickSort

Naïve HeapSort

✤ Idea: Put everything in a MIN heap; successively deleteMin

- add() all elements into heap OR better yet, use buildHeap
- for(i=0; i < arr.length; i++)</pre>

arr[i] = deleteMin();

- Loop invariant ("when loop index is i"):
 - First i elements are the i smallest elements in sorted order
- * <u>Time</u>: _____
- Characteristics:

Stable: _____ In-place: _____

In-place HeapSort

✤ Idea: Put everything in a MAX heap ; successively deleteMax

- insert each arr[i] -OR better yet, use buildHeap
- for(i=0; i < arr.length; i++)</pre>

arr[arr.length - i] = deleteMax();

* Loop invariant ("when loop index is i"): same as naïve version

* <u>Time</u>: _____

Stable: _____ In-place: _____

Aside: "AVLSort" and "DataStructureSort"

- We can also use a balanced tree to:
 - add each element: total time O(n log n)
 - Do an in-order traversal O(n)
- But a balanced tree cannot be made in-place, and constants worse than HeapSort
 - Both are O(n log n) in worst, best, and average case
 - Neither sorts parallelizes well

Don't even think about trying to sort with a hash table ...

Ill gradescope

gradescope.com/courses/275833

Why might I care about a sort being stable or in place? Would having these two qualities ever be worth the tradeoff of having a slower algorithm?

Lecture Outline

- Intro to Sorting
- Simple Sorts
 - InsertionSort
 - SelectionSort
- Fancier Sorts
 - HeapSort
 - "Data Structure Sorts"

* Divide & Conquer Sorts

- MergeSort
- QuickSort

Technique: Divide and Conquer

- Very important technique in algorithm design!
 - 1. Divide problem into smaller parts
 - 2. Solve the parts independently
 - Recursion
 - Or potentially parallelism!
 - 3. Combine solution of parts to produce overall solution
- Examples:
 - Sort each half of the array, then combine together
 - Split the array into "small part" and "big part", then sort the parts

Sorting with Divide and Conquer

- Two great sorting methods are divide-and-conquer!
 - MergeSort:
 - Sort the left half of the elements (recursively)
 - Sort the right half of the elements (recursively)
 - Merge the two sorted halves into a sorted whole
 - QuickSort:
 - Pick a "pivot" element
 - Partition elements into those less-than pivot and those greater-than pivot
 - Sort the less-than elements (recursively)
 - Sort the greater-than the elements (recursively)
 - All done! Answer is [sorted-less-than] [pivot] [sorted-greater-than]

MergeSort

- To sort array from position **lo** to position **hi**:
 - If range is 1 element long, it's sorted! (Base case)
 - Else, split into two halves:
 - "Somehow" sort from lo to (hi+lo)/2
 - "Somehow" sort from (hi+lo) /2 to hi
 - Merge the two halves together
- Merging takes two sorted parts and sorts everything
 - O(n) time but requires O(n) auxiliary space...

original

MergeSort: Merging Example (1 of 10)

Start with: 2 5 3 8 9 4 6 arr 1 Return from left and 2 4 8 9 1 3 5 6 arr right recursion (pretend it works for now) Merge aux Use 3 cursors and an extra auxiliary array When done, copy the extra array back to the

MergeSort: Merging Example (2 of 10)

MergeSort: Merging Example (3 of 10)

Start with: 2 9 5 3 8 4 1 6 arr Return from left and 2 4 8 9 1 3 5 6 arr right recursion Inot magic ☺) Merge 1 2 aux Use 3 cursors and an extra auxiliary array When done, copy the

extra array back to the original

MergeSort: Merging Example (4 of 10)

Start with: 2 9 5 3 8 4 1 6 arr Return from left and 2 4 8 9 1 3 5 6 arr right recursion Inot magic ☺) Merge 1 2 3 aux Use 3 cursors and an extra auxiliary array

 When done, copy the extra array back to the original

original

MergeSort: Merging Example (5 of 10)

Start with: 2 9 5 3 8 4 1 6 arr Return from left and 2 4 8 9 1 3 5 6 arr right recursion Inot magic ☺) Merge 1 2 3 4 aux Use 3 cursors and an extra auxiliary array When done, copy the extra array back to the

MergeSort: Merging Example (6 of 10)

Start with: 2 5 3 8 9 4 1 6 arr Return from left and 2 4 8 9 1 3 5 6 arr right recursion Inot magic ☺) Merge 1 2 3 4 5 aux Use 3 cursors and an extra auxiliary array When done, copy the extra array back to the

MergeSort: Merging Example (7 of 10)

Start with: 2 9 5 3 8 4 1 6 arr Return from left and 2 4 8 9 1 3 5 6 arr right recursion Inot magic ☺) Merge 1 2 3 4 5 6 aux Use 3 cursors and an extra auxiliary array When done, copy the extra array back to the

MergeSort: Merging Example (8 of 10)

 Start with: 	arr	8	2	9	4	5	3	1	6
 Return from left and 		-		-			-		-
right recursion	arr	2	4	8	9 1	1	3	5	6
■ (not magic ☺)									
 Merge 	aux	1	2	3	4	5	6	8	
Use 3 cursors and an extra auxiliary array									1
When done, copy the extra array back to the	9								

MergeSort: Merging Example (9 of 10)

MergeSort: Merging Example (10 of 10)

Start with:	arr	8	2	9	4	5	3	1	6	
· Poturn from loft and										
right recursion	arr	2	4	8	9	1	3	5	6	
■ (not magic [©])										
 Merge 	aux	1	2	3	4	5	6	8	9	
 Use 3 cursors and an extra auxiliary array 										
When done, copy the	arr	1	2	3	4	5	6	8	9	
extra array back to the original	2									

MergeSort: Recursion Example (1 of 3)

MergeSort: Recursion Example (2 of 3)

MergeSort: Recursion Example (3 of 3)

When a recursive call ends, its sub-arrays are *each in order*; we just need to merge them *in order together*

Optimizations: Reducing "Dregs Copies" (1 of 2)

Remember the final steps of our merge example?

It's wasteful to copy 8 & 9 to the auxiliary array, and then immediately copy them back into the original array!

Optimizations: Reducing "Dregs Copies" (2 of 2)

- * If left side finishes first:
 - Stop the merge, and copy the auxiliary array back to the original

- If right side finishes first:
 - Stop the merge, and copy the dregs directly into right side
 - Then copy auxiliary array back to the original

Optimizations: Reducing Temp Arrays (1 of 2)

- Simplest / worst approach:
 - Every divide: allocate two new auxiliary arrays of size (hi-lo)/2
 - Every merge: allocate another auxiliary array
- Better:
 - Allocate a single auxiliary array of size n at beginning to use throughout
 - Reuse "slices" of size (hi-lo) /2 within that array at every merge
- Best (but a little tricky):
 - Don't copy back! At 2nd, 4th, 6th, ... merges, use the original array as the auxiliary array; at odd-numbered merges, vice-versa
 - If the number of stages is odd, need one final copy at end

Optimizations: Reducing Temp Arrays (2 of 2)

- 1. Recur down to sub-arrays of size 1 (no copies)
- 2. As we return from the recursion, switch off arrays

3. Arguably easier to code up without recursion at all

MergeSort: Runtime Analysis (1 of 3)

- MergeSort sorts *n* elements by:
 - Returning immediately if n=1
 - Doing 2 subproblems of size n/2 + then an O(n) merge otherwise
- Runtime expression?
 - T(1) = C₁
 - $T(n) = 2T(n/2) + c_2n$

MergeSort: Runtime Analysis (2 of 3)

 $T(1) = c_1$

 $T(n) = 2T(n/2) + c_2^{\text{First expansion}}$

 $= 2(2T(n/4) + c_2n/2) + c_2n$ = 4T(n/4) + 2c_2n

 $= 4(2T(n/8) + c_2n/4) + 2c_2n$ $= 8T(n/8) + 3c_2n$

= $2^{kT}(n/2^{k}) + kc_2^{k^{th} expansion}$

If I want n/2^k = 1, let k = log n Then T(n) = 2^kT(n/2^k) + kc₂n = 2^{log n}T(1) + log n c₂n = c₁n+ c₂n log n = O(n log n)

MergeSort: Runtime Analysis (3 of 3)

- More intuitively, this recurrence comes up often enough you should "just know" it's O(n log n)
- MergeSort's runtime is relatively easy to intuit
 - Best, worst, and "average" all have the same runtime
 - The recursion "tree" will have log n height and at each level we do a total amount of merging equal to n

MergeSort: Characteristics

Execution:

 Merge sorted subarrays as it "recurs upward" (ie, returns from recursive calls)

<u>Characteristics</u>:

- Stable: yes
- In-place: no
- Time: always O(n log n)

```
mergeSort(arr, startIdx, endIdx) {
  if (startIdx == endIdx
      || startIdx + 1 == endIdx) {
    return;
  midIdx = (endIdx - startIdx)/2
    + startIdx:
  mergeSort(arr, startIdx, midIdx);
  mergeSort(arr, midIdx, endIdx);
  merge(arr, startIdx, midIdx,
        endIdx);
```

MergeSort: Final Thoughts

- We've discussed arrays, but you may need to sort linked lists
 - One approach:
 - Convert to array: O(n)
 - Sort: O(n log n)
 - Convert back to list: O(n)
 - Alternatively: MergeSort works well on linked lists
 - HeapSort and QuickSort do not $\ensuremath{\mathfrak{S}}$
 - InsertionSort and SelectionSort can work, but they're slower
- MergeSort is the best choice for external sorting
 - Linear merges minimize new disk accesses

QuickSort Steps

- 1. Pick the pivot value(s)
 - Any choice is correct; data will end up sorted
 - For efficiency, these value(s) ought to approximate the median
- 2. Partition all the values into:
 - a. The values less than the pivot(s)
 - b. The pivot(s)
 - c. The values greater than the pivot(s)
 - d. .. In linear time? In-place? Stably?
- 3. Recursively QuickSort(A) and QuickSort(C)

+TA-DA!+

QuickSort Steps

- 1. Pick the pivot value(s)
 - Any choice is correct; data will end up sorted
 - For efficiency, these value(s) ought to approximate the median
- 2. Partition all the values into:
 - a. The values less than the pivot(s)
 - b. The pivot(s)
 - c. The values greater than the pivot(s)
 - d. ... In linear time? In-place? Stably?

3. Recursively QuickSort(A) and QuickSort(C)

QuickSort Intuition: Set Partitioning

Recursive Call (1 of 3)

Note: for the remainder of this section, our pivot-selection algorithm is "first item in the subarray"

- After partitioning on 5:
 - 5 is in its "correct place" (ie, where it'd be if the array were sorted)

 Can now sort two halves separately (eg, through recursive use of partitioning)

Recursive Call (2 of 3)

Recursive Call (3 of 3)

QuickSort Steps

- 1. Pick the pivot value(s)
 - Any choice is correct; data will end up sorted
 - For efficiency, these value(s) ought to approximate the median
- 2. Partition all the values into:
 - a. The values less than the pivot(s)
 - b. The pivot(s)
 - c. The values greater than the pivot(s)
 - d. ... In linear time? In-place? Stably?

3. Recursively QuickSort(A) and QuickSort(C)

Pivot Selection: Pivot is the Median

$$T(0) = T(1) = c_1$$

$$T(n) = 2T(n/2) + c_2 n$$

(partition is linear-time)

Same recurrence as MergeSort: O(n log n)

Pivot Selection: Pivot is the Min/Max

 $T(0) = T(1) = c_1$ $T(n) = T(n-1) + c_2 n$

Basically same recurrence as SelectionSort: $O(n^2)$

Pivot Selection: Pivot is Random

* Suppose pivot always ends up at least 10% from either edge

- Work at each level: O(N) and Runtime is O(NH)
 - Height is approximately log 10/9 N = O(log N)
- Runtime: O(N log N)
 - See proof in text

Pivot Selection Dictates Runtime!

- * If pivot lands "somewhere good", Quicksort is $\Theta(N \log N)$ N
- * However, the very rare $\Theta(N^2)$ cases do happen in practice \neg
 - Bad ordering: Array already in (almost-)sorted order and pivot is first or last index
 - Bad elements: Array with all duplicates
- Three philosophies for avoiding worst-case behavior:
 - 1. Randomness: pick a random pivot; shuffle before sorting
 - Elegant, but (pseudo)random number generation can be slow
 - 2. Smarter Pivot Selection: calculate or approximate the median
 - Median-of-3: median of arr[lo], arr[hi-1], arr[(hi+lo)/2]
 - 3. Introspection: switch to safer sort if recursion goes too deep

Avoiding Worst-Case Pivots

- Example worst-cases:
 - Bad ordering: Array already in (almost-)sorted order and pivot is first or last index
 - Bad elements: Array with all duplicates
- Three philosophies for avoiding worst-case behavior:
 - 1. Randomness: pick a random pivot; shuffle before sorting
 - Elegant, but (pseudo)random number generation can be slow
 - 2. Smarter Pivot Selection: calculate or approximate the median
 - Median-of-3: median of arr[lo], arr[hi-1], arr[(hi+lo)/2]
 - **3.** Introspection: switch to safer sort if recursion goes too deep
 - ... what algorithm might be safer in the presence of badly-ordered elements?