# Comparison Sorting Algorithms 

 CSE 332 Summer 2021Instructor: Kristofer Wong

Teaching Assistants:

Alena Dickmann Arya GJ
Joon Chong
Rahul Misal

Kimi Locke
Winston Jodjana

Finn Johnson
Peyton Rapo

## Announcements

* P2 checkpoint 2 tomorrow - google form will release this afternoon
- QuickSort should be the only thing we haven't covered in lecture yet
* Exercises 7 \& 8 out!
- Ex7 Canvas Groups: Join group and post in group discussion
- Reflection questions subject to change before Wednesday
* Midterm out Wednesday!
* P1 Grades will release


## Lecture Outline

* Intro to Sorting
* Simple Sorts
- InsertionSort
- SelectionSort
*. Fancier Sorts
- HeapSort
- "Data Structure Sorts"
* Divide \& Conquer Sorts
- MergeSort
- QuickSort


## *ll gradescope

* When you play cards, how do you order them in your hand?
* Why do you think we learning about sorting in this class?


## Introduction to Sorting (1 of 2)

* Stacks, queues, priority queues, and dictionaries/sets all provide one element at a time
* But often we want "all the items" in some order
- Alphabetical list of people
- Population list of countries
- Search engine results by relevance
* Different sorting algorithms have different asymptotic and constant-factor trade-offs
- Knowing one way to sort just isn't enough; no single "best sort"
- Sorting is an excellent case-study in making trade-offs!


## Introduction to Sorting (2 of 2)

* Preprocessing (e.g. sorting) data to make subsequent operations faster is a general technique in computing!
- Example: Sort the items so that you can:
- Find the $\mathbf{k}^{\text {th }}$ largest in constant time for any $\mathbf{k}$
- Perform binary search to find an item in logarithmic time
- Whether preprocessing is beneficial depends on
- How often the items will change
- How many items there are
* Preprocessing's benefits depend on how often the items will change and how many items there are
- Sorting is an excellent case-study in making trade-offs!


## Comparison Sorting: Definition

* Problem: We have $n$ comparable items in an array, and we want to rearrange them to be in increasing order
* Input:
- An array A of (key, value) pairs
- A comparison function (consistent and total)
- Given keys a \& b, what is their relative ordering? <, =, >?
- Ex: keys that implement Comparable or have a Comparator
* Output/Side-Effect:
- Reorganize the elements of A such that for any index $i$ and $j$, if $\mathrm{i}<\mathrm{j}$ then $\mathrm{A}[\mathrm{i}] \leq \mathrm{A}[\mathrm{j}]$
- [Usually unspoken] A must have all the same items it started with
- Could also sort in reverse order, of course


## Comparison Sort: Variations (1 of 2)

1. Maybe elements are in a linked list

- Could convert to array and back in linear time, but some algorithms can still "work" on linked lists

2. Maybe if there are ties we should preserve the original ordering

- Sorts that do this naturally are called stable sorts

3. Maybe we must not use more than O(1) "auxiliary space"

- These are called in-place sorts
- Not allowed to allocate memory proportional to input (i.e., O(n)), but can allocate O(1) \# of variables
- Work is done by swapping around in the array


## Comparison Sort: Variations (2 of 2)

4. Maybe we can do more with elements than just compare

- Comparison sorts assume a binary 'compare’ operator
- In special cases we can sometimes get faster algorithms

5. Maybe we have too many items to fit in memory

- Use an external sorting algorithm


## Big Picture of Comparison-Based Sorts

* Simple algorithms: $\mathrm{O}\left(n^{2}\right)$
- InsertionSort, SelectionSort
- BubbleSort, ShellSort
* Fancier algorithms: O(n $\log \mathrm{n})$
- HeapSort, MergeSort, QuickSort (randomized)
* Comparison-based sorting's lower bound: $\Omega(\mathrm{n} \log \mathrm{n})$


## Lecture Outline

* Intro to Sorting
* Simple Sorts
- InsertionSort
- SelectionSort
*. Fancier Sorts
- HeapSort
- "Data Structure Sorts"
* Divide \& Conquer Sorts
- MergeSort
- QuickSort


## InsertionSort

* Idea: At step $\mathbf{k}$, insert the $\mathbf{k}^{\text {th }}$ element in the correct position
- Sort first two elements
- Now insert $3^{\text {rd }}$ element in order
...
* Loop invariant ("when loop index is $\mathbf{i "}$ ):
- First i elements are in sorted order
* Time:

Best-case: $\qquad$ Worst-case: $\qquad$

* Characteristics:

Stable: $\qquad$ In-place: $\qquad$

## SelectionSort

* Idea: At step $\mathbf{k}$, select the smallest elt and put it at $\mathbf{k}^{\text {th }}$ position
- Find smallest element, put it $1^{\text {st }}$
- Find next smallest element, put it $2^{\text {nd }}$
...
* Loop invariant ("when loop index is $\mathbf{i}$ "):
- First i elements are the i smallest elements in sorted order
* Time:

Best-case: $\qquad$ Worst-case: $\qquad$

* Characteristics:

Stable: $\qquad$ In-place: $\qquad$

## InsertionSort vs. SelectionSort (1 of 2)

## Different algorithms, same problem

* InsertionSort
- Loop invariant:
- First i elements are in sorted order
- Characteristics:
- Stable: yes
- Time:
- Worst-case: O( $\mathrm{n}^{2}$ )
- "Average" case: O(n²)
* SelectionSort
- Loop invariant:
- First i elements are the $\mathbf{i}$ smallest elements in sorted order
- Characteristics:
- Stable: no
- Time:
- Worst-case: O( $\mathrm{n}^{2}$ )
- "Average" case: O(n²)


## InsertionSort vs. SelectionSort (2 of 2)

* InsertionSort has better best-case complexity
- Best case is when input is "mostly sorted"
* Different constants
- InsertionSort may do well on small arrays (empirically: $\mathrm{N}<\sim 15$ )
- Java's built-in sort prefers InsertionSort for arrays <47 items


## Lecture Outline

* Intro to Sorting
* Simple Sorts
- InsertionSort
- SelectionSort
* Fancier Sorts
- HeapSort
- "Data Structure Sorts"
* Divide \& Conquer Sorts
- MergeSort
- QuickSort


## Naïve HeapSort

* Idea: Put everything in a MIN heap; successively deleteMin
- add () all elements into heap - OR - better yet, use buildHeap
- for (i=0; i < arr.length; i++)
arr[i] = deleteMin();
* Loop invariant ("when loop index is $\mathbf{i "}$ ):
- First $\mathbf{i}$ elements are the $\boldsymbol{i}$ smallest elements in sorted order
* Time: $\qquad$
* Characteristics:

Stable: $\qquad$ In-place: $\qquad$

## In-place HeapSort

* Idea: Put everything in a MAX heap ; successively deleteMax
- insert each arr[i] -OR - better yet, use buildHeap
- for (i=0; i < arr.length; i++)
arr[arr.length - i] = deleteMax();
* Loop invariant ("when loop index is i"): same as naïve version
* Time: $\qquad$
* Characteristics:

Stable: $\qquad$ In-place: $\qquad$

## Aside: "AVLSort" and "DataStructureSort"

* We can also use a balanced tree to:
- add each element: total time $O(n \log n)$
- Do an in-order traversal $O(n)$
* But a balanced tree cannot be made in-place, and constants worse than HeapSort
- Both are $O(n \log n)$ in worst, best, and average case
- Neither sorts parallelizes well
* Don't even think about trying to sort with a hash table ...


## *ll gradescope

* Why might I care about a sort being stable or in place? Would having these two qualities ever be worth the tradeoff of having a slower algorithm?


## Lecture Outline

* Intro to Sorting
* Simple Sorts
- InsertionSort
- SelectionSort
*. Fancier Sorts
- HeapSort
- "Data Structure Sorts"
* Divide \& Conquer Sorts
- MergeSort
- QuickSort


## Technique: Divide and Conquer

* Very important technique in algorithm design!

1. Divide problem into smaller parts
2. Solve the parts independently

- Recursion
- Or potentially parallelism!

3. Combine solution of parts to produce overall solution

* Examples:
- Sort each half of the array, then combine together
- Split the array into "small part" and "big part", then sort the parts


## Sorting with Divide and Conquer

* Two great sorting methods are divide-and-conquer!
- MergeSort:
- Sort the left half of the elements (recursively)
- Sort the right half of the elements (recursively)
- Merge the two sorted halves into a sorted whole
- QuickSort:
- Pick a "pivot" element
- Partition elements into those less-than pivot and those greater-than pivot
- Sort the less-than elements (recursively)
- Sort the greater-than the elements (recursively)
- All done! Answer is [sorted-less-than] [pivot] [sorted-greater-than]


## MergeSort

* To sort array from position lo to position hi:
- If range is 1 element long, it's sorted! (Base case)
- Else, split into two halves:
- "Somehow" sort from lo to (hi+lo) /2
- "Somehow" sort from (hi+lo) /2 to hi
- Merge the two halves together
* Merging takes two sorted parts and sorts everything
- $O(n)$ time but requires $O(n)$ auxiliary space...



## MergeSort: Merging Example (1 of 10)

* Start with:

* Return from left and right recursion
- (pretend it works for now)

* Merge
- Use 3 cursors and an extra auxiliary array

- When done, copy the extra array back to the original


## MergeSort: Merging Example (2 of 10)

* Start with:

* Return from left and right recursion
- (not magic ©)

* Merge
- Use 3 cursors and an extra auxiliary array

- When done, copy the extra array back to the original


## MergeSort: Merging Example (3 of 10)

* Start with:

* Return from left and right recursion
- (not magic -$)$

* Merge
- Use 3 cursors and an extra auxiliary array

- When done, copy the extra array back to the original


## MergeSort: Merging Example (4 of 10)

* Start with:

* Return from left and right recursion
- (not magic ©)

* Merge
- Use 3 cursors and an extra auxiliary array

- When done, copy the extra array back to the original


## MergeSort: Merging Example (5 of 10)

* Start with:

* Return from left and right recursion
- (not magic ©)

* Merge
- Use 3 cursors and an extra auxiliary array

- When done, copy the extra array back to the original


## MergeSort: Merging Example (6 of 10)

* Start with:

* Return from left and right recursion
- (not magic ©)

* Merge
- Use 3 cursors and an extra auxiliary array
- When done, copy the extra array back to the original


## MergeSort: Merging Example (7 of 10)

* Start with:

* Return from left and right recursion
- (not magic ©)

* Merge
- Use 3 cursors and an extra auxiliary array

- When done, copy the extra array back to the original


## MergeSort: Merging Example (8 of 10)

* Start with:

* Return from left and right recursion
- (not magic ©)

* Merge
- Use 3 cursors and an extra auxiliary array
- When done, copy the extra array back to the original


## MergeSort: Merging Example (9 of 10)

* Start with:

* Return from left and right recursion
- (not magic ©)

* Merge
- Use 3 cursors and an extra auxiliary array
- When done, copy the extra array back to the original


## MergeSort: Merging Example (10 of 10)

* Start with:

* Return from left and right recursion
- (not magic ©)

* Merge
- Use 3 cursors and an extra auxiliary array
- When done, copy the arr

| 1 | 2 | 3 | 4 | 5 | 6 | 8 | 9 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | extra array back to the original

## MergeSort: Recursion Example (1 of 3)

| 8 | 2 | 9 | 4 | 5 | 3 | 1 | 6 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Divide

| 8 | 2 | 9 | 4 |
| :--- | :--- | :--- | :--- |


| 5 | 3 | 1 | 6 |
| :--- | :--- | :--- | :--- |

Divide


One Element (done recurring!)

$\square$


1

## MergeSort: Recursion Example (2 of 3)

| 8 | 2 | 9 | 4 | 5 | 3 | 1 | 6 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Divide

| 8 | 2 | 9 | 4 |
| :--- | :--- | :--- | :--- |


| 5 | 3 | 1 | 6 |
| :--- | :--- | :--- | :--- |

Divide


One Element (done recurring!)


Merge


Merge


| 1 | 2 | 3 | 4 | 5 | 6 | 8 | 9 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

## MergeSort: Recursion Example (3 of 3)



When a recursive call ends, its sub-arrays are each in order; we just need to merge them in order together

## Optimizations: Reducing "Dregs Copies" (1 of 2)

* Remember the final steps of our merge example?

* It's wasteful to copy $8 \& 9$ to the auxiliary array, and then immediately copy them back into the original array!


## Optimizations: Reducing "Dregs Copies" (2 of 2)

*. If left side finishes first:

- Stop the merge, and copy the auxiliary array back to the original

* If right side finishes first:
- Stop the merge, and copy the dregs directly into right side
- Then copy auxiliary array back to the original



## Optimizations: Reducing Temp Arrays (1 of 2)

* Simplest / worst approach:
- Every divide: allocate two new auxiliary arrays of size (hi-lo) /2
- Every merge: allocate another auxiliary array
* Better:
- Allocate a single auxiliary array of size $\mathbf{n}$ at beginning to use throughout
" Reuse "slices" of size (hi-lo) /2 within that array at every merge
* Best (but a little tricky):
- Don't copy back! At $2^{\text {nd }}, 4^{\text {th }}, 6^{\text {th }}, \ldots$ merges, use the original array as the auxiliary array; at odd-numbered merges, vice-versa
- If the number of stages is odd, need one final copy at end


## Optimizations: Reducing Temp Arrays (2 of 2)

1. Recur down to sub-arrays of size 1 (no copies)
2. As we return from the recursion, switch off arrays

$1^{\text {st }}$ merge (aux is dest)
$2^{\text {nd }}$ merge
(arr is dest)
$3^{\text {rd }}$ merge
(aux is dest)
$4^{\text {th }}$ merge
(arr is dest)
$5^{\text {th }}$ merge
(aux is dest)
3. Arguably easier to code up without recursion at all

## MergeSort: Runtime Analysis (1 of 3)

* MergeSort sorts $n$ elements by:
- Returning immediately if $n=1$
- Doing 2 subproblems of size $n / 2+$ then an $O(n)$ merge otherwise
* Runtime expression?
- $\mathrm{T}(1)=\mathrm{c}_{1}$
- $T(n)=2 T(n / 2)+c_{2} n$


## MergeSort: Runtime Analysis (2 of 3)

$T(1)=c_{1}$
$T(n)=2 T(n / 2)+C_{2}^{\text {Firstexpansion }}$

Second expansion
$=2\left(2 T(n / 4)+c_{2} n / 2\right)+c_{2} n$
$=4 T(n / 4)+2 c_{2} n$

Third expansion
$=4\left(2 T(n / 8)+c_{2} n / 4\right)+2 c_{2} n$
$=8 \mathrm{~T}(\mathrm{n} / 8)+3 \mathrm{c}_{2} \mathrm{n}$
$=2^{\mathrm{k} T}\left(\mathrm{n} / 2^{\mathrm{k}}\right)+\mathrm{kc}_{2} \mathrm{k}^{\mathrm{n}} \mathrm{n}^{\text {expansion }}$

If I want $\mathrm{n} / 2^{\mathrm{k}}=1$, let $\mathrm{k}=\log \mathrm{n}$
Then $T(n)=2^{k}\left(n / 2^{k}\right)+k c_{2} n$
$=2^{\log n T(1)+\log n c_{2} n}$
$=c_{1} n+c_{2} n \log n$
$=O(n \log n)$

## MergeSort: Runtime Analysis (3 of 3)

* More intuitively, this recurrence comes up often enough you should "just know" it's O( $n \log n$ )
* MergeSort's runtime is relatively easy to intuit
" Best, worst, and "average" all have the same runtime
- The recursion "tree" will have $\log n$ height and at each level we do a total amount of merging equal to $n$



## MergeSort: Characteristics

* Execution:
- Merge sorted subarrays as it "recurs upward" (ie, returns from recursive calls)
* Characteristics:
- Stable: yes
- In-place: no
* Time: always O(n log n)

```
mergeSort(arr, startIdx, endIdx)
    if (startIdx == endIdx
            || startIdx + 1 == endIdx) {
        return;
    midIdx = (endIdx - startIdx)/2
        + startIdx;
    mergeSort(arr, startIdx, midIdx);
    mergeSort(arr, midIdx, endIdx);
    merge(arr, startIdx, midIdx,
        endIdx) ;
}
```


## MergeSort: Final Thoughts

* We've discussed arrays, but you may need to sort linked lists
- One approach:
- Convert to array: O(n)
- Sort: O(n log n)
- Convert back to list: O(n)
- Alternatively: MergeSort works well on linked lists
- HeapSort and QuickSort do not $:$
- InsertionSort and SelectionSort can work, but they're slower
* MergeSort is the best choice for external sorting
- Linear merges minimize new disk accesses


## QuickSort Steps

1. Pick the pivot value(s)

- Any choice is correct; data will end up sorted
- For efficiency, these value(s) ought to approximate the median

2. Partition all the values into:
a. The values less than the pivot(s)
b. The pivot(s)
c. The values greater than the pivot(s)
d. .. In linear time? In-place? Stably?
3. Recursively QuickSort(A) and QuickSort(C)

+ TA-DA!


## QuickSort Steps

1. Pick the pivot value(s)

- Any choice is correct; data will end up sorted
- For efficiency, these value(s) ought to approximate the median

2. Partition all the values into:
a. The values less than the pivot(s)
b. The pivot(s)
c. The values greater than the pivot(s)
d. ... In linear time? In-place? Stably?
3. Recursively QuickSort(A) and QuickSort(C)

+     + TA-DA! ${ }^{+}+$


## QuickSort Intuition: Set Partitioning



## Recursive Call (1 of 3)

Note: for the remainder of this section, our pivot-selection algorithm is "first item in the subarray"

* After partitioning on 5:
- 5 is in its "correct place" (ie, where it'd be if the array were sorted)

- Can now sort two halves separately (eg, through recursive use of partitioning)



## Recursive Call (2 of 3)



## Recursive Call (3 of 3)

| 1 | 2 | 3 | 4 | 5 | 7 | 8 | 6 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

1


1
1
1
1

| 1 | 2 |
| :--- | :--- |


 8

1

## QuickSort Steps

1. Pick the pivot value(s)

- Any choice is correct; data will end up sorted
- For efficiency, these value(s) ought to approximate the median

2. Partition all the values into:
a. The values less than the pivot(s)
b. The pivot(s)
c. The values greater than the pivot(s)
d. ... In linear time? In-place? Stably?
3. Recursively QuickSort(A) and QuickSort(C)

+     + TA-DA! ! ${ }^{+}+$


## Pivot Selection: Pivot is the Median



Only size 1 problems remain, so we're done.

$$
\begin{aligned}
& \mathrm{T}(0)=\mathrm{T}(1)=\mathrm{c}_{1} \\
& \mathrm{~T}(n)=2 \mathrm{~T}(n / 2)+\mathrm{c}_{2} n
\end{aligned}
$$

(partition is linear-time)

Same recurrence as MergeSort: $O(n \log n)$

## Pivot Selection: Pivot is the Min/Max



$$
\begin{aligned}
& \mathrm{T}(0)=\mathrm{T}(1)=\mathrm{c}_{1} \\
& \mathrm{~T}(n)=\mathrm{T}(n-1)+\mathrm{c}_{2} n
\end{aligned}
$$

Basically same recurrence as SelectionSort: $O\left(n^{2}\right)$

## Pivot Selection: Pivot is Random

* Suppose pivot always ends up at least 10\% from either edge

* Work at each level: $\mathrm{O}(\mathrm{N})$ and Runtime is $\mathrm{O}(\mathrm{NH})$
- Height is approximately $\log _{10 / 9} \mathrm{~N}=\mathrm{O}(\log \mathrm{N})$
* Runtime: $\mathrm{O}(\mathrm{N} \log \mathrm{N})$
- See proof in text


## Pivot Selection Dictates Runtime!

* If pivot lands "somewhere good", Quicksort is $\Theta(\mathrm{N} \log \mathrm{N})$
* However, the very rare $\Theta\left(\mathrm{N}^{2}\right)$ cases do happen in practice
- Bad ordering: Array already in (almost-)sorted order and pivot is first or last index
- Bad elements: Array with all duplicates
* Three philosophies for avoiding worst-case behavior:

1. Randomness: pick a random pivot; shuffle before sorting

- Elegant, but (pseudo)random number generation can be slow

2. Smarter Pivot Selection: calculate or approximate the median - Median-of-3: median of arr[lo], arr[hi-1], arr [(hi+lo)/2]
3. Introspection: switch to safer sort if recursion goes too deep

## Avoiding Worst-Case Pivots

* Example worst-cases:
- Bad ordering: Array already in (almost-)sorted order and pivot is first or last index
- Bad elements: Array with all duplicates
* Three philosophies for avoiding worst-case behavior:

1. Randomness: pick a random pivot; shuffle before sorting

- Elegant, but (pseudo)random number generation can be slow

2. Smarter Pivot Selection: calculate or approximate the median

- Median-of-3: median of arr [lo], arr [hi-1], arr [ (hi+lo) /2]

3. Introspection: switch to safer sort if recursion goes too deep

- ... what algorithm might be safer in the presence of badly-ordered elements?

