Comparison Sorting Algorithms
CSE 332 Summer 2021

Instructor: Kristofer Wong

Teaching Assistants:
Alena Dickmann Arya GJ Finn Johnson
Joon Chong Kimi Locke Peyton Rapo
Rahul Misal Winston Jodjana
Announcements

- P2 checkpoint 2 tomorrow – google form will release this afternoon
 - QuickSort should be the only thing we haven’t covered in lecture yet

- Exercises 7 & 8 out!
 - Ex7 Canvas Groups: Join group and post in group discussion
 - Reflection questions subject to change before Wednesday

- Midterm out Wednesday!

- P1 Grades will release
Lecture Outline

- **Intro to Sorting**

- **Simple Sorts**
 - InsertionSort
 - SelectionSort

- **Fancier Sorts**
 - HeapSort
 - “Data Structure Sorts”

- **Divide & Conquer Sorts**
 - MergeSort
 - QuickSort
- When you play cards, how do you order them in your hand?

- Why do you think we are learning about sorting in this class?
Introduction to Sorting (1 of 2)

- Stacks, queues, priority queues, and dictionaries/sets all provide one element at a time

- But often we want “all the items” in some order
 - Alphabetical list of people
 - Population list of countries
 - Search engine results by relevance

- Different sorting algorithms have different asymptotic and constant-factor trade-offs
 - Knowing one way to sort just isn’t enough; no single “best sort”
 - Sorting is an excellent case-study in making trade-offs!
Introduction to Sorting (2 of 2)

- **Preprocessing** (e.g. sorting) data to make subsequent operations faster is a general technique in computing!
 - Example: Sort the items so that you can:
 - Find the kth largest in constant time for any k
 - Perform binary search to find an item in logarithmic time
 - Whether preprocessing is beneficial depends on
 - How often the items will change
 - How many items there are

- Preprocessing’s benefits depend on how often the items will change and how many items there are
 - **Sorting is an excellent case-study in making trade-offs!**
Comparison Sorting: Definition

- **Problem**: We have \(n \) comparable items in an array, and we want to rearrange them to be in increasing order.

- **Input**:
 - An array \(A \) of (key, value) pairs
 - A comparison function (consistent and total)
 - Given keys \(a \) & \(b \), what is their relative ordering? \(<, =, >\)?
 - Ex: keys that implement Comparable or have a Comparator

- **Output/Side-Effect**:
 - Reorganize the elements of \(A \) such that for any index \(i \) and \(j \), if \(i < j \) then \(A[i] \leq A[j] \)
 - [Usually unspoken] \(A \) must have all the same items it started with
 - Could also sort in reverse order, of course
Comparison Sort: Variations (1 of 2)

1. Maybe elements are in a linked list
 - Could convert to array and back in linear time, but some algorithms can still “work” on linked lists

2. Maybe if there are ties we should preserve the original ordering
 - Sorts that do this naturally are called **stable sorts**

3. Maybe we must not use more than $O(1)$ “auxiliary space”
 - These are called **in-place sorts**
 - Not allowed to allocate memory proportional to input (i.e., $O(n)$), but can allocate $O(1)$ # of variables
 - Work is done by swapping around in the array
4. Maybe we can do more with elements than just compare
 - Comparison sorts assume a binary ‘compare’ operator
 - In special cases we can sometimes get faster algorithms

5. Maybe we have too many items to fit in memory
 - Use an external sorting algorithm
Big Picture of Comparison-Based Sorts

- Simple algorithms: $O(n^2)$
 - InsertionSort, SelectionSort
 - *BubbleSort, ShellSort*

- Fancier algorithms: $O(n \log n)$
 - HeapSort, MergeSort, QuickSort (randomized)

- Comparison-based sorting’s lower bound: $\Omega(n \log n)$
Lecture Outline

- Intro to Sorting

- **Simple Sorts**
 - InsertionSort
 - SelectionSort

- Fancier Sorts
 - HeapSort
 - “Data Structure Sorts”

- Divide & Conquer Sorts
 - MergeSort
 - QuickSort
InsertionSort

- **Idea**: At step k, insert the k^{th} element in the correct position
 - Sort first two elements
 - Now insert 3rd element in order
 - ...

- **Loop invariant** ("when loop index is i"):
 - First i elements are in sorted order

- **Time**:
 - Best-case: _______ Worst-case: _______

- **Characteristics**:
 - Stable: ______ In-place: ______
SelectionSort

- **Idea**: At step k, select the smallest elt and put it at k^{th} position
 - Find smallest element, put it 1^{st}
 - Find next smallest element, put it 2^{nd}
 - ...

- **Loop invariant** (“when loop index is i”):
 - First i elements are the i smallest elements in sorted order

- **Time**:

 Best-case: _______ Worst-case: _______

- **Characteristics**:

 Stable: ______ In-place: ______
InsertionSort vs. SelectionSort (1 of 2)

Different algorithms, same problem

- **InsertionSort**
 - Loop invariant:
 - First i elements are in sorted order
 - Characteristics:
 - Stable: yes
 - Time:
 - Worst-case: $O(n^2)$
 - “Average” case: $O(n^2)$

- **SelectionSort**
 - Loop invariant:
 - First i elements are the i smallest elements in sorted order
 - Characteristics:
 - Stable: no
 - Time:
 - Worst-case: $O(n^2)$
 - “Average” case: $O(n^2)$
InsertionSort vs. SelectionSort (2 of 2)

- InsertionSort has better best-case complexity
 - Best case is when input is “mostly sorted”

- Different constants
 - InsertionSort may do well on small arrays (empirically: $N < \sim 15$)
 - Java’s built-in sort prefers InsertionSort for arrays < 47 items
Lecture Outline

- Intro to Sorting

- Simple Sorts
 - InsertionSort
 - SelectionSort

- Fancier Sorts
 - HeapSort
 - “Data Structure Sorts”

- Divide & Conquer Sorts
 - MergeSort
 - QuickSort
Naïve HeapSort

- **Idea**: Put everything in a **MIN** heap; successively `deleteMin`
 - `add()` all elements into heap – OR – better yet, use `buildHeap`
 - `for(i=0; i < arr.length; i++)`
 - `arr[i] = deleteMin();`

- **Loop invariant** ("when loop index is `i`"):
 - First `i` elements are *the `i` smallest elements* in sorted order

- **Time**: ______

- **Characteristics**:
 - Stable: ______ In-place: ______
In-place HeapSort

- **Idea:** Put everything in a **MAX** heap; successively `deleteMax`
 - Insert each `arr[i]` — OR — better yet, use `buildHeap`
 - `for(i=0; i < arr.length; i++)`

    ```java
    arr[arr.length - i] = deleteMax();
    ```

- **Loop invariant** ("when loop index is `i`"): same as naïve version

- **Time:** ______

- **Characteristics:**
 Stable: ______ In-place: ______
Aside: “AVLSort” and “DataStructureSort”

- We can also use a balanced tree to:
 - *add* each element: total time $O(n \log n)$
 - Do an in-order traversal $O(n)$

- But a balanced tree cannot be made in-place, and constants worse than HeapSort
 - Both are $O(n \log n)$ in worst, best, and average case
 - Neither sorts parallelizes well

- Don’t even think about trying to sort with a hash table ...
Why might I care about a sort being stable or in place? Would having these two qualities ever be worth the tradeoff of having a slower algorithm?
Lecture Outline

- Intro to Sorting

- Simple Sorts
 - InsertionSort
 - SelectionSort

- Fancier Sorts
 - HeapSort
 - “Data Structure Sorts”

- Divide & Conquer Sorts
 - MergeSort
 - QuickSort
Technique: Divide and Conquer

- Very important technique in algorithm design!
 1. Divide problem into smaller parts
 2. Solve the parts independently
 - Recursion
 - Or potentially parallelism!
 3. Combine solution of parts to produce overall solution

- Examples:
 - Sort each half of the array, then combine together
 - Split the array into “small part” and “big part”, then sort the parts
Sorting with Divide and Conquer

- Two great sorting methods are divide-and-conquer!
 - **MergeSort:**
 - Sort the left half of the elements (recursively)
 - Sort the right half of the elements (recursively)
 - Merge the two sorted halves into a sorted whole
 - **QuickSort:**
 - Pick a “pivot” element
 - Partition elements into those *less-than* pivot and those *greater-than* pivot
 - Sort the *less-than* elements (recursively)
 - Sort the *greater-than* the elements (recursively)
 - All done! Answer is [sorted-less-than] [pivot] [sorted-greater-than]
MergeSort

- To sort array from position \(lo\) to position \(hi\):
 - If range is 1 element long, it’s sorted! (Base case)
 - Else, split into two halves:
 - “Somehow” sort from \(lo\) to \((hi+lo)/2\)
 - “Somehow” sort from \((hi+lo)/2\) to \(hi\)
 - Merge the two halves together

- Merging takes two sorted parts and sorts everything
 - \(O(n)\) time but requires \(O(n)\) auxiliary space...
MergeSort: Merging Example (1 of 10)

- **Start with:**

<table>
<thead>
<tr>
<th>arr</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>9</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>6</td>
</tr>
</tbody>
</table>

- **Return from left and right recursion**

 - (pretend it works for now)

- **Merge**

 - Use 3 cursors and an extra auxiliary array
 - When done, copy the extra array back to the original
MergeSort: Merging Example (2 of 10)

- **Start with:**

- **Return from left and right recursion**
 - (not magic 😊)

- **Merge**
 - Use 3 cursors and an extra auxiliary array
 - When done, copy the extra array back to the original
MergeSort: Merging Example (3 of 10)

- Start with:

- Return from left and right recursion
 - (not magic 😊)

- Merge
 - Use 3 cursors and an extra auxiliary array
 - When done, copy the extra array back to the original
MergeSort: Merging Example (4 of 10)

- Start with:

- Return from left and right recursion
 - (not magic 😊)

- Merge
 - Use 3 cursors and an extra auxiliary array
 - When done, copy the extra array back to the original
MergeSort: Merging Example (5 of 10)

- Start with:

- Return from left and right recursion
 - (not magic 😊)

- Merge
 - Use 3 cursors and an extra auxiliary array
 - When done, copy the extra array back to the original
MergeSort: Merging Example (6 of 10)

- Start with:

```
arr 8 2 9 4 5 3 1 6
```

- Return from left and right recursion
 - (not magic 😊)

- Merge
 - Use 3 cursors and an extra auxiliary array
 - When done, copy the extra array back to the original
MergeSort: Merging Example (7 of 10)

- Start with:
 - arr: 8 2 9 4 5 3 1 6

- Return from left and right recursion
 - (not magic 😊)

- Merge
 - Use 3 cursors and an extra auxiliary array
 - When done, copy the extra array back to the original

- aux: 1 2 3 4 5 6
MergeSort: Merging Example (8 of 10)

- Start with:

<table>
<thead>
<tr>
<th>arr</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>9</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>6</td>
</tr>
</tbody>
</table>

- Return from left and right recursion
 - (not magic 😊)

- Merge
 - Use 3 cursors and an extra auxiliary array
 - When done, copy the extra array back to the original
MergeSort: Merging Example (9 of 10)

- Start with:

\[
\begin{array}{cccccccc}
8 & 2 & 9 & 4 & 5 & 3 & 1 & 6 \\
\end{array}
\]

- Return from left and right recursion
 - (not magic 😊)

- Merge
 - Use 3 cursors and an extra auxiliary array
 - When done, copy the extra array back to the original

\[
\begin{array}{cccccccc}
2 & 4 & 8 & 9 & 1 & 3 & 5 & 6 \\
\end{array}
\]

\[
\begin{array}{cccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 8 & 9 \\
\end{array}
\]
MergeSort: Merging Example (10 of 10)

- Start with:
 - arr: 8 2 9 4 5 3 1 6

- Return from left and right recursion
 - (not magic 😊)

- Merge
 - Use 3 cursors and an extra auxiliary array
 - When done, copy the extra array back to the original

<table>
<thead>
<tr>
<th>aux</th>
<th>1 2 3 4 5 6 8 9</th>
</tr>
</thead>
<tbody>
<tr>
<td>arr</td>
<td>1 2 3 4 5 6 8 9</td>
</tr>
</tbody>
</table>
MergeSort: Recursion Example (1 of 3)

```
8  2  9  4  5  3  1  6
```

Divide
```
8  2  9  4
5  3  1  6
```

Divide
```
8  2
9  4
5  3
1  6
```

One Element
```
8  2
9  4
5  3
1  6
```

(done recurring!)
MergeSort: Recursion Example (2 of 3)

8 2 9 4 5 3 1 6

Divide

8 2 9 4

Divide

8 2 9 4

One Element (done recurring!)

8 2 9 4

Merge

2 8 4 9

Merge

2 4 8 9

1 2 3 4 5 6 8 9
MergeSort: Recursion Example (3 of 3)

When a recursive call ends, its sub-arrays are *each in order*; we just need to merge them *in order together*.
Optimizations: Reducing “Dregs Copies” (1 of 2)

- Remember the final steps of our merge example?

- It’s wasteful to copy 8 & 9 to the auxiliary array, and then immediately copy them back into the original array!
Optimizations: Reducing “Dregs Copies” (2 of 2)

- If left side finishes first:
 - Stop the merge, and copy the auxiliary array back to the original

- If right side finishes first:
 - Stop the merge, and copy the dregs directly into right side
 - Then copy auxiliary array back to the original
Optimizations: Reducing Temp Arrays (1 of 2)

❖ Simplest / worst approach:
 ▪ Every divide: allocate two new auxiliary arrays of size \((hi-lo)/2\)
 ▪ Every merge: allocate another auxiliary array

❖ Better:
 ▪ Allocate a single auxiliary array of size \(n\) at beginning to use throughout
 ▪ Reuse “slices” of size \((hi-lo)/2\) within that array at every merge

❖ Best (but a little tricky):
 ▪ Don’t copy back! At 2\(^{\text{nd}}\), 4\(^{\text{th}}\), 6\(^{\text{th}}\), ... merges, use the original array as the auxiliary array; at odd-numbered merges, vice-versa
 ▪ If the number of stages is odd, need one final copy at end
Optimizations: Reducing Temp Arrays (2 of 2)

1. Recur down to sub-arrays of size 1 (no copies)
2. As we return from the recursion, switch off arrays
3. Arguably easier to code up without recursion at all
MergeSort: Runtime Analysis (1 of 3)

- MergeSort sorts \(n \) elements by:
 - Returning immediately if \(n=1 \)
 - Doing 2 subproblems of size \(n/2 \) + then an \(O(n) \) merge otherwise

- Runtime expression?
 - \(T(1) = c_1 \)
 - \(T(n) = 2T(n/2) + c_2n \)
MergeSort: Runtime Analysis (2 of 3)

T(1) = c_1

T(n) = 2T(n/2) + c_2n

First expansion
= 2(2T(n/4) + c_2n/2) + c_2n
= 4T(n/4) + 2c_2n

Second expansion
= 4(2T(n/8) + c_2n/4) + 2c_2n
= 8T(n/8) + 3c_2n

Third expansion

If I want n/2^k = 1, let k = \log n
Then T(n) = 2^kT(n/2^k) + kc_2n
= 2^{\log n}T(1) + \log n \ c_2n
= c_1n + c_2n \log n
= O(n \log n)
MergeSort: Runtime Analysis (3 of 3)

- More intuitively, this recurrence comes up often enough you should “just know” it’s $O(n \log n)$

- MergeSort’s runtime is relatively easy to intuit
 - Best, worst, and “average” all have the same runtime
 - The recursion “tree” will have $\log n$ height and at each level we do a total amount of merging equal to n
MergeSort: Characteristics

- **Execution:**
 - Merge sorted subarrays as it “recurs upward” (i.e., returns from recursive calls)

- **Characteristics:**
 - Stable: yes
 - In-place: no

- **Time:** always $O(n \log n)$

```plaintext
mergeSort(arr, startIdx, endIdx) {
    if (startIdx == endIdx || startIdx + 1 == endIdx) {
        return;
    }
    midIdx = (endIdx - startIdx)/2 + startIdx;
    mergeSort(arr, startIdx, midIdx);
    mergeSort(arr, midIdx, endIdx);
    merge(arr, startIdx, midIdx, endIdx);
}
```
MergeSort: Final Thoughts

- We’ve discussed arrays, but you may need to sort linked lists
 - One approach:
 - Convert to array: $O(n)$
 - Sort: $O(n \log n)$
 - Convert back to list: $O(n)$
 - Alternatively: MergeSort works well on linked lists
 - HeapSort and QuickSort do not 😞
 - InsertionSort and SelectionSort can work, but they’re slower

- **MergeSort is the best choice for external sorting**
 - Linear merges minimize new disk accesses
QuickSort Steps

1. Pick the pivot value(s)
 - Any choice is correct; data will end up sorted
 - For efficiency, these value(s) ought to approximate the median

2. Partition all the values into:
 a. The values less than the pivot(s)
 b. The pivot(s)
 c. The values greater than the pivot(s)
 d. .. In linear time? In-place? Stably?

3. Recursively QuickSort(A) and QuickSort(C)

✨ TA-DA! ✨
QuickSort Steps

1. Pick the pivot value(s)
 - Any choice is correct; data will end up sorted
 - For efficiency, these value(s) ought to approximate the median

2. Partition all the values into:
 a. The values less than the pivot(s)
 b. The pivot(s)
 c. The values greater than the pivot(s)
 d. ... In linear time? In-place? Stably?

3. Recursively QuickSort(A) and QuickSort(C)

✨ TA-DA! ✨
QuickSort Intuition: Set Partitioning

Select pivot value

Partition S

QuickSort(S_1) and QuickSort(S_2)

Presto! S is sorted
Recursive Call (1 of 3)

- After partitioning on 5:
 - 5 is in its “correct place” (ie, where it’d be if the array were sorted)
 - Can now sort two halves separately (eg, through recursive use of partitioning)

Note: for the remainder of this section, our pivot-selection algorithm is “first item in the subarray”
Recursive Call (2 of 3)
Recursive Call (3 of 3)

1 2 3 4 5 7 8 6

1 2 3 4

6 7 8

1 2 4 6 8

2
QuickSort Steps

1. Pick the pivot value(s)
 - Any choice is correct; data will end up sorted
 - For efficiency, these value(s) ought to approximate the median

2. Partition all the values into:
 a. The values less than the pivot(s)
 b. The pivot(s)
 c. The values greater than the pivot(s)
 d. ... In linear time? In-place? Stably?

3. Recursively QuickSort(A) and QuickSort(C)

✨ TA-DA! ✨
Pivot Selection: Pivot is the Median

Only size 1 problems remain, so we’re done.

$T(0) = T(1) = c_1$

$T(n) = 2T(n/2) + c_2 n$

(partition is linear-time)

Same recurrence as MergeSort:

$O(n \log n)$
Pivot Selection: Pivot is the Min/Max

T(0) = T(1) = c_1
T(n) = T(n-1) + c_2n

Basically same recurrence as SelectionSort: \(O(n^2) \)
Pivot Selection: Pivot is Random

- Suppose pivot always ends up at least 10% from either edge

- Work at each level: $O(N)$ and Runtime is $O(NH)$
 - Height is approximately $\log_{\frac{10}{9}} N = O(\log N)$

- Runtime: $O(N \log N)$
 - See proof in text
Pivot Selection Dictates Runtime!

- If pivot lands “somewhere good”, Quicksort is $\Theta(N \log N)$ 🥂

- However, the very rare $\Theta(N^2)$ cases do happen in practice 👎
 - **Bad ordering**: Array already in (almost-)sorted order and pivot is first or last index
 - **Bad elements**: Array with all duplicates

- Three philosophies for avoiding worst-case behavior:
 1. **Randomness**: pick a random pivot; shuffle before sorting
 - Elegant, but (pseudo)random number generation can be slow
 2. **Smarter Pivot Selection**: calculate or approximate the median
 - Median-of-3: median of $\text{arr}[lo], \text{arr}[hi-1], \text{arr}[(hi+lo)/2]$
 3. **Introspection**: switch to safer sort if recursion goes too deep
Avoiding Worst-Case Pivots

- Example worst-cases:
 - **Bad ordering**: Array already in (almost-)sorted order and pivot is first or last index
 - **Bad elements**: Array with all duplicates

- Three philosophies for avoiding worst-case behavior:
 1. **Randomness**: pick a random pivot; shuffle before sorting
 - Elegant, but (pseudo)random number generation can be slow
 2. **Smarter Pivot Selection**: calculate or approximate the median
 - Median-of-3: median of \[arr[lo], arr[hi-1], arr[(hi+lo)/2] \]
 3. **Introspection**: switch to safer sort if recursion goes too deep
 - ... what algorithm might be safer in the presence of badly-ordered elements?