P vs NP CSE 332 Spring 2021

Instructor: Hannah C. Tang

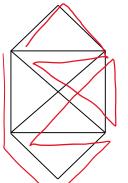
Teaching Assistants:

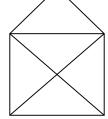
Aayushi Modi Khushi Chaudhari Aashna Sheth Kris Wong Frederick Huyan Logan Milandin Hamsa Shankar Nachiket Karmarkar Patrick Murphy Richard Jiang Winston Jodjana

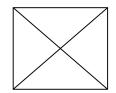
Ill gradescope

gradescope.com/courses/256241

- Which of these can you draw (ie, trace all edges) without lifting your pencil, drawing each line only once?
 - Can you start and end at the same point?







Enumerate 1-2 algorithms with the following worst-case runtimes:

- O(log n)
- O(n)
- O(n²) or O(V²) or O(E²)
- O(V + E)

Announcements

- Please fill out course evals!
- Please nominate your TAs for the Bob Bandes Award!!
 - They deserve it!
- Quiz review and section showdown tomorrow; winners crowned on Friday

Lecture Outline

- Circuits
 - Euler Circuit
 - Hamiltonian Circuit
- Complexity classes
 - P and non-P
 - A Whirlwind Tour of non-P Problems
 - NP

Setting Up A Prank

- Your friend is organizing a tour of local farmland and wants donors to drive over every road in the Snoqualmie River Valley
- Driving over the roads costs money (fuel), and there are a lot of roads
- She wants you to figure out how to drive over <u>each</u> <u>road exactly once</u>, returning to your starting point

* (note: this didn't actually happen)

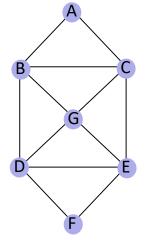
Euler Circuits

- *Euler Circuit*: a path through a graph that visits each edge exactly once, and starts and ends at the same vertex
- Named after Leonhard Euler (1707-1783), who cracked this problem and founded graph theory in 1736
 - This problem is also known as "the Seven Bridges of Königsberg"
- An Euler circuit exists iff
 - The graph is connected and
 - Each vertex has <u>even</u> degree (= # of edges on the vertex)

...Il gradescope

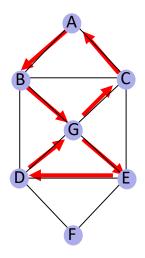
gradescope.com/courses/256241

Find an Euler circuit starting at A



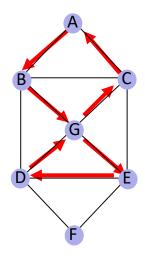
Euler(A):

Euler Circuit: Example



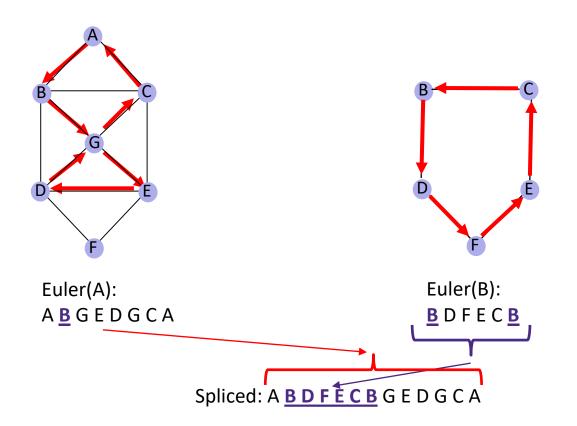
Euler(A): A B G E D G C A

Euler Circuit: Example



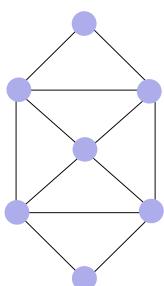
Euler(A): A B G E D G C A Euler(B):

Euler Circuit: Example



Euler Circuit: Algorithm

- Given a connected undirected graph G = (V,E)
- ♦ Can <u>check</u> if a circuit exists: O(V)
 - Do all vertices have even degree?
- ☆ Can <u>find</u> a circuit: O(V+E)
 - 1. Traverse graph from start vertex until you are back
 - Never get stuck because of the even-degree property
 - 2. "Remove" the cycle, leaving several components each with the even-degree property
 - Recursively find Euler circuits for these
 - 3. Splice all these circuits into an Euler circuit
- * Can <u>verify</u> a given path is a circuit: O(E)
 - Traverse path, marking visited edges
 - Return true if all edges are marked, and v₀ == v_n



Lecture Outline

- Circuits
 - Euler Circuit
 - Hamiltonian Circuit
- Complexity classes
 - P and non-P
 - A Whirlwind Tour of non-P Problems
 - NP

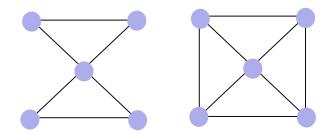
The Actual Prank

Instead of a farmland tour, she wanted a farm tour

- Now you need to figure out how to drive to <u>each farm</u> <u>exactly once</u>, returning in the first farm at the end
- (note: this actually DID happen. I still get razzed about it)

Hamiltonian Circuits

- * Euler circuit: a cycle that goes through each edge exactly once
- Hamiltonian circuit: a cycle that goes through each vertex exactly once
- Does the first graph have:
 - An Euler circuit?
 - A Hamiltonian circuit? N
- Does the second graph have:
 - An Euler circuit? N
 - A Hamiltonian circuit?



Which problem sounds harder?

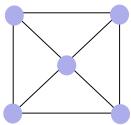
Hamiltonian Circuit Verification = Good News

 Given a connected unweighted undirected graph G = (V, E)

- * Can verify a given path is a circuit: O(V)
 - Traverse path, marking visited vertices
 - Return true if all vertices are marked, and v₀ == v_n

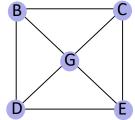
Hamiltonian Circuit Algorithm = Bad News

- Algorithm:
 - Enumerate all paths, check if one of them is a circuit
 - Can use your favorite graph search algorithm to enumerate paths
 - This is known as an exhaustive search ("brute force") algorithm
- * Can find a circuit: O(V)
 - Enumerate all paths, check if one of them is a circuit

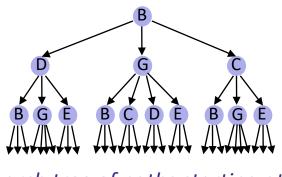


Exhaustive Search: Analysis (1 of 2)

- Worst case needs to enumerate all paths
 - How many paths are there??



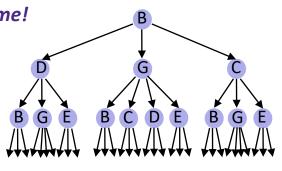
- As with our lower-bound on comparison sorts, let's represent each step on a path as a node in a search tree
 - Number of leaves is the total number of paths



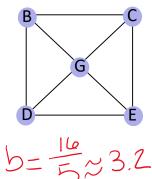
Search tree of paths starting at B

Exhaustive Search: Analysis (2 of 2)

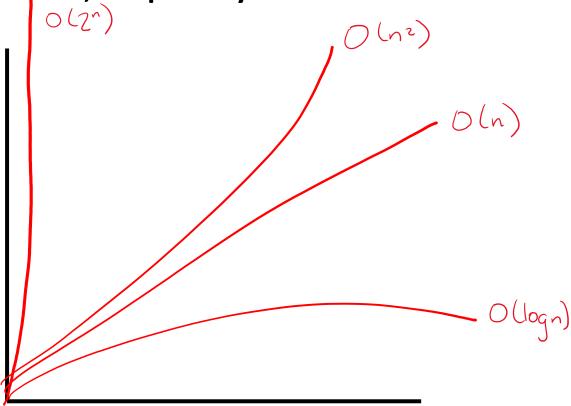
- Let b be the average branching factor of each node in this graph
 - |V| vertices, each with \approx b branches
 - Total number of paths $\approx b \cdot b \cdot b \dots \cdot b$
 - O(b^{|v|})
- Worst case:
 - Exponential time!



Search tree of paths starting at B



Running Times, Graphically



Demo: https://www.desmos.com/calculator/diufnxtyqy

Running Times, Numerically

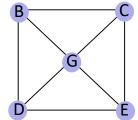
Table 2.1 The running times (rounded up) of different algorithms on inputs of increasing size, for a processor performing a million high-level instructions per second. In cases where the running time exceeds 10²⁵ years, we simply record the algorithm as taking a very long time.

	п	$n \log_2 n$	<i>n</i> ²	n ³	1.5 ⁿ	2 ⁿ	n!
n = 10	< 1 sec	< 1 sec	< 1 sec	< 1 sec	< 1 sec	< 1 sec	4 sec
n = 30	< 1 sec	< 1 sec	< 1 sec	< 1 sec	< 1 sec	18 min	10 ²⁵ years
n = 50	< 1 sec	< 1 sec	< 1 sec	< 1 sec	11 min	36 years	very long
n = 100	< 1 sec	< 1 sec	< 1 sec	1 sec	12,892 years	10 ¹⁷ years	very long
<i>n</i> = 1,000	< 1 sec	< 1 sec	1 sec	18 min	very long	very long	very long
n = 10,000	< 1 sec	< 1 sec	2 min	12 days	very long	very long	very long
n = 100,000	< 1 sec	2 sec	3 hours	32 years	very long	very long	very long
<i>n</i> = 1,000,000	1 sec	20 sec	12 days	31,710 years	very long	very long	very long
						1-1	

101

Summary: Euler vs Hamiltonian Circuits

- *Euler circuit*: a cycle that goes through each edge exactly once
 - Runtime: O(|V| + |E|)



- Hamiltonian circuit: a cycle that goes through each vertex exactly once
 - Runtime: O(b^{|V|})

Summary: Polynomial vs. Exponential Time

- All the algorithms we've discussed so far are *polynomial time* algorithms:
 - i.e.: algorithms whose running time is O(N^k) for some k > 0
 - e.g.: O(log N), O(N), O(N log N), O(N²), etc

- * **Exponential time** algorithms run in $O(b^N)$ for some b > 1
 - Any exponential time algorithm is asymptotically worse than any polynomial function N^k
 - Holds true for any k and any b!
 - e.g.: O(2^N)

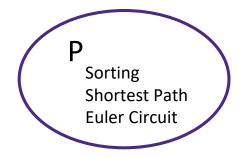
Lecture Outline

- Circuits
 - Euler Circuit
 - Hamiltonian Circuit
- Complexity classes
 - P and non-P
 - A Whirlwind Tour of non-P Problems
 - NP

The Complexity Class P

* P is the set of all problems that can by solved in by solved in the set of all problems that can be set of all p worst-case time

- i.e.: all problems that have some algorithm with runtime O(N^k)
- Examples of problems in P:
 - Sorting, shortest path, Euler circuit, etc.
- Examples of problems that are (probably) not in P:
 - Hamiltonian circuit, satisfiability (SAT), vertex cover, travelling salesman, Tower of Hanoi, etc.



Hamiltonian Circuit Satisfiability (SAT) Vertex Cover Travelling Salesman

Tower of Hanoi Best chess move (NxN)

Halting

Lecture Outline

- Circuits
 - Euler Circuit
 - Hamiltonian Circuit
- Complexity classes
 - P and non-P
 - A whirlwind tour of (probably) non-P problems
 - NP

Satisfiability

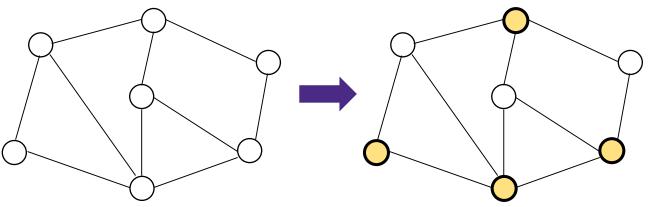
* *Input*: a logic formula of size *m* containing *n* variables • e.g. $(\neg x_1 \lor x_2 \lor x_4) \land (x_1 \lor \neg x_3 \lor x_4) \land (x_2 \lor \neg x_4 \lor \neg x_5)$

- Output: An assignment of boolean values to the n variables such that the formula is true
- Algorithm: Try every variable assignment

	Soln 1	Soln 2	 Soln 2 ⁿ
x ₁	Т	F	 F
x ₂	Т	Т	 F
X ₃	Т	т	 F
x ₄	Т	т	 F
x ₅	т	т	 F

Vertex Cover

- Input: A graph G = (V,E) and a number m
- Output: A subset S of V, such that:
 - For every edge (u,v) in E, at least one of u or v is in S
 - IS |= m (if such an S exists)



* *Algorithm*: Try every subset of vertices of size *m*

Tower of Hanoi

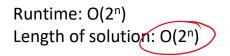
Input: n disks of increasing size and 3 pegs

 Output: A series of moves transferring n disks to any other peg without placing a larger disk over a smaller one

CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=228623

Algorithm:

```
while (!done):
transferDisk(peg A, peg B)
transferDisk(peg A, peg C)
transferDisk(peg B, peg C)
```



Travelling Salesman

- Input: A complete <u>weighted</u> undirected graph G=(V,E) and a number m
- Output: A circuit visiting each vertex exactly once and has total cost <m (if such a circuit exists)
- Algorithm: Enumerate all paths, check if one of them is a circuit with appropriate weight

Lecture Outline

- Circuits
 - Euler Circuit
 - Hamiltonian Circuit
- Complexity classes
 - P and non-P
 - A whirlwind tour of (probably) non-P problems
 - NP

A Glimmer of Hope?

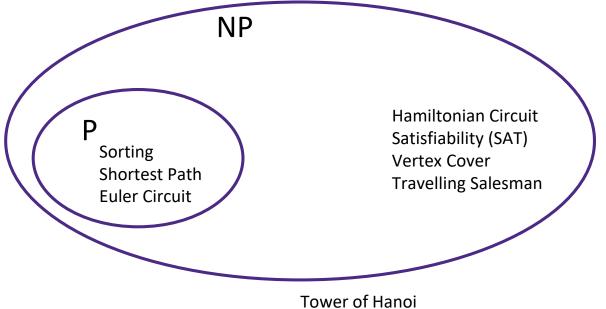
- If we have:
 - a candidate solution to a problem
 - the ability to <u>verify</u> the solution in polynomial time then maybe a polynomial-time algorithm exists?
- Does this hold true for the Hamiltonian Circuit problem?
 - Given a candidate path, how do we verify it's a Hamiltonian Circuit?
 - · Check if all vertices are visited exactly once in the candidate path
 - Runtime: O(|V|)

The Complexity Class NP

- NP is the set of all problems for which a given candidate solution can be verified in polynomial worst-case time
 - Compare against P, which are the problems that can be <u>solved</u> in polynomial worst-case time
- Examples of problems in NP:
 - Hamiltonian circuit: Given a candidate path, can verify in O(|V|) time if it is a Hamiltonian circuit
 - Satisfiability: Given a candidate set of n values, can verify in O(m) time if the expression is true
 - Vertex Cover: Given a subset of vertices, can verify in O(|V|) time if it covers all vertices
 - All problems that are in P (why???)

Why do we call it "NP"?

- * NP stands for *Nondeterministic Polynomial* time
 - Unlike P, these problems are characterized by their verification time
 - Allows us to assume a solution exists (regardless of its runtime)
- Why "nondeterministic"?
 - If we don't know a polynomial time solution (yet?), we can still imagine a special operation that allows the algorithm to magically guess the right choice at each branch point
 - Nondeterministic algorithms don't exist purely theoretical idea invented to understand how hard a problem could be
- * "NP" is <u>NOT</u> an abbreviation for "not polynomial"



Tower of Hanoi Best chess move (NxN)

Your Chance to Win a Turing Award!

- - i.e. there are problems in NP that are not in P
- But no one has been able to show even one such problem!
 - This is <u>the</u> fundamental open problem in theoretical computer science
 - Nearly everyone has given up trying to prove it. Instead, theoreticians prove theorems about what follows once we assume P ≠ NP !

P' = NP

Summary

- One small change from *edges* to *vertices* changed the Euler Circuit problem into the Hamiltonian Circuit problem
 - ... and had a huge impact on the algorithm's runtime
- P is characterized by the runtime of its solutions
 - Must be able to solve in polynomial time
- NP is characterized by the runtime of its verifications
 - No constraints on time to solve
 - Must be able to verify in polynomial time