Student Activity: Find the MSTs

* Find the MST for both of these graphs:

Prim's Algorithm: Example

Vertex	Known?	Distance	Previous
A		∞	
B		∞	
C		∞	
D		∞	
E		∞	
F		∞	
G		∞	

Prim's Algorithm: Student Activity

Vertex	Known?	Distance	Previous
A		∞	
B		∞	
C		∞	
D	∞		
E	∞		
F	∞		
G			

Kruskal's Algorithm: Example

Kruskal's Algorithm: Student Activity

* Use Kruskal's algorithm to find an MST in this graph

Weight	Edges
1	$(B, C),(G, H)$
2	$(A, B),(B, F),(C, D),(F, G)$
4	(E, G)

MST:

