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❖ How many times do you need to take the log of 
20,035,299,304,068,464,649,790,723,515,602,557,504,478,254,755,69
7,514,192,650,169,737 to get to a value <= 1?

▪ Hint: that value is equal to 265536, and 65536 = 216

❖ Bonus: find an MST using Prim’s Algorithm on this graph:
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Lecture Outline

❖ Disjoint Sets ADT  (aka Union/Find ADT)

❖ Kruskal’s Algorithm, for realz

▪ Review and Example

▪ Correctness Proof

❖ Up-Trees Data Structure

▪ Representation

▪ Optimization: Weighted Union

▪ Optimization: Path Compression
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Disjoint Sets ADT (1 of 2)

❖ The Disjoint Sets ADT has two 
operations:

▪ find(e): gets the id of the element’s set

▪ union(e1, e2): combines the set 
containing e1 with the set containing e2

❖ Example: ability to travel to drive to a 
country

▪ union(france, germany)

▪ union(spain, france)

▪ find(spain) == find(germany)?

▪ union(england, france)
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Disjoint Sets ADT. A 

collection of 

elements and sets 

of those elements.

• An element can only 

belong to a single set.

• Each set is identified by a 

unique id.

• Sets can be combined/ 

connected/ unioned.
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Disjoint Sets ADT (2 of 2)

❖ Applications include percolation theory (computational chemistry) and 
…. Kruskal’s algorithm

❖ Simplifying assumptions

▪ We can map elements to indices quickly

▪ We know all the items in advance; they’re all disconnected initially

❖ Later this lecture, we’ll see:

▪ We can do union() in constant time

▪ We can get find() to be amortized constant time 

• Worst case O(log n) for an individual find operation
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Lecture Outline

❖ Disjoint Sets ADT  (aka Union/Find ADT)

❖ Kruskal’s Algorithm, for realz

▪ Review and Example

▪ Correctness Proof

❖ Up-Trees Data Structure

▪ Representation

▪ Optimization: Weighted Union

▪ Optimization: Path Compression
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Kruskal’s Algorithm

❖ Kruskal’s thinks edge by edge

▪ Eg, start from lightest edge and consider by increasing weight

▪ Compare against Dijkstra’s and Prim’s, which think vertex by vertex

❖ Outline:

▪ Start with a forest of |V| MSTs

▪ Successively connect them ((ie, eliminate a tree) by adding edges

▪ Do not add an edge if it creates a cycle
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Kruskal’s Algorithm: Pseudocode
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|E| deleteMin()s

2|E| find()s

|V| union()s

Runtime: |E|(log|E| + 2log|V| + 1) + |V|(1 + 1 + 1) ∈ O(|E|log|V| + |V|log|V|)
However, since we know E ∈ O(|V|2), runtime ∈ O(|E|log|V|)

kruskals(Graph g) {

mst = {}

forests = buildDisjointSets(g.vertices)

numforests = g.vertices

edges = buildHeap(g.edges)

while (numForests 1):

e = edges.deleteMin()

u_id = forests.find(e.u)

v_id = forests.find(e.v)

if (u_id != v_id):

mst.addEdge(e)

forests.union(e.u, e.v)

numforests--

}
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Kruskal’s Algorithm: Example
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Weight Edges

1 (A,D), (C,D), (B,E), (D,E)

2 (A,B), (C,F), (A,C)

3 (E,G)

5 (D,G), (B,D)

6 (D,F)

10 (F,G)
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MST:

Num Trees: 7
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Kruskal’s Algorithm: Example
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Weight Edges

1 (A,D), (C,D), (B,E), (D,E)

2 (A,B), (C,F), (A,C)

3 (E,G)

5 (D,G), (B,D)
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10 (F,G)
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MST:
(A, D)
Num Trees: 6
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Kruskal’s Algorithm: Example
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Weight Edges

1 (A,D), (C,D), (B,E), (D,E)

2 (A,B), (C,F), (A,C)

3 (E,G)

5 (D,G), (B,D)

6 (D,F)

10 (F,G)
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MST:
(A, D), (C, D)
Num Trees: 5
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Kruskal’s Algorithm: Example
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Weight Edges

1 (A,D), (C,D), (B,E), (D,E)

2 (A,B), (C,F), (A,C)

3 (E,G)

5 (D,G), (B,D)

6 (D,F)

10 (F,G)

MST:
(A, D), (C, D), (B, E)
Num Trees: 4

A B

C
D

F

E

G

2

1
2

5

1

1

1

2 6

5 3

10



CSE332, Spring 2021L27: Kruskal's Algorithm; Disjoint Sets

Kruskal’s Algorithm: Example
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Weight Edges

1 (A,D), (C,D), (B,E), (D,E)

2 (A,B), (C,F), (A,C)

3 (E,G)

5 (D,G), (B,D)

6 (D,F)

10 (F,G)

MST:
(A, D), (C, D), (B, E), (D, E)
Num Trees: 3
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Kruskal’s Algorithm: Example
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Weight Edges

1 (A,D), (C,D), (B,E), (D,E)

2 (A,B), (C,F), (A,C)

3 (E,G)

5 (D,G), (B,D)

6 (D,F)

10 (F,G)

MST:
(A, D), (C, D), (B, E), (D, E)
Num Trees: 3
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Kruskal’s Algorithm: Example
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Weight Edges

1 (A,D), (C,D), (B,E), (D,E)

2 (A,B), (C,F), (A,C)

3 (E,G)

5 (D,G), (B,D)

6 (D,F)

10 (F,G)

MST:
(A, D), (C, D), (B, E), (D, E), (C, F)
Num Trees: 2
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Kruskal’s Algorithm: Example
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Weight Edges

1 (A,D), (C,D), (B,E), (D,E)

2 (A,B), (C,F), (A,C)

3 (E,G)

5 (D,G), (B,D)

6 (D,F)

10 (F,G)

MST:
(A, D), (C, D), (B, E), (D, E), (C, F)
Num Trees: 2
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Kruskal’s Algorithm: Example
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MST:
(A, D), (C, D), (B, E), (D, E), (C, F), (E, G)
Num Trees: 1

Weight Edges

1 (A,D), (C,D), (B,E), (D,E)

2 (A,B), (C,F), (A,C)

3 (E,G)

5 (D,G), (B,D)

6 (D,F)

10 (F,G)

Hark, an MST!!!
Total Cost: 9 
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❖ Find an MST in this graph using Kruskal’s Algorithm:
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Weight Edges

1 (B, C), (G, H)

2 (A,B), (B, F), (C,D), (F,G)

4 (E,G)
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Kruskal’s Algorithm: Demos and Visualizations

❖ Prim’s Visualization

▪ https://www.youtube.com/watch?v=6uq0cQZOyoY

▪ Prim’s jumps around the fringe, adding edges by edge weight

❖ Kruskal’s Visualization:

▪ https://www.youtube.com/watch?v=ggLyKfBTABo

▪ Kruskal’s jumps around the graph – not just the fringe – because it 
chooses edges by edge weight independent of the “tree under 
construction”

❖ Conceptual demo:

▪ https://docs.google.com/presentation/d/1RhRSYs9Jbc335P24p7vR-
6PLXZUl-
1EmeDtqieL9ad8/present?ueb=true&slide=id.g375bbf9ace_0_645
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https://www.youtube.com/watch?v=6uq0cQZOyoY
https://www.youtube.com/watch?v=ggLyKfBTABo
https://docs.google.com/presentation/d/1RhRSYs9Jbc335P24p7vR-6PLXZUl-1EmeDtqieL9ad8/present?ueb=true&slide=id.g375bbf9ace_0_645
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Lecture Outline

❖ Disjoint Sets ADT  (aka Union/Find ADT)

❖ Kruskal’s Algorithm, for realz

▪ Review and Example

▪ Correctness Proof

❖ Up-Trees Data Structure

▪ Representation

▪ Optimization: Weighted Union

▪ Optimization: Path Compression
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Kruskal’s Algorithm: Correctness

❖ Kruskal’s algorithm is clever, simple, and efficient

▪ But does it generate a minimum spanning tree?

❖ First: it generates a spanning tree

▪ To show treeness, need to show lack of cycles

▪ To show that it’s a single tree, need to show it’s connected

▪ To show spanningness, need to show that all vertices are included

❖ Second: there is no spanning tree with lower total cost …

21
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Kruskal’s Output is a Spanning Tree (1 of 2)

❖ To show treeness, need to show lack of cycles

▪ By definition: Kruskal’s doesn’t add an edge if it creates a cycle

❖ To show that it’s a single tree, need to
show it’s connected

▪ By contradiction: suppose Kruskal’s
generates >1 tree.  Since the original graph
G was connected, there exists an edge in G
that connects Kruskal’s trees.  Adding this edge
would not create a cycle, so Kruskal’s would have
included it.  CONTRADICTION
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Kruskal’s Output is a Spanning Tree (2 of 2)

❖ To show spanningness, need to show that all vertices are 
included

▪ By contradiction: suppose Kruskal’s tree T
does not include any edges adjacent to some
vertex v.  Since the original graph G was
connected, there exists at least one edge
in G that is adjacent to v.  The minimum of
these edges would not have created a cycle
with T, so Kruskal’s would have included it.
CONTRADICTION
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Kruskal’s Optimality: Inductive Proof Setup

❖ Let F (stands for “forest”) be the set of edges Kruskal has 
added at some point during its execution.

❖ Claim: F is a subset of one or more MSTs for the graph

▪ (Therefore, once |F|=|V|-1, we have a single MST)

❖ Proof: By induction on |F|

▪ Base case: |F|=0.  The empty set is a subset of all MSTs

▪ Inductive case: |F|=k+1.  By induction, before adding the (k+1)th edge 
(call it e), there was some MST T such that F-{e}  T …

24
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Staying a Subset of Some MST

❖ Claim: F is a subset of one or more
MSTs for the graph

❖ Things we know so far:

▪ F-{e}  T

❖ Proof: Two disjoint cases: 

A. If {e}  T, then F  T and proof is done

B. Else, e forms a cycle with some simple path (call it p) in T

• Must be a cycle since T is a spanning tree

25

Case A

Case B

T is “the real” MST
F is Kruskal’s output at the k+1th step
e is the the k+1th edge Kruskal’s will add
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Staying a Subset of Some MST

❖ Claim: F is a subset of one or more
MSTs for the graph

❖ Things we know so far:

▪ F-{e}  T

▪ e forms a cycle with T

❖ New claim: There is an edge e2 on p such that e2 is not in F

▪ Otherwise, Kruskal’s would not have added e

26

e

e2

T is “the real” MST
F is Kruskal’s output at the k+1th step
e is the “wrong" edge Kruskal’s will add
e2 is an edge in T (but not F) along a cycle
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Staying a Subset of Some MST

❖ Claim: F is a subset of one or more
MSTs for the graph

❖ Things we know so far:

▪ F-{e}  T

▪ e forms a cycle with T

▪ e2 (on p) is not in F

❖ New claim: e2.weight == e.weight

▪ If e2.weight > e.weight, then T is not an MST

• T-{e2}+{e} is a spanning tree with lower cost.  Contradiction!!

▪ If e2.weight < e.weight, then Kruskal’s would have already 
considered e2

• Would have added it since F-{e} has no cycles (T has no cycles and F-{e}  T)

• But e2 is not in F.  Contradiction!! 27

e

e2

T is “the real” MST
F is Kruskal’s output at the k+1th step
e is the “wrong" edge Kruskal’s will add
e2 is the “right” edge Kruskal’s missed/will miss
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Staying a Subset of Some MST

❖ Claim: F is a subset of one or more
MSTs for the graph

❖ Things we know so far:

▪ F-{e}  T

▪ e forms a cycle with T

▪ e2 (on p) is not in F

▪ e2.weight == e.weight

❖ New claim:  T-{e2}+{e} is (also) an MST

▪ It’s a spanning tree because p-{e2}+{e} connects the same nodes as p

▪ It’s minimal because its cost equals cost of T, an MST

❖ Since F  T-{e2}+{e}, F is a subset of one or more MSTs 
28

Done!

e

e2

T is “the real” MST
F is Kruskal’s output at the k+1th step
e is the “wrong" edge Kruskal’s will add
e2 is the “right” edge Kruskal’s missed/will miss
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Lecture Outline

❖ Disjoint Sets ADT  (aka Union/Find ADT)

❖ Kruskal’s Algorithm, for realz

▪ Review and Example

▪ Correctness Proof

❖ Up-Trees Data Structure

▪ Representation

▪ Optimization: Weighted Union

▪ Optimization: Path Compression
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Implementing the Disjoint Sets ADT (1 of 2)

❖ If we have n elements, what is the total cost of
m find()s +  n-1 union()s?

▪ Can we have >n union()s?

❖ Goal: O(m+n) total for these operations

▪ i.e. O(1) amortized for all operations!

❖ Is our goal possible?

▪ Can get O(1) worst-case union()

▪ Would be nice if we could also get O(1) worst-case find(), but…

▪ Known result: both find() and union() can’t have worst-case O(1)

30
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Implementing the Disjoint Sets ADT (2 of 2)

❖ Observation:

▪ Trees let us find many elements given a single root

❖ Idea:

▪ If we reverse the pointers (ie, point up from child to parent), we can 
find a single root from many elements

❖ Decision:

▪ One up-tree for each set

▪ The ID of the set is (hash of) the tree root

▪ (as before, we will use integer elements for in-lecture examples)
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Up-Trees Data Structure for Disjoint Sets ADT

❖ Initial State:

❖ After several union()s:

❖ Roots are the IDs for each set:

32

1 2 3 4 5 6 7
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Up-Trees Find

❖ find(x): follow x to the root and return the root ID

▪ Eg: find(6) = 7

33
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Up-Trees Union

❖ union(x, y): assuming x and y are roots, point y to x

▪ If x or y are not roots, can require caller to call find() first or do a 
find() internally

▪ Eg: union(1, 7) vs union(2, 5)
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Up-Trees Representation (1 of 2)

❖ Up-trees can be represented as an array of indices, where the 
element is the index of the parent

▪ up[x] = 0 means x is a root

▪ Note: in these slides, array is 1-indexed; 0-indexed is also fine

35

int[] up 0 1 0 7 7 5 0

1 2 3 4 5 6 7
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Up-Trees Representation (2 of 2)

❖ Up-trees can be represented as an array of indices, where the 
element is the index of the parent

▪ Can contain non-integer values if we use a hash table to map values 
to indices

36

Aqua 1

Bleu de France 2

Cerulean 3

Denim 4

Everton 5

Fluorescent 6

Glaucous 7

CeruleanAqua

Bleu de
France

DenimEverton

Fluorescent

Glaucous

int[] up 0 1 0 7 7 5 0

1 2 3 4 5 6 7
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Up-Trees Implementation

❖ Worst-case runtime for union():

❖ Worst-case runtime for find():

❖ Total runtime for n-1 union()s and m find()s:

37

int find(int x) {

while (up[x] != 0) {

x = up[x];

}

return x;

}

void union(int x, int y) {

up[y] = x;

}

Remember: we can’t have ≥n calls to union()



CSE332, Spring 2021

gradescope.com/courses/256241

L27: Kruskal's Algorithm; Disjoint Sets

❖ What is the runtime for …

▪ union(), worst-case

▪ find(), worst-case

▪ n-1 union()s + m find()s

A. Θ(1) / O(1) / O(n + m)

B. Θ(1) / O(h) / O(n + mh)

▪ h is the height of the up-tree

C. Θ(1) / O(n) / O(n2)

D. Θ(1) / O(n) / O(n + mn)

E. Θ(1) / O(n) / O(n + m2)

38

int find(int x) {

while (up[x] != 0) {

x = up[x];

}

return x;

}

void union(int x, int y) {

up[y] = x;

}
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Worst-case Union

union(A, B)

union(B, C)

union(C, D)

union(D, E)

union(E, F)

🤔 If only I could keep these trees (semi-?)balanced

B

C

A

E

F

D
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Lecture Outline

❖ Disjoint Sets ADT  (aka Union/Find ADT)

❖ Kruskal’s Algorithm, for realz

▪ Review and Example

▪ Correctness Proof

❖ Up-Trees Data Structure

▪ Representation

▪ Optimization: Weighted Union

▪ Optimization: Path Compression

40
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Weighted Union (1 of 3)

union(A, B)

union(A, C)

union(A, D)

…

❖ Our naïve union() always picked the 
same argument (the second one) to 
become the child in the unioned result

CA

B EF

G

D
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❖ Our naïve union() always picked the 
same argument (the second one) to 
become the child in the unioned result

❖ Let’s make it smarter:

▪ Pick the smaller tree (ie, tree with fewer 
nodes) to be the new child

• i.e., “weight” = “num nodes”

▪ Add the new child to the heavier-tree’s 
root

Weighted Union (2 of 3)

union(A, B)

union(A, C)

union(A, D)

…

EF

G

D

42
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❖ Our naïve union() always picked the 
same argument (the second one) to 
become the child in the unioned result

❖ Weighted union:

▪ Pick the smaller tree (ie, tree with fewer 
nodes) to be the new child

• i.e., “weight” = “num nodes”

▪ Add the new child to the heavier-tree’s 
root

Weighted Union (3 of 3)

union(A, B)

union(A, C)

union(A, D)

…

43
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Weighted Union: Representation

❖ Need to store number of nodes (or “weight”) of each tree

❖ Instead of ‘0’, we can store the root’s weight instead!

▪ Use negative values to indicate they’re not indices

▪ See Weiss, 8.4

31

2 45

6

7

int[] up -2 1 -1 7 7 5 -4

1 2 3 4 5 6 7

44
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Weighted Union: Implementation

weightedUnion(int x, int y) {

wx = weight[x];

wy = weight[y];

if (wx < wy) {

up[x] = y;

weight[y] = wx + wy;

} else {

up[y] = x;

weight[x] = wx +wy;

}

}

void union(int x, int y) {

up[y] = x;

}

union()’s runtime is still O(1)!

Does this (slightly) added complexity help us 
balance the up-trees and improve find()? 

45
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Weighted Union: Performance

❖ Consider the worst case: tree height grows as fast as possible

▪ ie, up-tree and up-subtrees are “spindly”
N H

1 0

1

46
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1

2

Weighted Union: Performance

❖ Consider the worst case: tree height grows as fast as possible

▪ ie, up-tree and up-subtrees are “spindly”
N H

1 0

2 1

47
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Weighted Union: Performance

❖ Consider the worst case: tree height grows as fast as possible

▪ ie, up-tree and up-subtrees are “spindly”
N H

1 0

2 1

4 ?
3

4

?

48

1

2



CSE332, Spring 2021L27: Kruskal's Algorithm; Disjoint Sets

Weighted Union: Performance

❖ Consider the worst case: tree height grows as fast as possible

N H

1 0

2 1

4 2
1

2 3

4
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Weighted Union: Performance

❖ Consider the worst case: tree height grows as fast as possible

▪ ie, up-tree and up-subtrees are “spindly”

1

2 3

4

N H

1 0

2 1

4 2

8 ?

5

6 7
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?
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Weighted Union: Performance

❖ Consider the worst case: tree height grows as fast as possible

▪ ie, up-tree and up-subtrees are “spindly”

❖ Worst-case height and worst-case find() is Θ(log N)

N H

1 0

2 1

4 2

8 3

2n n

1

2 3

4

5

6 7

8
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Weighted Union Performance: Proof

❖ An up-tree with height h using weighted union has weight at 
least 2h

❖ Proof by induction

▪ Base-case: h = 0. The up-tree has one node and 20 = 1

▪ Inductive step: Assume true for all h’ < h

52

Minimum weight up-tree of 
height h formed by 

weighted unions

We know:
W(T1) ≥ 2h-1

W(T2) ≥ 2h-1

W(T1) ≥W(T2)

Induction
hypothesis

Since W(T) = W(T1) + W(T2), 
we know that
W(T) ≥W(T1) + W(T2)

= 2h-1 + 2h-1

= 2h

Therefore W(T) ≥ 2h

h-1
T1 T2

T

h-1

Definition of
weighted union
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❖ What is the runtime for …

▪ weighted union(), worst-case

▪ find(), worst-case

▪ n-1 union()s + m find()s

A. Θ(1) / Θ(1) / O(n + m)

B. Θ(1) / Θ(n) / O(n + m2)

C. Θ(1) / Θ(log n) / O(n + m log n)

D. Θ(1) / Θ(log n) / O(n + m2)

53

int find(int x) {

while (up[x] > 0) {

x = up[x];

}

return x;

}

weightedUnion(int x, int y) {

wx = weight[x];

wy = weight[y];

if (wx < wy) {

up[x] = y;

weight[y] = wx + wy;

} else {

up[y] = x;

weight[x] = wx +wy;

}

}
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Why Weights Instead of Heights?

❖ We used the number of items in a tree to decide upon the root

❖ Why not use the height of the tree?

▪ Heighted Union’s runtime is asymptotically the same: Θ(log N)

• Proof is left as an exercise to the reader ;)

▪ Easier to track weights than heights, and heighted union doesn’t 
combine very well with the next optimization technique for find()

1 2
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4 53
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Lecture Outline

❖ Disjoint Sets ADT  (aka Union/Find ADT)

❖ Kruskal’s Algorithm, for realz

▪ Review and Example

▪ Correctness Proof

❖ Up-Trees Data Structure

▪ Representation

▪ Optimization: Weighted Union

▪ Optimization: Path Compression
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Modifying Data Structures To Preserve Invariants

❖ Thus far, the modifications we’ve studied are designed to 
preserve invariants (aka “repair the data structure”)

▪ Tree rotations: preserve AVL tree balance

▪ Promoting keys / splitting leaves: preserve B-tree node sizes (eg, 
L+1 keys stored in a leaf node)

❖ Notably, the modifications don’t improve runtime between 
identical method calls

▪ If avl.find(x) takes 2 µs, we expect future calls to take ~2 µs

▪ If we call avl.find(x) m times, the total runtime should be ~2m µs
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Modifying Data Structures for Future Gains

❖ Path compression is entirely different: we are modifying the 
up-tree to improve future performance

▪ If uptree.find(x) takes 2 µs, we expect future calls to take <2 µs

▪ If we call uptree.find(x) m times, the total runtime should be <2m µs

• … and possibly even << 2m µs
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Path Compression: Idea

❖ Recall the worst-case structure if we use weighted union:

❖ Idea: When we find(8), move all visited nodes under the root

▪ Additional cost is insignificant (same order of growth) , so run path 
compression on every find()
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2 3

4

5

6 7
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Path Compression: Example

❖ Recall the worst-case structure if we use weighted union

❖ Idea: When we find(8), move all visited nodes under the root

▪ Additional cost is insignificant (same order of growth), so run path 
compression on every find()

▪ Doesn’t meaningfully change runtime for this invocation of find(8), 
but subsequent find(8)s (and subsequent find(7)s and find(5)s and …) 
will be faster!

1

2 3

4

5

6
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Path Compression: Details and Runtime

❖ With “enough” find()s, we end up with a very shallow tree:

❖ How much is “enough”?  Probably m>n

1

2 3 4 5 6 7 8
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Path Compression: Implementation

61

int pathCompressionFind(int x) {

while (up[x] > 0) {

x = up[x];

}

int root = x;

// Change the parent for all

// nodes along this path

while (up[x] > 0) {

x = up[x];

up[x] = root;

}

return root;

}

int find(int x) {

while (up[x] != 0) {

x = up[x];

}

return x;

}

find()’s worst-case runtime is still O(log n)!

Does this (slightly) added complexity help us make the 
up-trees shallower and improve sequences of find()? 
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Path Compression: Runtime

❖ A sequence of m find()s on n elements has total O(m log*n) time

▪ Assumes weighted union and path compression

▪ See Weiss for proof

❖ log*n is really cheap!

▪ log*n is the “iterated log”: the number of times
you need to apply log to n before the result is <=1

▪ For all practical purposes, log*n < 5 🤯

▪ So O(m  5) for m operations!

❖ So find() is amortized O(1)

▪ And union() is still worst case O(1)

n log* n

1 0

2 1

4 2

16 3

65536 4

265536 5

216

Number of atoms in the 
known universe is 2256ish 62
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Interlude: A Really Slow Function

❖ Ackermann’s function is a really big function A(x, y) with 
inverse (x, y) which is really small

❖  shows up in:
▪ Computation Geometry (surface complexity)

▪ Combinatorics of sequences

❖ How fast does (x, y) grow?

▪ Even slower than iterated log!

▪ For all practical purposes, (x, y) < 4
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Path Compression: Tighter Runtime

❖ A sequence of m union()s + find()s on a set of n elements has  
worst-case total O(m  (m, n)) time

▪ Assumes weighted union and path compression

▪ Proved by Robert Tarjan in 1984

• (Tarjan is also known for Fibonacci heaps and splay trees)

▪ Complex analysis, but inverse-Ackermann’s is a tighter bound than 
iterated-log

❖ So find() is still amortized O(1)

▪ Since O(m  4) for m operations!

▪ And union() is still worst case O(1)

64


