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Announcements

v Clarifying urgent P1 announcement from Ed

v Gradescope in lecture activities

v Fill out the P2 partner survey!!!
§ There will be 1 group of 3

v Friday’s lecture
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No formal activity today
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v PLEASE do the activities today anyway. They are very helpful 
for gaining intuition.

v What is the impact that the order of elements have on the 
resultant BST’s structure and ordering?
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Lecture Outline

v AVL Tree
§ Bounding a BST’s height
§ Find
§ Add
§ Remove
§ Wrapup
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Why does BST height matter? (1 of 2)

v For a BST with n items:
§ Randomized height is Θ(log n) – see text for proof (pgs 120-122)
§ Worst case height is Θ(n)

v Simple cases, such as inserting in order, lead to worst case 
structure!
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BST, 
Randomized

BST,
Worst

Find Θ(h) aka Θ(log N) Θ(h) aka Θ(N)

Add Θ(h) aka Θ(log N) Θ(h) aka Θ(N)

Remove Θ(h) aka Θ(log N) Θ(h) aka Θ(N)
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Why does BST height matter? (2 of 2)

v Insert keys 1, 2, 3, 4, 5, 6, 7, 8, 9 into an empty BST
§ The resultant tree is a “linked list”
§ What is the big-Oh aggregate runtime for n add()s of sorted input?
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1

2

3

n2

(not a happy place)

Aggregate Runtime for n adds: O(         )
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Goal: Balance the BST

v Require a Balance Condition that:
1. Ensures height is always O(log n)
2. Is easy to maintain
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Potential BST Balance Conditions

v Left and right subtrees of the root
have equal number of nodes

v Left and right subtrees of the root
have equal height
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Too weak!
Height mismatch example:

Too weak!
Double chain example:
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The AVL Balance Condition (1 of 2)

v Left and right subtrees of the root
have equal number of nodes

v Left and right subtrees of the root
have equal height

v Left and right subtrees of every node
have heights differing by at most 1
§ NOTE: height here is different from how 

we defined it in the past… 
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The AVL Balance Condition (2 of 2)

Definition:  balance(node) = height(node.left) – height(node.right)
AVL property:  for every node x,   –1 £ balance(x) £ 1

Results:
v Ensures shallow depth: h ∈ Θ(log n)
§ Will prove this by showing that an AVL tree of height h must have a 

number of nodes exponential in h

v Efficient to maintain using rotations
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Left and right subtrees of every node have
heights differing by at most 1

h = -1 (null)

h = 0

h = 1
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The AVL Tree Data Structure

v Structural properties
§ Binary tree property  (0, 1, or 2 children)
§ Heights of left and right subtrees for every node differ by at most 1

v Ordering property
§ Same as for BST
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Implementation detail…
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v Are the following trees AVL trees?

A. No / No / No
B. Yes / No / No
C. Yes / Yes / No
D. Yes / Yes / Yes
E. Yes / No / Yes
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Lecture Outline

v AVL Tree
§ Bounding a BST’s height
§ Find
§ Add
§ Remove
§ Wrapup
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AVL Find

v Surprise!  You already know this one

v🎉🎉🎉 find() is O(log n)! 🎉🎉🎉
§ Proof to come Friday..
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Lecture Outline

v AVL Tree
§ Bounding a BST’s height
§ Find
§ Add
§ Remove
§ Wrapup
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Problems with adding elements

v But as we add() and remove elements(), we need to:
§👎 Track heights
§👎 Detect imbalance
§👎 Restore balance

17

What needs to happen when we 
insert(8)? 92

5
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AVL add(): Overall Approach

v Our overall algorithm looks like:
1. Insert the new node as in a BST (a new leaf)
2. For each node on the path from the root to the new leaf:
• The insertion may (or may not) have changed the node’s height
• Detect height imbalance and perform a rotation to restore balance

v Fact that makes it a bit easier:
§ Imbalances only occur along the path from the new leaf to the root
§ There must be a deepest element that is unbalanced
§ After rebalancing this deepest node, every node above it is also 

rebalanced
§ Therefore, at most one node needs to be rebalanced
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AVL add(): Overall Approach

v Fact that makes it a bit easier:
§ Imbalances only occur along the path from the new leaf to the root
§ There must be a deepest element that is unbalanced
§ After rebalancing this deepest node, every node above it is also 

rebalanced
§ Therefore, at most one node needs to be rebalanced
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AVL add(): Cases

v Let b be the deepest node where an imbalance occurs

v There are four cases to consider.  The insertion is in the:
1. left subtree of the left child of b
2. right subtree of the left child of b
3. left subtree of the right child of b
4. right subtree of the right child of b
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Case #1: Example

add(6)
add(3)
add(1)

v Last add() violates 
balance property

v What is the only way to 
fix this? 
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The insertion is in the:
1. left subtree of the left child of b
2. right subtree of the left child of b
3. left subtree of the right child of b
4. right subtree of the right child of b
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Case #1 Fix: Apply “Single Rotation”

v Single rotation:
§ Move child of unbalanced node into parent position
§ Parent becomes the “other” child
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Case #1: Pseudocodea
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void rotateRight(Node root) {

Node temp = root.left
root.left = temp.right

temp.right = root

root.height = max(root.right.height(),
root.left.height()) + 1

temp.height = max(temp.right.height(),
temp.left.height()) + 1  

root = temp

} rotateRight rotates the tree clockwise

b
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temp
root
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Case #1: Why It Works (1 of 2)

v Node is imbalanced due to insertion somewhere in 
left-left grandchild

v First we did the insertion, which would make b imbalanced
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Oval: a node in the tree
Triangle: a subtree
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Case #1: Why It Works (2 of 2)

v So we rotate at b, maintaining BST order: X < a < Y < b < Z

v Result:
§ A single rotation restores balance at the formerly-imbalanced node
§ Height is same as before insertion, so ancestors now balanced
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Case #1: Another Example: add(16)
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The insertion is in the:
1. left subtree of the left child of b
2. right subtree of the left child of b
3. left subtree of the right child of b
4. right subtree of the right child of b
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Case #1: Another Example: add(16)
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104

228
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17 20

24

16

The insertion is in the:
1. left subtree of the left child of b
2. right subtree of the left child of b
3. left subtree of the right child of b
4. right subtree of the right child of b
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Case #1 ≈ Case #4

v Mirror image of left-left case, so you rotate the other way
§ Exact same concept, but need different code
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b

Z

Y

a

X

h h
h+1

h+1

h+2

The insertion is in the:
1. left subtree of the left child of b
2. right subtree of the left child of b
3. left subtree of the right child of b
4. right subtree of the right child of b

a

ZY

X

h

h
h+1

h+3

b
h+2

RotateWithRightChild rotates the tree counter-clockwise
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Case #3: Example

Insert(1)
Insert(6)
Insert(3)

v Single rotations are not
enough for insertions into
the left-right subtree (or
the right-left subtree; ie,
case #2)
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The insertion is in the:
1. left subtree of the left child of b
2. right subtree of the left child of b
3. left subtree of the right child of b
4. right subtree of the right child of b
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Case #3: Wrong Fix #1

v First wrong idea: single left rotation like we did for left-left
§ Violates BST ordering property!
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Case #3: Wrong Fix #2

v Second wrong idea: single rotation on the child of the 
unbalanced node
§ Doesn’t actually fix anything!
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Case #3: Sometimes Two Wrongs Make a Right J

v First idea violated the BST ordering
v Second idea didn’t fix balance
v … but if we do both single rotations, starting with the second, 

it works!
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DoubleRotation:
1. Rotate problematic child and grandchild
2. Then rotate between self and new child
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Case #3: Adoption
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Case #3: Why It Works
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Case #3 ≈ Case #2

v Mirror image of right-left
§ Again, no new concepts, only new code to write
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The insertion is in the:
1. left subtree of the left child of b
2. right subtree of the left child of b
3. left subtree of the right child of b
4. right subtree of the right child of b
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AVL add(): Summary

v Insert as if a BST

v Check back up path for imbalance, which will be 1 of 4 cases:
1. node’s left-left grandchild is too tall
2. node’s left-right grandchild is too tall
3. node’s right-left grandchild is too tall
4. node’s right-right grandchild is too tall

v Only one case occurs because tree was balanced before insert

v After the appropriate rotation, the smallest-unbalanced 
subtree has the same height as before insertion
§ So all ancestors are now balanced
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Lecture Outline

v AVL Tree
§ Bounding a BST’s height
§ Find
§ Add
• (Add Exercises)

§ Remove
§ Wrapup
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Double Rotation: Example (1 of 3)
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Double Rotation: Example (2 of 3)
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Double Rotation: Example (3 of 3)
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add() into an AVL tree

v add(a)
v add(b)
v add(e)
v add(c)
v add(d)
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Single and Double Rotations

v Inserting which integer values would cause this tree to need a:
§ Single Rotation?

§ Double Rotation?

§ No Rotation?

42
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Add Sequence (1 of 2)

v add(3)
§ Is the resultant tree balanced?
§ If not, how would you fix it?
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Add Sequence (2 of 2)

v Next, add(33)
§ Is the resultant tree balanced?
§ If not, how would you fix it?
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Answer

v Single rotation to the rescue!
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Harder Add Sequence (1 of 2)

v add(18)
§ Is the resultant tree balanced?
§ If not, how would you fix it?
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Harder Add Sequence (2 of 2)

v Single Rotation doesn’t work
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Answer (1 of 2)

v Double rotation, part 1
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Answer (2 of 2)

v Double rotation, part 2
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Lecture Outline

v AVL Tree
§ Bounding a BST’s height
§ Find
§ Add
§ Remove
§ Wrapup
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AVL Remove

v The “easy way” is lazy deletion
v The “hard way” will result in many imbalance cases
§ Only do this if you’re feeling ambitious
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Lecture Outline

v AVL Tree
§ Bounding a BST’s height
§ Find
§ Add
§ Remove
§ Wrapup
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AVL Tree Wrapup

v AVL find: 
§ Same as BST find
§ Worst-case complexity: 
• Tree is balanced!

v AVL add: 
§ First BST add, then check balance and potentially “fix” the AVL tree
§ Four different imbalance cases
§ Worst-case complexity:
• Tree starts and ends balanced
• A rotation is O(1) and there’s an O(log n) path to root
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AVL Tree Wrapup

v AVL remove
§ We suggest lazy deletion
• Worst-case complexity: 

§ Deletion requires more rotations than insert; but worst-case 
complexity still O(log n)
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Pros and Cons of AVL Trees

v Arguments for AVL trees:
§ All operations are logarithmic worst-case because trees are always 

balanced
§ Height rebalancing adds no more than a constant factor to the 

speed of add and remove

v Arguments against AVL trees:
§ Difficult to program and debug
§ Additional space for the height and deleted? fields
§ Asymptotically faster, but rebalancing takes time
§ Compared to other balanced BSTs (eg, Red-Black trees), the 

constants aren’t great
§ Most large data sets require database-like systems on disk, and thus 

use other structures (e.g., B-trees, our next data structure)
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Lecture Outline

v AVL Tree
§ Bounding a BST’s height
§ (Proving the AVL tree’s height bound)
§ Find
§ Add
• (Add Exercises)

§ Remove
§ Proof of height bound
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Before We Prove It

v Good intuition from plots comparing:
1. S(h) computed directly from the definition
2. ((1+Ö5)/2)h » 1.62h

v S(h) is always bigger, up to trees with huge # of nodes
§ Graphs aren’t proofs, so let’s prove it
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The Proof Outline

Let S(h) = the min # of nodes in an AVL tree of height h
§ If we can prove that S(h) grows exponentially in h, then a tree with 
n nodes has a logarithmic height

v Step 1: Define S(h) inductively using AVL property
§ S(-1)=0,   S(0)=1,   S(1)=2
§ S(h) = 1 + S(h-1) + S(h-2) for h ³ 1

v Step 2: Show this recurrence grows really fast
§ Similar to Fibonacci numbers
§ Can prove for all h,  S(h) > fh – 1 where f is the golden ratio, 
(1+Ö5)/2 » 1.62

§ Growing faster than 1.62h is “plenty exponential”
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Interlude: The Golden Ratio

59

62.1
2
51
»

+
=f

This is a special number

• Aside: Since the Renaissance, many artists and architects have 
proportioned their work (e.g., length:height) to approximate the golden 
ratio: If (a+b)/a = a/b, then a = fb

• We will need one special arithmetic fact about f :
f2= ((1+51/2)/2)2

= (1 + 2*51/2 + 5)/4 
= (6 + 2*51/2)/4 
= (3 + 51/2)/2 
= 1 + (1 + 51/2)/2

= 1 + f
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The Proof (1 of 2)
Theorem: For all h ³ 0, S(h) > fh – 1

Proof: By induction on h

Base cases:
S(0) = 1 > f0 – 1 = 0

S(1) = 2 > f1 – 1 » 0.62

60

S(-1)=0,  S(0)=1,  S(1)=2
S(h)=1 + S(h-1) + S(h-2)  for h ³ 1
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The Proof (2 of 2)
Theorem: For all h ³ 0, S(h) > fh – 1

Proof: By induction on h

Inductive case (k > 1): 
Show that S(k+1) > fk+1–1, assuming S(k) > fk–1
and S(k-1) > fk-1 – 1

S(k+1) = 1 + S(k) + S(k-1) by definition of S

> 1 + (fk – 1) + (fk-1 – 1) by induction
= fk + fk-1 – 1 by arithmetic (1-1=0)

= fk-1 (f + 1) – 1 by arithmetic (factor fk-1)

= fk-1 f2 – 1 by special property of f

= fk+1 – 1 by arithmetic (add exponents)
61

S(-1)=0,  S(0)=1,  S(1)=2
S(h)=1 + S(h-1) + S(h-2)  for h ³ 1


