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Announcements
+ P2 checkpoint 2 tomorrow — google form will release this
afternoon

® QuickSort should be the only thing we haven’t covered in lecture yet

« Exercises 7 & 8 out!

® Ex7 Canvas Groups: Join group and post in group discussion
= Reflection questions subject to change before Wednesday

+ Midterm out Wednesday!

<« P1 Grades will release
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« When you play cards, how do you order them in your hand?

+ Why do you think we learning about sorting in this class?
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Introduction to Sorting (1 of 2)

+ Stacks, queues, priority queues, and dictionaries/sets all
provide one element at a time

+ But often we want “all the items” in some order
= Alphabetical list of people
® Population list of countries
= Search engine results by relevance

+ Different sorting algorithms have different asymptotic and
constant-factor trade-offs
® Knowing one way to sort just isn’t enough; no single “best sort”
® Sorting is an excellent case-study in making trade-offs!
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Introduction to Sorting (2 of 2)

« Preprocessing (e.g. sorting) data to make subsequent
operations faster is a general technique in computing!
® Example: Sort the items so that you can:

- Find the k" largest in constant time for any k

« Perform binary search to find an item in logarithmic time
= Whether preprocessing is beneficial depends on

- How often the items will change

- How many items there are

+ Preprocessing’s benefits depend on how often the items will
change and how many items there are

® Sorting is an excellent case-study in making trade-offs!
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Comparison Sorting: Definition

« Problem: We have n comparable items in an array, and we
want to rearrange them to be in increasing order

+ Input:
= An array A of (key, value) pairs

® A comparison function (consistent and total)
- Given keys a & b, what is their relative ordering? <, =, >?
- Ex: keys that implement Comparable or have a Comparator

« Qutput/Side-Effect:

= Reorganize the elements of A such that for any index i and j,
if i < jthen A[i] <A[j]

® [Usually unspoken] A must have all the same items it started with
® Could also sort in reverse order, of course
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Comparison Sort: Variations (1 of 2)

1. Maybe elements are in a linked list

=  Could convert to array and back in linear time, but some algorithms
can still “work” on linked lists

2. Maybe if there are ties we should preserve the original
ordering

= Sorts that do this naturally are called stable sorts

3. Maybe we must not use more than O(1) “auxiliary space”
" These are called in-place sorts

" Not allowed to allocate memory proportional to input (i.e., O(n)),
but can allocate O(1) # of variables

"  Work is done by swapping around in the array
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Comparison Sort: Variations (2 of 2)

2. Maybe we can do more with elements than just compare
=  Comparison sorts assume a binary ‘compare’ operator
" |nspecial cases we can sometimes get faster algorithms

s. Maybe we have too many items to fit in memory
= Use an external sorting algorithm
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Big Picture of Comparison-Based Sorts

+ Simple algorithms: O(n?)

" |nsertionSort, SelectionSort

» Fancier algorithms: O(n log n)
= HeapSort, MergeSort, QuickSort (randomized)

« Comparison-based sorting’s lower bound: Q(n log n)

CSE332, Summer 2021
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InsertionSort

+ |dea: At step k, insert the kth element in the correct position
= Sort first two elements
= Now insert 3" element in order

+ Loop invariant (“when loop index is 1”):

® First 1 elements are in sorted order

< Time:

Best-case: Worst-case:

« Characteristics:
Stable: In-place:

12
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SelectionSort

+ |dea: At step k, select the smallest elt and put it at kt" position

® Find smallest element, put it 1%
= Find next smallest element, put it 2"

+ Loop invariant (“when loop index is 1”):

® First 1 elements are the i smallest elements in sorted order

<« Time:
Best-case: Worst-case:

« Characteristics:
Stable: In-place:

13
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InsertionSort vs. SelectionSort (1 of 2)

Different algorithms, same problem

<+ InsertionSort + SelectionSort

® L oop invariant: ® | oop invariant:

- First i elements are in sorted - First i elements are the i
order smallest elements in sorted
order

® Characteristics: = Characteristics:
- Stable: yes - Stable: no

" Time: " Time:
- Worst-case: O(n?) - Worst-case: O(n?)

. U ” : 2
- “Average” case: O(n2) Average” case: O(n?)

14
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InsertionSort vs. SelectionSort (2 of 2)

+ InsertionSort has better best-case complexity
® Best case is when input is “mostly sorted”

+ Different constants
® InsertionSort may do well on small arrays (empirically: N < ~15)
® Java’s built-in sort prefers InsertionSort for arrays <47 items

15
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Naive HeapSort

+ ldea: Put everything in a MIN heap; successively deleteMin

" add () all elementsinto heap —OR — better yet, use buildHeap
" for(i=0; 1 < arr.length; i++)

arr[i] = deleteMin () ;

+ Loop invariant (“when loop index is 1”):

" First 1 elements are the i smallest elements in sorted order

<« Time:

« Characteristics:

Stable: In-place:

17
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In-place HeapSort

+ ldea: Put everything in a MAX heap ; successively deleteMax

" insert each arr [i] —OR — better yet, use buildHeap
" for(i=0; 1 < arr.length; i++)
arr[arr.length - i] = deleteMax();

+ Loop invariant (“when loop index is 1”): same as naive version

< Time:

« Characteristics:

Stable: In-place:

18



W UNIVERSITY of WASHINGTON L11: Comparison Sorts CSE332, Summer 2021

Aside: “AVLSort” and “DataStructureSort”

« We can also use a balanced tree to:
" add each element: total time O(n 1og n)
® Do an in-order traversal O(n)

+ But a balanced tree cannot be made in-place, and constants
worse than HeapSort

= Both are O(n 1og n) in worst, best, and average case
® Neither sorts parallelizes well

+ Don’t even think about trying to sort with a hash table ...

19
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« Why might | care about a sort being stable or in place? Would having
these two qualities ever be worth the tradeoff of having a slower
algorithm?

20
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Technique: Divide and Conquer

« Very important technique in algorithm design!
1. Divide problem into smaller parts
2. Solve the parts independently

Recursion
Or potentially parallelism!

3. Combine solution of parts to produce overall solution
« Examples:

® Sort each half of the array, then combine together
® Split the array into “small part” and “big part”, then sort the parts

22
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Sorting with Divide and Conquer

+ Two great sorting methods are divide-and-conquer!

" MergeSort:
- Sort the left half of the elements (recursively)
- Sort the right half of the elements (recursively)
- Merge the two sorted halves into a sorted whole

® QuickSort:
« Pick a “pivot” element
Partition elements into those less-than pivot and those greater-than pivot

Sort the less-than elements (recursively)

Sort the greater-than the elements (recursively)
All done! Answer is [sorted-less-than] [pivot] [sorted-greater-than]

23
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MergeSort

+ To sort array from position 1o to position hi:
" |f range is 1 element long, it’s sorted! (Base case)

= Else, split into two halves:
- “Somehow” sort from 1loto (hi+lo) /2
- “Somehow” sort from (hi+lo) /2 tohi
- Merge the two halves together

+ Merging takes two sorted parts and sorts everything
® O(n) time but requires O(n) auxiliary space...

24
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MergeSort: Merging Example (1 of 10)

CSE332, Summer 2021

« Start with: arr | 8 2 9 4 5

«» Return from left and
right recursion

arr | 2 4 8 9 1

"= (pretend it works for now) I

X I\/Ierge aux

= Use 3 cursors and an extra I
auxiliary array

" When done, copy the

extra array back to the
original

25
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MergeSort: Merging Example (2 of 10)

CSE332, Summer 2021

<« Start with: arr | 8 | 2 | 9| 4|5 |3 |1]66
+ Return from left and

. . arr | 2 4 8 9 1 3 5 6

right recursion

" (not magic ©) I I
< Merge aux 1

® Use 3 cursors and an extra I

auxiliary array

" When done, copy the

extra array back to the
original

26
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MergeSort: Merging Example (3 of 10)

CSE332, Summer 2021

<« Start with: arr | 8 | 2 | 9| 4|5 |3 |1]66
+ Return from left and

. . arr | 2 4 8 9 1 3 5 6

right recursion

" (not magic ©) I I
+ Merge aux | 1 2

® Use 3 cursors and an extra I

auxiliary array

" When done, copy the

extra array back to the
original

27
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MergeSort: Merging Example (4 of 10)

« Start with: arr

« Return from left and

. . arr
right recursion
" (not magic ©)

<> I\/Ierge aux

= Use 3 cursors and an extra
auxiliary array

" When done, copy the

extra array back to the
original

CSE332, Summer 2021
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MergeSort: Merging Example (5 of 10)

« Start with: arr

« Return from left and

. . arr
right recursion
" (not magic ©)

<> I\/Ierge aux

= Use 3 cursors and an extra
auxiliary array

" When done, copy the

extra array back to the
original

CSE332, Summer 2021
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MergeSort: Merging Example (6 of 10)

CSE332, Summer 2021

« Start with: arr | 8 2 9 4 5 3 1 6
« Return from left and

. . arr 2 4 8 9 1 3 5 6

right recursion

" (not magic ©) I I
+ Merge aux | 1 2 3 4 5

= Use 3 cursors and an extra
auxiliary array

" When done, copy the

extra array back to the
original

30
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MergeSort: Merging Example (7 of 10)

CSE332, Summer 2021

« Start with: arr | 8 2 9 4 5 3 1 6
« Return from left and
. . arr 2 4 8 9 1 3 5 6
right recursion
" (not magic ©) I
+ Merge aux | 1 2 3 4 5 6

= Use 3 cursors and an extra
auxiliary array

" When done, copy the

extra array back to the
original

31
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MergeSort: Merging Example (8 of 10)

CSE332, Summer 2021

« Start with: arr | 8 2 9 4 5 3 1 6
« Return from left and
. . arr 2 4 8 9 1 3 5 6
right recursion
" (not magic ©) I
+ Merge aux | 1 2 3 4 5 6 8

= Use 3 cursors and an extra
auxiliary array

" When done, copy the

extra array back to the
original

32
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MergeSort: Merging Example (9 of 10)

« Start with: arr

« Return from left and

. . arr
right recursion
" (not magic ©)

<> I\/Ierge aux

= Use 3 cursors and an extra
auxiliary array

" When done, copy the

extra array back to the
original

CSE332, Summer 2021

3 1 6
3 5 6
6 8 9
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MergeSort: Merging Example (10 of 10)

« Start with: arr

« Return from left and

. . arr
right recursion
" (not magic ©)

<> I\/Ierge aux

= Use 3 cursors and an extra
auxiliary array

" When done, copy the arr
extra array back to the
original

L11: Comparison Sorts

CSE332, Summer 2021
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MergeSort: Recursion Example (1 of 3)

8 2 9 4 5 3 1 6

Divide 8 | 2| 9| 4 5 | 3| 11| 6

Divide 8 2 9 4 5 3 1 6

One Element
(done recurring!)

35
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MergeSort: Recursion Example (2 of 3)

8 2 9 4 5 3 1 6

Divide 8 | 2| 9| 4 5 13| 1] 6
Divide 8 2 9 4 5 3 1 6
One Element 3 5 9 4 c 3 . :
(done recurring!)
Merge 2 8 4 9 3 5 1 6
Merge 2 | 4| 8| 9 1|1 3|5 |6

36
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MergeSort: Recursion Example (3 of 3)

One Element '
. 8 2 9 4 5 3 1 6
(done recurring!)
Merge 2 8 4 9 3 5 1 6
Merge 2 4 8 9 1 3 5 6

When a recursive call ends, its sub-arrays are each in order;
we just need to merge them in order together

37
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Optimizations: Reducing “Dregs Copies” (1 of 2)

+ Remember the final steps of our merge example?

arr | 2 4 8 9 1 3 5 6

aux 1 2 3 4 5 6

I

+ It’s wasteful to copy 8 & 9 to the auxiliary array, and then
immediately copy them back into the original array!

38
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Optimizations: Reducing “Dregs Copies” (2 of 2)

+ If left side finishes first:
= Stop the merge, and copy the auxiliary array back to the original

arr 8 9

- ' 1 t
aux| 1| 21 3| a ]| s | s

+ If right side finishes first: '

= Stop the merge, and copy the dregs directly into right side
® Then copy auxiliary array back to the original

arr 8 9

aux 1 2 3 4 5 6

39
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Optimizations: Reducing Temp Arrays (1 of 2)

+ Simplest / worst approach:
" Every divide: allocate two new auxiliary arrays of size (hi-1o0) /2
® Every merge: allocate another auxiliary array

<+ Better:

® Allocate a single auxiliary array of size n at beginning to use
throughout

" Reuse “slices” of size (hi-1o) /2 within that array at every merge

« Best (but a little tricky):

= Don’t copy back! At 29, 4th 6t . merges, use the original array as
the auxiliary array; at odd-numbered merges, vice-versa

" |f the number of stages is odd, need one final copy at end

40
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Optimizations: Reducing Temp Arrays (2 of 2)

1. Recur down to sub-arrays of size 1 (no copies)
2. As we return from the recursion, switch off arrays

HEEEEEREEEENEEEEEEENREREEEEEEEEE

lwl wlwlwlwlwlwlwlwlwlwlwlwlwlwlwlﬂmerge

I I P R —
(arris dest)

Y Y v T S

| | | | (aux is dest)

¥ ¢ & ¢ 4% merge

| | (arr is dest)

¥ ¢ 5t merge

| (aux is dest)

Copy (if number of stages is odd)

3. Arguably easier to code up without recursion at all

41
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MergeSort: Runtime Analysis (1 of 3)

+ MergeSort sorts n elements by:
® Returning immediately if n=1
® Doing 2 subproblems of size n/2 + then an O(n) merge otherwise

+ Runtime expression?
"T(1)=c;
" T(n) = 2T(n/2) + c,n

42
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MergeSort: Runtime Analysis (2 of 3)

T(l) =C

First expansion

T(n) = 2T(n/2) + c,n
Second expansion If lwant n/2k =1, letk = log n
=2(2T(n/4) + c;n/2) + ¢;n Then T(n) = 2¥T(n/2¥) + kc,n
=4T(n/4) + 2¢c;n = 2!8nT(1) + log n c;n

Third expansion =Ci1n+ CyN Iog n
= 4(2T(n/8) + c;n/4) + 2¢,n - O(n log n)

= 8T(n/8) + 3c,n

kth expansion

= 2kT(n/2%) + kc,n

43
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MergeSort: Runtime Analysis (3 of 3)

« More intuitively, this recurrence comes up often enough you
should “just know” it's O(n 1og n)

+» MergeSort’s runtime is relatively easy to intuit

® Best, worst, and “average” all have the same runtime

® The recursion “tree” will have 1og n height and at each level we do
a total amount of merging equal to n

|s|z|9|4|s|a|1|e|

|s|z||9|4| |s|3||1|6|
oo 21 [2] 2] [2] ][] [2][e]
mee | 2]8] [afs] [2]s] [2]6]

v D SN

Llzalels]efa]e]

44
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MergeSort: Characteristics

< Execution:

" Merge sorted subarrays as it
“recurs upward” (ie, returns
from recursive calls)

« Characteristics:
= Stable: yes

® In-place: no

« Time: always O(n log n)

mergeSort (arr,
if (startIdx
| | startIdx + 1

return;

midIdx =
+ startlIdx;
mergeSort (arr,
mergeSort (arr,
merge (arr, startldx,
endIdx) ;

startIdx,
endIdx

startIdx,
midIdx,

endIdx) {

endIdx) {

(endIdx - startIdx) /2

midIdx) ;
endIdx) ;
midIdx,

45
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MergeSort: Final Thoughts

+ We’ve discussed arrays, but you may need to sort linked lists

® One approach:
- Convert to array: O(n)
- Sort: O(n log n)
- Convert back to list: O(n)
= Alternatively: MergeSort works well on linked lists
- HeapSort and QuickSort do not ®
- InsertionSort and SelectionSort can work, but they’re slower

« MergeSort is the best choice for external sorting
® Linear merges minimize new disk accesses

46
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QuickSort Steps

1. Pick the pivot value(s)
= Any choice is correct; data will end up sorted
=  For efficiency, these value(s) ought to approximate the median

2. Partition all the values into:
The values less than the pivot(s)

a

b. The pivot(s)
C. The values greater than the pivot(s)
d

.. In'linear time? In-place? Stably?

3. Recursively QuickSort(A) and QuickSort(C)

TA-DA!

47
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QuickSort Steps

3. Recursively QuickSort(A) and QuickSort(C)

48
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QuickSort Intuition: Set Partitioning

Select pivot value

Sy
Partition S
S]_ SZ
o |13|2631]43]57 75 | 81 | 92 QuickSort(S,) and QuickSort(S,)
S
0o 1326 |31]4a3]|57|65]75]81]09 Presto! S is sorted

[Weiss] 49
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Note: for the remainder of this

H section, our pivot-selection algorithm
Recu rSIVE Ca " (1 Of 3) is “first item in the subarray”

<« After partitioning on 5:
" 5isinits “correct place” (ie, where it'd be if the array were sorted)

5 3 2 1 7 8 4 6

T TN

3 2 1 4 5 7 8 6

= Can now sort two halves separately (eg, through recursive use of
partitioning)

50
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Recursive Call (2 of 3)

5 3 2 1 7 8 | 4 6

3 2 1 4 7 8 6
MV/ v A
1 2 3 6 7 8

-
s | | s
-
-

51
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Recursive Call (3 of 3)

1 2 3 4 5 7
I

1 2 3 4 6

I 1

1 2 4 6

CSE332, Summer 2021
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QuickSort Steps

1. Pick the pivot value(s)
= Any choice is correct; data will end up sorted
= For efficiency, these value(s) ought to approximate the median

3. Recursively QuickSort(A) and QuickSort(C)

53
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Pivot Selection: Pivot is the Median

T(0)=T(1) =c;

ﬁ T(n) = 2T(n/2) + ¢, n

\
ﬁ ﬁ (partition is linear-time)
Same recurrence as
. - . MergeSort:

Only size 1 problems remain, so we’re done. O(n log n)

54
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Pivot Selection: Pivot is the Min/Max

T(0)=T(1)=c,
T(n) =T(n-1) + cyn

Basically same recurrence as
SelectionSort: O(n?)

I

55
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Pivot Selection: Pivot is Random

+ Suppose pivot always ends up at least 10% from either edge

N

o B
N/Jﬁloo 9N/100 81N/100

« Work at each level: O(N) and Runtime is O(NH)
" Height is approximately log 10/ N = O(log N)

« Runtime: O(N log N)
= See proof in text

56
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Pivot Selection Dictates Runtime!

+ If pivot lands “somewhere good”, Quicksort is O(N log N) "

« However, the very rare ©(N?2) cases do happen in practice

= Bad ordering: Array already in (almost-)sorted order and pivot is first
or last index

= Bad elements: Array with all duplicates

+ Three philosophies for avoiding worst-case behavior:
1. Randomness: pick a random pivot; shuffle before sorting
Elegant, but (pseudo)random number generation can be slow
2. Smarter Pivot Selection: calculate or approximate the median
Median-of-3: median of arr[lo], arr[hi-1], arr[ (hi+lo) /2]
3. Introspection: switch to safer sort if recursion goes too deep

57
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Avoiding Worst-Case Pivots

+ Example worst-cases:

= Bad ordering: Array already in (almost-)sorted order and pivot is first
or last index

= Bad elements: Array with all duplicates

« Three philosophies for avoiding worst-case behavior:
1. Randomness: pick a random pivot; shuffle before sorting
- Elegant, but (pseudo)random number generation can be slow
2. Smarter Pivot Selection: calculate or approximate the median
« Median-of-3: median of arr[lo], arr[hi-1l], arr[ (hi+lo) /2]
3. Introspection: switch to safer sort if recursion goes too deep
+ ... what algorithm might be safer in the presence of badly-ordered elements?
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