Kruskal's Algorithm; Disjoint Sets

 CSE 332 Spring 2021Instructor: Hannah C. Tang

Teaching Assistants:
Aayushi Modi Khushi Chaudhari
Patrick Murphy
Aashna Sheth Kris Wong
Frederick Huyan Logan Milandin
Richard Jiang
Winston Jodjana
Hamsa Shankar Nachiket Karmarkar

*lı gradescope

* How many times do you need to take the log of 20,035,299,304,068,464,649,790,723,515,602,557,504,478,254,755,69 $7,514,192,650,169,737$ to get to a value <= 1?
- Hint: that value is equal to 2^{65536}, and $65536=2^{16}$
* Bonus: find an MST using Prim's Algorithm on this graph:

Lecture Outline

* Disjoint Sets ADT (aka Union/Find ADT)
* Kruskal's Algorithm, for realz
- Review and Example
- Correctness Proof
* Up-Trees Data Structure
- Representation
- Optimization: Weighted Union
- Optimization: Path Compression

Disjoint Sets ADT (1 of 2)

Disjoint Sets ADT. A

collection of elements and sets of those elements.

- An element can only belong to a single set.
- Each set is identified by a unique id.
- Sets can be combined/ connected/ unioned.
* The Disjoint Sets ADT has two operations:
- find(e): gets the id of the element's set
- union(e1, e2): combines the set containing e1 with the set containing e2
* Example: ability to travel to drive to a country
- union(france, germany)
- union(spain, france)
- find(spain) == find(germany)?
- union(england, france)

Disjoint Sets ADT (2 of 2)

* Applications include percolation theory (computational chemistry) and
.... Kruskal's algorithm
* Simplifying assumptions
- We can map elements to indices quickly
- We know all the items in advance; they're all disconnected initially
* Later this lecture, we'll see:
- We can do union() in constant time
- We can get find() to be amortized constant time
- Worst case $\mathrm{O}(\log \mathrm{n})$ for an individual find operation

Lecture Outline

* Disjoint Sets ADT (aka Union/Find ADT)
* Kruskal's Algorithm, for realz
- Review and Example
- Correctness Proof
* Up-Trees Data Structure
- Representation
- Optimization: Weighted Union
- Optimization: Path Compression

Kruskal's Algorithm

* Kruskal's thinks edge by edge
- Eg, start from lightest edge and consider by increasing weight
- Compare against Dijkstra's and Prim's, which think vertex by vertex
* Outline:
- Start with a forest of |V| MSTs
- Successively connect them ((ie, eliminate a tree) by adding edges
- Do not add an edge if it creates a cycle

Kruskal's Algorithm: Pseudocode

```
kruskals(Graph g)
    mst = {}
    forests = buildDisjointSets(g.vertices)
    numforests = g.vertices
    edges = buildHeap(g.edges)
    while (numForests 1):
        e = edges.deleteMin()
        u_id = forests.find(e.u)
        v_id = forests.find(e.v)
    if (u_id != v_id):
        mst. addEdge (e)
        forests.union(e.u, e.v)
        numforests--
```

〕 $|E|$ deleteMin()s
$2|E|$ find()s
$\}|\mathrm{V}|$ union()s

Runtime: $|\mathrm{E}|(\log |\mathrm{E}|+2 \log |\mathrm{~V}|+1)+|\mathrm{V}|(1+1+1) \in \mathrm{O}(|\mathrm{E}| \log |\mathrm{V}|+|\mathrm{V}| \log |\mathrm{V}|)$ However, since we know $E \in \mathrm{O}\left(|\mathrm{V}|^{2}\right)$, runtime $\in \mathrm{O}(|\mathrm{E}| \log |\mathrm{V}|)$

Kruskal's Algorithm: Example

*ll gradescope

* Find an MST in this graph using Kruskal's Algorithm:

Weight	Edges
1	$(B, C),(G, H)$
2	$(A, B),(B, F),(C, D),(F, G)$
4	(E, G)

MST:

Kruskal's Algorithm: Demos and Visualizations

* Prim's Visualization
- https://www.youtube.com/watch?v=6uqOcQZOyoY
- Prim's jumps around the fringe, adding edges by edge weight
* Kruskal's Visualization:
- https://www.youtube.com/watch?v=ggLyKfBTABo
- Kruskal's jumps around the graph - not just the fringe - because it chooses edges by edge weight independent of the "tree under construction"
* Conceptual demo:
- https://docs.google.com/presentation/d/1RhRSYs9Jbc335P24p7vR-6PLXZUI-
1EmeDtgieL9ad8/present?ueb=true\&slide=id.g375bbf9ace 0645

Lecture Outline

* Disjoint Sets ADT (aka Union/Find ADT)
* Kruskal's Algorithm, for realz
- Review and Example
- Correctness Proof
* Up-Trees Data Structure
- Representation
- Optimization: Weighted Union
- Optimization: Path Compression

Kruskal's Algorithm: Correctness

* Kruskal's algorithm is clever, simple, and efficient
- But does it generate a minimum spanning tree?
* First: it generates a spanning tree
- To show treeness, need to show lack of cycles
- To show that it's a single tree, need to show it's connected
- To show spanningness, need to show that all vertices are included
* Second: there is no spanning tree with lower total cost ...

Kruskal's Output is a Spanning Tree (1 of 2)

* To show treeness, need to show lack of cycles
- By definition: Kruskal's doesn't add an edge if it creates a cycle
* To show that it's a single tree, need to show it's connected
- By contradiction: suppose Kruskal's generates >1 tree. Since the original graph \mathbf{G} was connected, there exists an edge in \mathbf{G}
 that connects Kruskal's trees. Adding this edge would not create a cycle, so Kruskal's would have included it. CONTRADICTION

Kruskal's Output is a Spanning Tree (2 of 2)

* To show spanningness, need to show that all vertices are included
- By contradiction: suppose Kruskal's tree T does not include any edges adjacent to some vertex \mathbf{v}. Since the original graph \mathbf{G} was connected, there exists at least one edge in \mathbf{G} that is adjacent to \mathbf{v}. The minimum of these edges would not have created a cycle with T, so Kruskal's would have included it.
 CONTRADICTION

Kruskal's Optimality: Inductive Proof Setup

* Let F (stands for "forest") be the set of edges Kruskal has added at some point during its execution.
* Claim: F is a subset of one or more MSTs for the graph
- (Therefore, once $|F|=|V|-1$, we have a single MST)
* Proof: By induction on |F|
- Base case: $|F|=0$. The empty set is a subset of all MSTs
- Inductive case: $|\mathrm{F}|=\mathrm{k}+1$. By induction, before adding the $(\mathrm{k}+1)^{\text {th }}$ edge (call it e), there was some MST T such that $\mathrm{F}-\{\mathrm{e}\} \subseteq \mathrm{T} . .$.

Staying a Subset of Some MST

* Claim: F is a subset of one or more MSTs for the graph
* Things we know so far:
- $\mathrm{F}-\{\mathrm{e}\} \subseteq \mathrm{T}$
* Proof: Two disjoint cases:

A. If $\{e\} \subseteq T$, then $F \subseteq T$ and proof is done
B. Else, e forms a cycle with some simple path (call it \mathbf{p}) in \mathbf{T}
- Must be a cycle since T is a spanning tree

Staying a Subset of Some MST

* Claim: F is a subset of one or more MSTs for the graph
* Things we know so far:
- $\mathrm{F}-\{\mathrm{\}} \subseteq \mathrm{~T}$
- e forms a cycle with T

* New claim: There is an edge e_{2} on \mathbf{p} such that e_{2} is not in F
- Otherwise, Kruskal's would not have added e

Staying a Subset of Some MST

* Claim: F is a subset of one or more MSTs for the graph
* Things we know so far:
- $\mathrm{F}-\{ \} \subseteq \mathrm{T}$
- e forms a cycle with T
- $e_{2}($ on $\mathbf{p})$ is not in F

* New claim: e_{2}.weight $==$ e.weight
- If e_{2}.weight > e.weight, then T is not an MST
- $\mathrm{T}-\left\{\mathrm{e}_{2}\right\}+\{e\}$ is a spanning tree with lower cost. Contradiction!!
- If e_{2}.weight < e.weight, then Kruskal's would have already considered e_{2}
- Would have added it since F-\{e\} has no cycles (T has no cycles and F-\{e\} $\subseteq T$)
- But e_{2} is not in F. Contradiction!!

Staying a Subset of Some MST

* Claim: F is a subset of one or more MSTs for the graph
* Things we know so far:
- $\mathrm{F}-\{\mathrm{\}} \subseteq \mathrm{~T}$
- e forms a cycle with T
- e_{2} (on \boldsymbol{p}) is not in F

- e_{2}.weight $==$ e.weight
* New claim: T-\{ $\left.\mathrm{e}_{2}\right\}+\{\mathrm{e}\}$ is (also) an MST
- It's a spanning tree because \mathbf{p} - $\left\{\mathrm{e}_{2}\right\}+\{\mathrm{e}\}$ connects the same nodes as \mathbf{p}
- It's minimal because its cost equals cost of T, an MST
* Since $\mathrm{F} \subseteq \mathrm{T}-\left\{\mathrm{e}_{2}\right\}+\{\mathrm{e}\}, \mathrm{F}$ is a subset of one or more MSTs

Lecture Outline

* Disjoint Sets ADT (aka Union/Find ADT)
* Kruskal's Algorithm, for realz
- Review and Example
- Correctness Proof
* Up-Trees Data Structure
- Representation
- Optimization: Weighted Union
- Optimization: Path Compression

Implementing the Disjoint Sets ADT (1 of 2)

* If we have n elements, what is the total cost of m find()s $+\leq n-1$ union()s?
- Can we have >n union()s?
* Goal: $\mathrm{O}(m+n)$ total for these operations
- i.e. O(1) amortized for all operations!
* Is our goal possible?
- Can get O(1) worst-case union()
- Would be nice if we could also get $O(1)$ worst-case find(), but...
- Known result: both find() and union() can't have worst-case O(1)

Implementing the Disjoint Sets ADT (2 of 2)

* Observation:
- Trees let us find many elements given a single root
* Idea:
- If we reverse the pointers (ie, point up from child to parent), we can find a single root from many elements
* Decision:
- One up-tree for each set
- The ID of the set is (hash of) the tree root
- (as before, we will use integer elements for in-lecture examples)

Up-Trees Data Structure for Disjoint Sets ADT

* Initial State:

(4)

* After several union()s:

* Roots are the IDs for each set:

Up-Trees Find

* find (x) : follow x to the root and return the root ID
- Eg: find(6) = 7

Up-Trees Union

* union (x, y) : assuming x and y are roots, point y to x
- If x or y are not roots, can require caller to call find() first or do a find() internally
- Eg: union(1, 7) vs union $(2,5)$

Up-Trees Representation (1 of 2)

* Up-trees can be represented as an array of indices, where the element is the index of the parent
- up $[x]=0$ means x is a root
- Note: in these slides, array is 1-indexed; 0-indexed is also fine

Up-Trees Representation (2 of 2)

* Up-trees can be represented as an array of indices, where the element is the index of the parent
- Can contain non-integer values if we use a hash table to map values to indices

Up-Trees Implementation

```
void union(int x, int y) {
    up[y] = x;
}
```

```
int find(int x)
    while (up[x] != 0) {
        x = up[x];
    }
    return x;
}
```

* Worst-case runtime for union():
* Worst-case runtime for find():
* Total runtime for $\mathrm{n}-1$ union()s and m find()s:

Remember: we can't have $\geq n$ calls to union()

*ll gradescope

* What is the runtime for ...
- union(), worst-case
- find(), worst-case
- n-1 union()s + m find()s

```
void union(int x, int y) {
    up[y] = x;
}
```

A. $\quad \Theta(1) / O(1) / O(n+m)$ $\Theta(1) / O(h) / O(n+m h)$

- $\quad h$ is the height of the up-tree
c. $\Theta(1) / O(n) / O\left(n^{2}\right)$
D. $\Theta(1) / O(n) / O(n+m n)$

```
int find(int x) {
    while (up[x] != 0) {
        x = up [x];
    }
    return x;
}
```


Worst-case Union

```
union(A, B)
union(B, C)
union(C, D)
union(D, E)
union(E, F)
```


(3) If only I could keep these trees (semi-?)balanced

Lecture Outline

* Disjoint Sets ADT (aka Union/Find ADT)
* Kruskal's Algorithm, for realz
- Review and Example
- Correctness Proof
* Up-Trees Data Structure
- Representation
- Optimization: Weighted Union
- Optimization: Path Compression

Weighted Union (1 of 3)

* Our naïve union() always picked the same argument (the second one) to become the child in the unioned result

Weighted Union (2 of 3)

* Our naïve union() always picked the same argument (the second one) to become the child in the unioned result

* Let's make it smarter:
- Pick the smaller tree (ie, tree with fewer nodes) to be the new child
- i.e., "weight" = "num nodes"
- Add the new child to the heavier-tree's root

Weighted Union (3 of 3)

* Our naïve union() always picked the same argument (the second one) to become the child in the unioned result
* Weighted union:
- Pick the smaller tree (ie, tree with fewer nodes) to be the new child
- i.e., "weight" = "num nodes"
- Add the new child to the heavier-tree's root

Weighted Union: Representation

* Need to store number of nodes (or "weight") of each tree
\% Instead of ' 0 ', we can store the root's weight instead!
- Use negative values to indicate they're not indices
- See Weiss, 8.4

Weighted Union: Implementation

```
void union(int x, int y)
    up[y] = x;
}
```

```
weightedUnion(int x, int y) {
    wx = weight[x];
    wy = weight[y];
    if (wx < wy)
        up[x] = y;
        weight[y] = wx + wy;
    } else {
        up[y] = x;
        weight[x] = wx +wy;
    }
}
```

union()'s runtime is still O(1)!

Does this (slightly) added complexity help us balance the up-trees and improve find()?

Weighted Union: Performance

* Consider the worst case: tree height grows as fast as possible
- ie, up-tree and up-subtrees are "spindly"

N	H
1	0

1

Weighted Union: Performance

* Consider the worst case: tree height grows as fast as possible
- ie, up-tree and up-subtrees are "spindly"

Weighted Union: Performance

* Consider the worst case: tree height grows as fast as possible
- ie, up-tree and up-subtrees are "spindly"

N	H
1	0
2	1
4	$?$

Weighted Union: Performance

* Consider the worst case: tree height grows as fast as possible

N	H
1	0
2	1
4	2

Weighted Union: Performance

* Consider the worst case: tree height grows as fast as possible
- ie, up-tree and up-subtrees are "spindly"

N	H
1	0
2	1
4	2
8	$?$

Weighted Union: Performance

* Consider the worst case: tree height grows as fast as possible
- ie, up-tree and up-subtrees are "spindly"
* Worst-case height and worst-case find() is $\Theta(\log N)$

N	H
1	0
2	1
4	2
8	3
2^{n}	n

Weighted Union Performance: Proof

* An up-tree with height h using weighted union has weight at least $2^{\text {h }}$
* Proof by induction
- Base-case: $\mathrm{h}=0$. The up-tree has one node and $2^{0}=1$
- Inductive step: Assume true for all h' < h

Minimum weight up-tree of height h formed by weighted unions

We know:

$$
\begin{aligned}
& \left.\begin{array}{l}
W\left(T_{1}\right) \geq 2^{h-1} \\
W\left(T_{2}\right) \geq 2^{h-1} \quad
\end{array}\right\} \begin{array}{l}
\text { Induction } \\
\text { hypothesis }
\end{array} \\
& \left.W\left(T_{1}\right) \geq W\left(T_{2}\right)\right\} \begin{array}{l}
\text { Definition of } \\
\text { weighted union }
\end{array}
\end{aligned}
$$

Since $W(T)=W\left(T_{1}\right)+W\left(T_{2}\right)$, we know that
$\mathrm{W}(\mathrm{T}) \geq \mathrm{W}\left(\mathrm{T}_{1}\right)+\mathrm{W}\left(\mathrm{T}_{2}\right)$
$=2^{\mathrm{h}-1}+2^{\mathrm{h}-1}$
$=2^{h}$
Therefore $W(T) \geq 2^{h}$

*lı gradescope

*. What is the runtime for ...

- weighted union(), worst-case
- find(), worst-case
- n-1 union()s + m find()s
A. $\quad \Theta(1) / \Theta(1) / O(n+m)$
в. $\quad \Theta(1) / \Theta(n) / O\left(n+m^{2}\right)$
$\Theta(1) / \Theta(\log n) / O(n+m \log n)$
$\Theta(1) / \Theta(\log n) / O\left(n+m^{2}\right)$

```
weightedUnion(int x, int y) {
    wx = weight[x];
    wy = weight[y];
    if (wX < wY) {
        up[x] = y;
        weight[y] = wx + wy;
    } else {
        up[y] = x;
        weight[x] = wx +wy;
    }
}
```

```
int find(int x)
    while (up[x] > 0) {
        x = up[x];
    }
    return x;
}
```


Why Weights Instead of Heights?

* We used the number of items in a tree to decide upon the root

* Why not use the height of the tree?
- Heighted Union's runtime is asymptotically the same: $\Theta(\log N)$
- Proof is left as an exercise to the reader ;)
- Easier to track weights than heights, and heighted union doesn't combine very well with the next optimization technique for find()

Lecture Outline

* Disjoint Sets ADT (aka Union/Find ADT)
* Kruskal's Algorithm, for realz
- Review and Example
- Correctness Proof
* Up-Trees Data Structure
- Representation
- Optimization: Weighted Union
- Optimization: Path Compression

Modifying Data Structures To Preserve Invariants

* Thus far, the modifications we've studied are designed to preserve invariants (aka "repair the data structure")
- Tree rotations: preserve AVL tree balance
- Promoting keys / splitting leaves: preserve B-tree node sizes (eg, L+1 keys stored in a leaf node)
* Notably, the modifications don't improve runtime between identical method calls
- If avl.find(x) takes $2 \mu \mathrm{~s}$, we expect future calls to take $\sim 2 \mu \mathrm{~s}$
- If we call avl.find $(x) m$ times, the total runtime should be $\sim 2 m \mu s$

Modifying Data Structures for Future Gains

* Path compression is entirely different: we are modifying the up-tree to improve future performance
- If uptree.find(x) takes $2 \mu \mathrm{~s}$, we expect future calls to take $<2 \mu \mathrm{~s}$
- If we call uptree.find $(x) m$ times, the total runtime should be $<2 m \mu s$
- ... and possibly even $\ll 2 m \mu s$

Path Compression: Idea

* Recall the worst-case structure if we use weighted union:

* Idea: When we find(8), move all visited nodes under the root
- Additional cost is insignificant (same order of growth) , so run path compression on every find()

Path Compression: Example

* Recall the worst-case structure if we use weighted union

* Idea: When we find(8), move all visited nodes under the root
- Additional cost is insignificant (same order of growth), so run path compression on every find()
- Doesn't meaningfully change runtime for this invocation of find(8), but subsequent find(8)s (and subsequent find(7)s and find(5)s and ...) will be faster!

Path Compression: Details and Runtime

* With "enough" find()s, we end up with a very shallow tree:

* How much is "enough"? Probably $m>n$

Path Compression: Implementation

```
int find(int x) {
    while (up[x] != 0) {
        x = up[x];
    }
    return x;
}
```

```
int pathCompressionFind(int x) {
    while (up[x] > 0)
        x = up[x];
    }
    int root = x;
    // Change the parent for all
    // nodes along this path
    while (up[x] > 0)
        x = up[x];
        up[x] = root;
    }
    return root;
}
```

find()'s worst-case runtime is still $O(\log n)$!

Does this (slightly) added complexity help us make the up-trees shallower and improve sequences of find()?

Path Compression: Runtime

* A sequence of m find()s on n elements has total $O\left(m \log ^{*} n\right)$ time
- Assumes weighted union and path compression
- See Weiss for proof
* $\log ^{*} n$ is really cheap!
- $\log ^{*} n$ is the "iterated \log ": the number of times you need to apply log to n before the result is $<=1$
- For all practical purposes, $\log ^{*} n<5$
- So O(m • 5) for m operations!
* So find() is amortized O(1)
- And union() is still worst case $\mathrm{O}(1)$

n	$\log ^{*} n$	
is $<=1$	1	0
	2	1
216	2	3

Interlude: A Really Slow Function

* Ackermann's function is a really big function $A(x, y)$ with inverse $\alpha(x, y)$ which is really small
$* \alpha$ shows up in:
- Computation Geometry (surface complexity)
- Combinatorics of sequences
* How fast does $\alpha(x, y)$ grow?
- Even slower than iterated log!
- For all practical purposes, $\alpha(\mathrm{x}, \mathrm{y})<4$

Path Compression: Tighter Runtime

* A sequence of m union()s + find()s on a set of n elements has worst-case total $\mathrm{O}(m \cdot \alpha(m, n))$ time
- Assumes weighted union and path compression
- Proved by Robert Tarjan in 1984
- (Tarjan is also known for Fibonacci heaps and splay trees)
- Complex analysis, but inverse-Ackermann's is a tighter bound than iterated-log
. So find() is still amortized O(1)
- Since $O(m \cdot 4)$ for m operations!
- And union() is still worst case O(1)

