
CSE332, Spring 2021L27: Kruskal's Algorithm; Disjoint Sets

Kruskal’s Algorithm; Disjoint Sets
CSE 332 Spring 2021

Instructor: Hannah C. Tang

Teaching Assistants:

Aayushi Modi Khushi Chaudhari Patrick Murphy

Aashna Sheth Kris Wong Richard Jiang

Frederick Huyan Logan Milandin Winston Jodjana

Hamsa Shankar Nachiket Karmarkar

CSE332, Spring 2021

gradescope.com/courses/256241

L27: Kruskal's Algorithm; Disjoint Sets

❖ How many times do you need to take the log of
20,035,299,304,068,464,649,790,723,515,602,557,504,478,254,755,69
7,514,192,650,169,737 to get to a value <= 1?

▪ Hint: that value is equal to 265536, and 65536 = 216

❖ Bonus: find an MST using Prim’s Algorithm on this graph:

2

A

C

B

D

F

H

G

E

2 2
3

2
1

4

10

8

19

4
2

7

CSE332, Spring 2021L27: Kruskal's Algorithm; Disjoint Sets

Lecture Outline

❖ Disjoint Sets ADT (aka Union/Find ADT)

❖ Kruskal’s Algorithm, for realz

▪ Review and Example

▪ Correctness Proof

❖ Up-Trees Data Structure

▪ Representation

▪ Optimization: Weighted Union

▪ Optimization: Path Compression

3

CSE332, Spring 2021L27: Kruskal's Algorithm; Disjoint Sets

Disjoint Sets ADT (1 of 2)

❖ The Disjoint Sets ADT has two
operations:

▪ find(e): gets the id of the element’s set

▪ union(e1, e2): combines the set
containing e1 with the set containing e2

❖ Example: ability to travel to drive to a
country

▪ union(france, germany)

▪ union(spain, france)

▪ find(spain) == find(germany)?

▪ union(england, france)

4

Disjoint Sets ADT. A

collection of

elements and sets

of those elements.

• An element can only

belong to a single set.

• Each set is identified by a

unique id.

• Sets can be combined/

connected/ unioned.

CSE332, Spring 2021L27: Kruskal's Algorithm; Disjoint Sets

Disjoint Sets ADT (2 of 2)

❖ Applications include percolation theory (computational chemistry) and
…. Kruskal’s algorithm

❖ Simplifying assumptions

▪ We can map elements to indices quickly

▪ We know all the items in advance; they’re all disconnected initially

❖ Later this lecture, we’ll see:

▪ We can do union() in constant time

▪ We can get find() to be amortized constant time

• Worst case O(log n) for an individual find operation

5

CSE332, Spring 2021L27: Kruskal's Algorithm; Disjoint Sets

Lecture Outline

❖ Disjoint Sets ADT (aka Union/Find ADT)

❖ Kruskal’s Algorithm, for realz

▪ Review and Example

▪ Correctness Proof

❖ Up-Trees Data Structure

▪ Representation

▪ Optimization: Weighted Union

▪ Optimization: Path Compression

6

CSE332, Spring 2021L27: Kruskal's Algorithm; Disjoint Sets

Kruskal’s Algorithm

❖ Kruskal’s thinks edge by edge

▪ Eg, start from lightest edge and consider by increasing weight

▪ Compare against Dijkstra’s and Prim’s, which think vertex by vertex

❖ Outline:

▪ Start with a forest of |V| MSTs

▪ Successively connect them ((ie, eliminate a tree) by adding edges

▪ Do not add an edge if it creates a cycle

7

e?

G

CSE332, Spring 2021L27: Kruskal's Algorithm; Disjoint Sets

Kruskal’s Algorithm: Pseudocode

8

|E| deleteMin()s

2|E| find()s

|V| union()s

Runtime: |E|(log|E| + 2log|V| + 1) + |V|(1 + 1 + 1) ∈ O(|E|log|V| + |V|log|V|)
However, since we know E ∈ O(|V|2), runtime ∈ O(|E|log|V|)

kruskals(Graph g) {

mst = {}

forests = buildDisjointSets(g.vertices)

numforests = g.vertices

edges = buildHeap(g.edges)

while (numForests 1):

e = edges.deleteMin()

u_id = forests.find(e.u)

v_id = forests.find(e.v)

if (u_id != v_id):

mst.addEdge(e)

forests.union(e.u, e.v)

numforests--

}

CSE332, Spring 2021L27: Kruskal's Algorithm; Disjoint Sets

Kruskal’s Algorithm: Example

9

Weight Edges

1 (A,D), (C,D), (B,E), (D,E)

2 (A,B), (C,F), (A,C)

3 (E,G)

5 (D,G), (B,D)

6 (D,F)

10 (F,G)

A B

C
D

F

E

G

2

1
2

5

1

1

1

2 6

5 3

10

MST:

Num Trees: 7

CSE332, Spring 2021L27: Kruskal's Algorithm; Disjoint Sets

Kruskal’s Algorithm: Example

10

Weight Edges

1 (A,D), (C,D), (B,E), (D,E)

2 (A,B), (C,F), (A,C)

3 (E,G)

5 (D,G), (B,D)

6 (D,F)

10 (F,G)

A B

C
D

F

E

G

2

1
2

5

1

1

1

2 6

5 3

10

MST:
(A, D)
Num Trees: 6

CSE332, Spring 2021L27: Kruskal's Algorithm; Disjoint Sets

Kruskal’s Algorithm: Example

11

Weight Edges

1 (A,D), (C,D), (B,E), (D,E)

2 (A,B), (C,F), (A,C)

3 (E,G)

5 (D,G), (B,D)

6 (D,F)

10 (F,G)

A B

C
D

F

E

G

2

1
2

5

1

1

1

2 6

5 3

10

MST:
(A, D), (C, D)
Num Trees: 5

CSE332, Spring 2021L27: Kruskal's Algorithm; Disjoint Sets

Kruskal’s Algorithm: Example

12

Weight Edges

1 (A,D), (C,D), (B,E), (D,E)

2 (A,B), (C,F), (A,C)

3 (E,G)

5 (D,G), (B,D)

6 (D,F)

10 (F,G)

MST:
(A, D), (C, D), (B, E)
Num Trees: 4

A B

C
D

F

E

G

2

1
2

5

1

1

1

2 6

5 3

10

CSE332, Spring 2021L27: Kruskal's Algorithm; Disjoint Sets

Kruskal’s Algorithm: Example

13

Weight Edges

1 (A,D), (C,D), (B,E), (D,E)

2 (A,B), (C,F), (A,C)

3 (E,G)

5 (D,G), (B,D)

6 (D,F)

10 (F,G)

MST:
(A, D), (C, D), (B, E), (D, E)
Num Trees: 3

A B

C
D

F

E

G

2

1
2

5

1

1

1

2 6

5 3

10

CSE332, Spring 2021L27: Kruskal's Algorithm; Disjoint Sets

Kruskal’s Algorithm: Example

14

Weight Edges

1 (A,D), (C,D), (B,E), (D,E)

2 (A,B), (C,F), (A,C)

3 (E,G)

5 (D,G), (B,D)

6 (D,F)

10 (F,G)

MST:
(A, D), (C, D), (B, E), (D, E)
Num Trees: 3

A B

C
D

F

E

G

2

1
2

5

1

1

1

2 6

5 3

10

CSE332, Spring 2021L27: Kruskal's Algorithm; Disjoint Sets

Kruskal’s Algorithm: Example

15

Weight Edges

1 (A,D), (C,D), (B,E), (D,E)

2 (A,B), (C,F), (A,C)

3 (E,G)

5 (D,G), (B,D)

6 (D,F)

10 (F,G)

MST:
(A, D), (C, D), (B, E), (D, E), (C, F)
Num Trees: 2

A B

C
D

F

E

G

2

1
2

5

1

1

1

2 6

5 3

10

CSE332, Spring 2021L27: Kruskal's Algorithm; Disjoint Sets

Kruskal’s Algorithm: Example

16

Weight Edges

1 (A,D), (C,D), (B,E), (D,E)

2 (A,B), (C,F), (A,C)

3 (E,G)

5 (D,G), (B,D)

6 (D,F)

10 (F,G)

MST:
(A, D), (C, D), (B, E), (D, E), (C, F)
Num Trees: 2

A B

C
D

F

E

G

2

1
2

5

1

1

1

2 6

5 3

10

CSE332, Spring 2021L27: Kruskal's Algorithm; Disjoint Sets

Kruskal’s Algorithm: Example

17

MST:
(A, D), (C, D), (B, E), (D, E), (C, F), (E, G)
Num Trees: 1

Weight Edges

1 (A,D), (C,D), (B,E), (D,E)

2 (A,B), (C,F), (A,C)

3 (E,G)

5 (D,G), (B,D)

6 (D,F)

10 (F,G)

Hark, an MST!!!
Total Cost: 9

A B

C
D

F

E

G

2

1
2

5

1

1

1

2 6

5 3

10

CSE332, Spring 2021

gradescope.com/courses/256241

L27: Kruskal's Algorithm; Disjoint Sets

❖ Find an MST in this graph using Kruskal’s Algorithm:

18

Weight Edges

1 (B, C), (G, H)

2 (A,B), (B, F), (C,D), (F,G)

4 (E,G)

MST:

A B

D
C

E

F

G

2

1

2

1

2

2

4

H

CSE332, Spring 2021L27: Kruskal's Algorithm; Disjoint Sets

Kruskal’s Algorithm: Demos and Visualizations

❖ Prim’s Visualization

▪ https://www.youtube.com/watch?v=6uq0cQZOyoY

▪ Prim’s jumps around the fringe, adding edges by edge weight

❖ Kruskal’s Visualization:

▪ https://www.youtube.com/watch?v=ggLyKfBTABo

▪ Kruskal’s jumps around the graph – not just the fringe – because it
chooses edges by edge weight independent of the “tree under
construction”

❖ Conceptual demo:

▪ https://docs.google.com/presentation/d/1RhRSYs9Jbc335P24p7vR-
6PLXZUl-
1EmeDtqieL9ad8/present?ueb=true&slide=id.g375bbf9ace_0_645

19

https://www.youtube.com/watch?v=6uq0cQZOyoY
https://www.youtube.com/watch?v=ggLyKfBTABo
https://docs.google.com/presentation/d/1RhRSYs9Jbc335P24p7vR-6PLXZUl-1EmeDtqieL9ad8/present?ueb=true&slide=id.g375bbf9ace_0_645

CSE332, Spring 2021L27: Kruskal's Algorithm; Disjoint Sets

Lecture Outline

❖ Disjoint Sets ADT (aka Union/Find ADT)

❖ Kruskal’s Algorithm, for realz

▪ Review and Example

▪ Correctness Proof

❖ Up-Trees Data Structure

▪ Representation

▪ Optimization: Weighted Union

▪ Optimization: Path Compression

20

CSE332, Spring 2021L27: Kruskal's Algorithm; Disjoint Sets

Kruskal’s Algorithm: Correctness

❖ Kruskal’s algorithm is clever, simple, and efficient

▪ But does it generate a minimum spanning tree?

❖ First: it generates a spanning tree

▪ To show treeness, need to show lack of cycles

▪ To show that it’s a single tree, need to show it’s connected

▪ To show spanningness, need to show that all vertices are included

❖ Second: there is no spanning tree with lower total cost …

21

CSE332, Spring 2021L27: Kruskal's Algorithm; Disjoint Sets

Kruskal’s Output is a Spanning Tree (1 of 2)

❖ To show treeness, need to show lack of cycles

▪ By definition: Kruskal’s doesn’t add an edge if it creates a cycle

❖ To show that it’s a single tree, need to
show it’s connected

▪ By contradiction: suppose Kruskal’s
generates >1 tree. Since the original graph
G was connected, there exists an edge in G
that connects Kruskal’s trees. Adding this edge
would not create a cycle, so Kruskal’s would have
included it. CONTRADICTION

22

A B

C
D

F

E

G

2

1
2 5

1
1

1

2 6
5 3

10

CSE332, Spring 2021L27: Kruskal's Algorithm; Disjoint Sets

Kruskal’s Output is a Spanning Tree (2 of 2)

❖ To show spanningness, need to show that all vertices are
included

▪ By contradiction: suppose Kruskal’s tree T
does not include any edges adjacent to some
vertex v. Since the original graph G was
connected, there exists at least one edge
in G that is adjacent to v. The minimum of
these edges would not have created a cycle
with T, so Kruskal’s would have included it.
CONTRADICTION

23

A B

C
D

F

E

G

2

1
2 5

1
1

1

2 6
5 3

10

CSE332, Spring 2021L27: Kruskal's Algorithm; Disjoint Sets

Kruskal’s Optimality: Inductive Proof Setup

❖ Let F (stands for “forest”) be the set of edges Kruskal has
added at some point during its execution.

❖ Claim: F is a subset of one or more MSTs for the graph

▪ (Therefore, once |F|=|V|-1, we have a single MST)

❖ Proof: By induction on |F|

▪ Base case: |F|=0. The empty set is a subset of all MSTs

▪ Inductive case: |F|=k+1. By induction, before adding the (k+1)th edge
(call it e), there was some MST T such that F-{e}  T …

24

CSE332, Spring 2021L27: Kruskal's Algorithm; Disjoint Sets

Staying a Subset of Some MST

❖ Claim: F is a subset of one or more
MSTs for the graph

❖ Things we know so far:

▪ F-{e}  T

❖ Proof: Two disjoint cases:

A. If {e}  T, then F  T and proof is done

B. Else, e forms a cycle with some simple path (call it p) in T

• Must be a cycle since T is a spanning tree

25

Case A

Case B

T is “the real” MST
F is Kruskal’s output at the k+1th step
e is the the k+1th edge Kruskal’s will add

CSE332, Spring 2021L27: Kruskal's Algorithm; Disjoint Sets

Staying a Subset of Some MST

❖ Claim: F is a subset of one or more
MSTs for the graph

❖ Things we know so far:

▪ F-{e}  T

▪ e forms a cycle with T

❖ New claim: There is an edge e2 on p such that e2 is not in F

▪ Otherwise, Kruskal’s would not have added e

26

e

e2

T is “the real” MST
F is Kruskal’s output at the k+1th step
e is the “wrong" edge Kruskal’s will add
e2 is an edge in T (but not F) along a cycle

CSE332, Spring 2021L27: Kruskal's Algorithm; Disjoint Sets

Staying a Subset of Some MST

❖ Claim: F is a subset of one or more
MSTs for the graph

❖ Things we know so far:

▪ F-{e}  T

▪ e forms a cycle with T

▪ e2 (on p) is not in F

❖ New claim: e2.weight == e.weight

▪ If e2.weight > e.weight, then T is not an MST

• T-{e2}+{e} is a spanning tree with lower cost. Contradiction!!

▪ If e2.weight < e.weight, then Kruskal’s would have already
considered e2

• Would have added it since F-{e} has no cycles (T has no cycles and F-{e}  T)

• But e2 is not in F. Contradiction!! 27

e

e2

T is “the real” MST
F is Kruskal’s output at the k+1th step
e is the “wrong" edge Kruskal’s will add
e2 is the “right” edge Kruskal’s missed/will miss

CSE332, Spring 2021L27: Kruskal's Algorithm; Disjoint Sets

Staying a Subset of Some MST

❖ Claim: F is a subset of one or more
MSTs for the graph

❖ Things we know so far:

▪ F-{e}  T

▪ e forms a cycle with T

▪ e2 (on p) is not in F

▪ e2.weight == e.weight

❖ New claim: T-{e2}+{e} is (also) an MST

▪ It’s a spanning tree because p-{e2}+{e} connects the same nodes as p

▪ It’s minimal because its cost equals cost of T, an MST

❖ Since F  T-{e2}+{e}, F is a subset of one or more MSTs
28

Done!

e

e2

T is “the real” MST
F is Kruskal’s output at the k+1th step
e is the “wrong" edge Kruskal’s will add
e2 is the “right” edge Kruskal’s missed/will miss

CSE332, Spring 2021L27: Kruskal's Algorithm; Disjoint Sets

Lecture Outline

❖ Disjoint Sets ADT (aka Union/Find ADT)

❖ Kruskal’s Algorithm, for realz

▪ Review and Example

▪ Correctness Proof

❖ Up-Trees Data Structure

▪ Representation

▪ Optimization: Weighted Union

▪ Optimization: Path Compression

29

CSE332, Spring 2021L27: Kruskal's Algorithm; Disjoint Sets

Implementing the Disjoint Sets ADT (1 of 2)

❖ If we have n elements, what is the total cost of
m find()s +  n-1 union()s?

▪ Can we have >n union()s?

❖ Goal: O(m+n) total for these operations

▪ i.e. O(1) amortized for all operations!

❖ Is our goal possible?

▪ Can get O(1) worst-case union()

▪ Would be nice if we could also get O(1) worst-case find(), but…

▪ Known result: both find() and union() can’t have worst-case O(1)

30

CSE332, Spring 2021L27: Kruskal's Algorithm; Disjoint Sets

Implementing the Disjoint Sets ADT (2 of 2)

❖ Observation:

▪ Trees let us find many elements given a single root

❖ Idea:

▪ If we reverse the pointers (ie, point up from child to parent), we can
find a single root from many elements

❖ Decision:

▪ One up-tree for each set

▪ The ID of the set is (hash of) the tree root

▪ (as before, we will use integer elements for in-lecture examples)

31

CSE332, Spring 2021L27: Kruskal's Algorithm; Disjoint Sets

Up-Trees Data Structure for Disjoint Sets ADT

❖ Initial State:

❖ After several union()s:

❖ Roots are the IDs for each set:

32

1 2 3 4 5 6 7

31

2 45

6

7

CSE332, Spring 2021L27: Kruskal's Algorithm; Disjoint Sets

Up-Trees Find

❖ find(x): follow x to the root and return the root ID

▪ Eg: find(6) = 7

33

31

2 45

6

7

CSE332, Spring 2021L27: Kruskal's Algorithm; Disjoint Sets

Up-Trees Union

❖ union(x, y): assuming x and y are roots, point y to x

▪ If x or y are not roots, can require caller to call find() first or do a
find() internally

▪ Eg: union(1, 7) vs union(2, 5)

34

31

2

45

6

7

31

2 45

6

7

CSE332, Spring 2021L27: Kruskal's Algorithm; Disjoint Sets

Up-Trees Representation (1 of 2)

❖ Up-trees can be represented as an array of indices, where the
element is the index of the parent

▪ up[x] = 0 means x is a root

▪ Note: in these slides, array is 1-indexed; 0-indexed is also fine

35

int[] up 0 1 0 7 7 5 0

1 2 3 4 5 6 7

31

2 45

6

7

CSE332, Spring 2021L27: Kruskal's Algorithm; Disjoint Sets

Up-Trees Representation (2 of 2)

❖ Up-trees can be represented as an array of indices, where the
element is the index of the parent

▪ Can contain non-integer values if we use a hash table to map values
to indices

36

Aqua 1

Bleu de France 2

Cerulean 3

Denim 4

Everton 5

Fluorescent 6

Glaucous 7

CeruleanAqua

Bleu de
France

DenimEverton

Fluorescent

Glaucous

int[] up 0 1 0 7 7 5 0

1 2 3 4 5 6 7

CSE332, Spring 2021L27: Kruskal's Algorithm; Disjoint Sets

Up-Trees Implementation

❖ Worst-case runtime for union():

❖ Worst-case runtime for find():

❖ Total runtime for n-1 union()s and m find()s:

37

int find(int x) {

while (up[x] != 0) {

x = up[x];

}

return x;

}

void union(int x, int y) {

up[y] = x;

}

Remember: we can’t have ≥n calls to union()

CSE332, Spring 2021

gradescope.com/courses/256241

L27: Kruskal's Algorithm; Disjoint Sets

❖ What is the runtime for …

▪ union(), worst-case

▪ find(), worst-case

▪ n-1 union()s + m find()s

A. Θ(1) / O(1) / O(n + m)

B. Θ(1) / O(h) / O(n + mh)

▪ h is the height of the up-tree

C. Θ(1) / O(n) / O(n2)

D. Θ(1) / O(n) / O(n + mn)

E. Θ(1) / O(n) / O(n + m2)

38

int find(int x) {

while (up[x] != 0) {

x = up[x];

}

return x;

}

void union(int x, int y) {

up[y] = x;

}

CSE332, Spring 2021L27: Kruskal's Algorithm; Disjoint Sets

Worst-case Union

union(A, B)

union(B, C)

union(C, D)

union(D, E)

union(E, F)

🤔 If only I could keep these trees (semi-?)balanced

B

C

A

E

F

D

39

CSE332, Spring 2021L27: Kruskal's Algorithm; Disjoint Sets

Lecture Outline

❖ Disjoint Sets ADT (aka Union/Find ADT)

❖ Kruskal’s Algorithm, for realz

▪ Review and Example

▪ Correctness Proof

❖ Up-Trees Data Structure

▪ Representation

▪ Optimization: Weighted Union

▪ Optimization: Path Compression

40

CSE332, Spring 2021L27: Kruskal's Algorithm; Disjoint Sets

Weighted Union (1 of 3)

union(A, B)

union(A, C)

union(A, D)

…

❖ Our naïve union() always picked the
same argument (the second one) to
become the child in the unioned result

CA

B EF

G

D

41

CSE332, Spring 2021L27: Kruskal's Algorithm; Disjoint Sets

❖ Our naïve union() always picked the
same argument (the second one) to
become the child in the unioned result

❖ Let’s make it smarter:

▪ Pick the smaller tree (ie, tree with fewer
nodes) to be the new child

• i.e., “weight” = “num nodes”

▪ Add the new child to the heavier-tree’s
root

Weighted Union (2 of 3)

union(A, B)

union(A, C)

union(A, D)

…

EF

G

D

42

C

A

B

?

CSE332, Spring 2021L27: Kruskal's Algorithm; Disjoint Sets

❖ Our naïve union() always picked the
same argument (the second one) to
become the child in the unioned result

❖ Weighted union:

▪ Pick the smaller tree (ie, tree with fewer
nodes) to be the new child

• i.e., “weight” = “num nodes”

▪ Add the new child to the heavier-tree’s
root

Weighted Union (3 of 3)

union(A, B)

union(A, C)

union(A, D)

…

43

EF

G

D

C

A

B

CSE332, Spring 2021L27: Kruskal's Algorithm; Disjoint Sets

Weighted Union: Representation

❖ Need to store number of nodes (or “weight”) of each tree

❖ Instead of ‘0’, we can store the root’s weight instead!

▪ Use negative values to indicate they’re not indices

▪ See Weiss, 8.4

31

2 45

6

7

int[] up -2 1 -1 7 7 5 -4

1 2 3 4 5 6 7

44

CSE332, Spring 2021L27: Kruskal's Algorithm; Disjoint Sets

Weighted Union: Implementation

weightedUnion(int x, int y) {

wx = weight[x];

wy = weight[y];

if (wx < wy) {

up[x] = y;

weight[y] = wx + wy;

} else {

up[y] = x;

weight[x] = wx +wy;

}

}

void union(int x, int y) {

up[y] = x;

}

union()’s runtime is still O(1)!

Does this (slightly) added complexity help us
balance the up-trees and improve find()?

45

CSE332, Spring 2021L27: Kruskal's Algorithm; Disjoint Sets

Weighted Union: Performance

❖ Consider the worst case: tree height grows as fast as possible

▪ ie, up-tree and up-subtrees are “spindly”
N H

1 0

1

46

CSE332, Spring 2021L27: Kruskal's Algorithm; Disjoint Sets

1

2

Weighted Union: Performance

❖ Consider the worst case: tree height grows as fast as possible

▪ ie, up-tree and up-subtrees are “spindly”
N H

1 0

2 1

47

CSE332, Spring 2021L27: Kruskal's Algorithm; Disjoint Sets

Weighted Union: Performance

❖ Consider the worst case: tree height grows as fast as possible

▪ ie, up-tree and up-subtrees are “spindly”
N H

1 0

2 1

4 ?
3

4

?

48

1

2

CSE332, Spring 2021L27: Kruskal's Algorithm; Disjoint Sets

Weighted Union: Performance

❖ Consider the worst case: tree height grows as fast as possible

N H

1 0

2 1

4 2
1

2 3

4

49

CSE332, Spring 2021L27: Kruskal's Algorithm; Disjoint Sets

Weighted Union: Performance

❖ Consider the worst case: tree height grows as fast as possible

▪ ie, up-tree and up-subtrees are “spindly”

1

2 3

4

N H

1 0

2 1

4 2

8 ?

5

6 7

8

?

50

CSE332, Spring 2021L27: Kruskal's Algorithm; Disjoint Sets

Weighted Union: Performance

❖ Consider the worst case: tree height grows as fast as possible

▪ ie, up-tree and up-subtrees are “spindly”

❖ Worst-case height and worst-case find() is Θ(log N)

N H

1 0

2 1

4 2

8 3

2n n

1

2 3

4

5

6 7

8
51

CSE332, Spring 2021L27: Kruskal's Algorithm; Disjoint Sets

Weighted Union Performance: Proof

❖ An up-tree with height h using weighted union has weight at
least 2h

❖ Proof by induction

▪ Base-case: h = 0. The up-tree has one node and 20 = 1

▪ Inductive step: Assume true for all h’ < h

52

Minimum weight up-tree of
height h formed by

weighted unions

We know:
W(T1) ≥ 2h-1

W(T2) ≥ 2h-1

W(T1) ≥W(T2)

Induction
hypothesis

Since W(T) = W(T1) + W(T2),
we know that
W(T) ≥W(T1) + W(T2)

= 2h-1 + 2h-1

= 2h

Therefore W(T) ≥ 2h

h-1
T1 T2

T

h-1

Definition of
weighted union

CSE332, Spring 2021

gradescope.com/courses/256241

L27: Kruskal's Algorithm; Disjoint Sets

❖ What is the runtime for …

▪ weighted union(), worst-case

▪ find(), worst-case

▪ n-1 union()s + m find()s

A. Θ(1) / Θ(1) / O(n + m)

B. Θ(1) / Θ(n) / O(n + m2)

C. Θ(1) / Θ(log n) / O(n + m log n)

D. Θ(1) / Θ(log n) / O(n + m2)

53

int find(int x) {

while (up[x] > 0) {

x = up[x];

}

return x;

}

weightedUnion(int x, int y) {

wx = weight[x];

wy = weight[y];

if (wx < wy) {

up[x] = y;

weight[y] = wx + wy;

} else {

up[y] = x;

weight[x] = wx +wy;

}

}

CSE332, Spring 2021L27: Kruskal's Algorithm; Disjoint Sets

Why Weights Instead of Heights?

❖ We used the number of items in a tree to decide upon the root

❖ Why not use the height of the tree?

▪ Heighted Union’s runtime is asymptotically the same: Θ(log N)

• Proof is left as an exercise to the reader ;)

▪ Easier to track weights than heights, and heighted union doesn’t
combine very well with the next optimization technique for find()

1 2

0

4 53

6

8

9

7

+

1 2

0

4 653

8

9

7

54

CSE332, Spring 2021L27: Kruskal's Algorithm; Disjoint Sets

Lecture Outline

❖ Disjoint Sets ADT (aka Union/Find ADT)

❖ Kruskal’s Algorithm, for realz

▪ Review and Example

▪ Correctness Proof

❖ Up-Trees Data Structure

▪ Representation

▪ Optimization: Weighted Union

▪ Optimization: Path Compression

55

CSE332, Spring 2021L27: Kruskal's Algorithm; Disjoint Sets

Modifying Data Structures To Preserve Invariants

❖ Thus far, the modifications we’ve studied are designed to
preserve invariants (aka “repair the data structure”)

▪ Tree rotations: preserve AVL tree balance

▪ Promoting keys / splitting leaves: preserve B-tree node sizes (eg,
L+1 keys stored in a leaf node)

❖ Notably, the modifications don’t improve runtime between
identical method calls

▪ If avl.find(x) takes 2 µs, we expect future calls to take ~2 µs

▪ If we call avl.find(x) m times, the total runtime should be ~2m µs

56

CSE332, Spring 2021L27: Kruskal's Algorithm; Disjoint Sets

Modifying Data Structures for Future Gains

❖ Path compression is entirely different: we are modifying the
up-tree to improve future performance

▪ If uptree.find(x) takes 2 µs, we expect future calls to take <2 µs

▪ If we call uptree.find(x) m times, the total runtime should be <2m µs

• … and possibly even << 2m µs

57

CSE332, Spring 2021L27: Kruskal's Algorithm; Disjoint Sets

Path Compression: Idea

❖ Recall the worst-case structure if we use weighted union:

❖ Idea: When we find(8), move all visited nodes under the root

▪ Additional cost is insignificant (same order of growth) , so run path
compression on every find()

1

2 3

4

5

6 7

8

58

CSE332, Spring 2021L27: Kruskal's Algorithm; Disjoint Sets

Path Compression: Example

❖ Recall the worst-case structure if we use weighted union

❖ Idea: When we find(8), move all visited nodes under the root

▪ Additional cost is insignificant (same order of growth), so run path
compression on every find()

▪ Doesn’t meaningfully change runtime for this invocation of find(8),
but subsequent find(8)s (and subsequent find(7)s and find(5)s and …)
will be faster!

1

2 3

4

5

6

7 8

59

CSE332, Spring 2021L27: Kruskal's Algorithm; Disjoint Sets

Path Compression: Details and Runtime

❖ With “enough” find()s, we end up with a very shallow tree:

❖ How much is “enough”? Probably m>n

1

2 3 4 5 6 7 8

60

CSE332, Spring 2021L27: Kruskal's Algorithm; Disjoint Sets

Path Compression: Implementation

61

int pathCompressionFind(int x) {

while (up[x] > 0) {

x = up[x];

}

int root = x;

// Change the parent for all

// nodes along this path

while (up[x] > 0) {

x = up[x];

up[x] = root;

}

return root;

}

int find(int x) {

while (up[x] != 0) {

x = up[x];

}

return x;

}

find()’s worst-case runtime is still O(log n)!

Does this (slightly) added complexity help us make the
up-trees shallower and improve sequences of find()?

CSE332, Spring 2021L27: Kruskal's Algorithm; Disjoint Sets

Path Compression: Runtime

❖ A sequence of m find()s on n elements has total O(m log*n) time

▪ Assumes weighted union and path compression

▪ See Weiss for proof

❖ log*n is really cheap!

▪ log*n is the “iterated log”: the number of times
you need to apply log to n before the result is <=1

▪ For all practical purposes, log*n < 5 🤯

▪ So O(m  5) for m operations!

❖ So find() is amortized O(1)

▪ And union() is still worst case O(1)

n log* n

1 0

2 1

4 2

16 3

65536 4

265536 5

216

Number of atoms in the
known universe is 2256ish 62

CSE332, Spring 2021L27: Kruskal's Algorithm; Disjoint Sets

Interlude: A Really Slow Function

❖ Ackermann’s function is a really big function A(x, y) with
inverse (x, y) which is really small

❖  shows up in:
▪ Computation Geometry (surface complexity)

▪ Combinatorics of sequences

❖ How fast does (x, y) grow?

▪ Even slower than iterated log!

▪ For all practical purposes, (x, y) < 4

63

CSE332, Spring 2021L27: Kruskal's Algorithm; Disjoint Sets

Path Compression: Tighter Runtime

❖ A sequence of m union()s + find()s on a set of n elements has
worst-case total O(m  (m, n)) time

▪ Assumes weighted union and path compression

▪ Proved by Robert Tarjan in 1984

• (Tarjan is also known for Fibonacci heaps and splay trees)

▪ Complex analysis, but inverse-Ackermann’s is a tighter bound than
iterated-log

❖ So find() is still amortized O(1)

▪ Since O(m  4) for m operations!

▪ And union() is still worst case O(1)

64

