Dijkstra's Algorithm (cont.); Minimum Spanning Trees
 CSE 332 Spring 2021

Instructor: Hannah C. Tang

Teaching Assistants:

Aayushi Modi Khushi Chaudhari
Aashna Sheth Kris Wong
Frederick Huyan Logan Milandin
Hamsa Shankar Nachiket Karmarkar

Patrick Murphy
Richard Jiang
Winston Jodjana

*lı gradescope

* Run Dijkstra's on this graph
- (this is example \#2 from the previous lecture)
* Consider the following thought experiment:

- Dijkstra's iterates over the unknown vertices, adding them to the "known cloud"
- You decide to invent your own shortest-paths algorithm that iterates over unknown edges and adds them if they don't create a cycle
- Does your algorithm correctly find all the shortest paths from the start vertex?

Lecture Outline

* Dijkstra's Algorithm
- Review
- For Reading: Correctness and Runtime
* Minimum Spanning Tree
- Introduction
- Prim's Algorithm
- Kruskal's Algorithm, sorta

Dijkstra's Algorithm: Idea

* Initialization:

- Start vertex has distance 0; all other vertices have distance ∞
* At each step:
- Pick closest unknown vertex v
- Add it to the "cloud" of known vertices
- Update distances for vertices with edges from v

Dijkstra’s Algorithm: Example \#1

Vertex	Known?	Distance	Previous
A		∞	
B		∞	
C		∞	
D		∞	
E		∞	
F		∞	
G		∞	
H		∞	

Dijkstra's Algorithm: Interpreting the Results

* Now that we're done, how do we get the path from A to E ?

Vertex	Known?	Distance	Previous
A	Y	0	/
B	Y	2	A
C	Y	1	A
D	Y	4	A
E	Y	11	G
F	Y	4	B
G	Y	8	H
H	Y	7	F

Dijkstra’s Algorithm: Stopping Short

Vertex	Known?	Distance	Previous
A	Y	0	/
B	Y	2	A
C	Y	1	A
D	Y	4	A
E	Y	11	G
F	Y	4	B
G	Y	8	H
H	Y	7	F

Review: Important Features

* Once a vertex is marked known, its shortest path is known
- Can reconstruct path by following back-pointers ("previous" fields)
* While a vertex is not known, another shorter path might be found
* The "Order Added to Known Set" is unimportant
- A detail about how the algorithm works (client doesn't care)
- Not used by the algorithm (implementation doesn't care)
- It is sorted by path-distance; ties are resolved "somehow"

Dijkstra's is Greedy

* Dijkstra's Algorithm
- Single-source shortest paths in a weighted graph (directed or undirected) with no negative-weight edges
* Dijkstra's is an example of a greedy algorithm:
- At each step, irrevocably does what seems best at that step
- Makes locally optimal decision; decision isn't necessarily globally optimal
- Once a vertex is known, it is not revisited
- Turns out, the decision is globally optimal!

Dijkstra's Algorithm: Example \#2

Vertex	Known?	Distance	Previous
A		∞	
B		∞	
C		∞	
D		∞	
E		∞	
F		∞	
G		∞	

Dijkstra's Algorithm: Example \#2

Vertex	Known?	Distance	Previous
A	Y	0	$/$
B		∞	
C		≤ 2	A
D		≤ 1	A
E		∞	
F		∞	
G		∞	

Dijkstra's Algorithm: Example \#2

Vertex	Known?	Distance	Previous
A	Y	0	/
B		≤ 6	D
C		≤ 2	A
D	Y	1	A
E		≤ 2	D
F		≤ 7	D
G		≤ 6	D

Dijkstra's Algorithm: Example \#2

Vertex	Known?	Distance	Previous
A	Y	0	/
B		≤ 6	D
C	Y	2	A
D	Y	1	A
E		≤ 2	D
F		≤ 4	C
G		≤ 6	D

Dijkstra's Algorithm: Example \#2

Vertex	Known?	Distance	Previous
A	Y	0	$/$
B		≤ 3	E
C	Y	2	A
D	Y	1	A
E	Y	2	D
F		≤ 4	C
G		≤ 6	D

Dijkstra's Algorithm: Example \#2

Vertex	Known?	Distance	Previous
A	Y	0	$/$
B	Y	3	E
C	Y	2	A
D	Y	1	A
E	Y	2	D
F		≤ 4	C
G		≤ 6	D

Dijkstra's Algorithm: Example \#2

Vertex	Known?	Distance	Previous
A	Y	0	$/$
B	Y	3	E
C	Y	2	A
D	Y	1	A
E	Y	2	D
F	Y	4	C
G		≤ 6	D

Dijkstra's Algorithm: Example \#2

(-®) WOOHOO!!! (®) (\%)

Vertex	Known?	Distance	Previous
A	Y	0	/
B	Y	3	E
C	Y	2	A
D	Y	1	A
E	Y	2	D
F	Y	4	C
G	Y	6	D

Lecture Outline

* Dijkstra's Algorithm
- Review
- For Reading: Correctness and Runtime
* Minimum Spanning Tree
- Introduction
- Prim's Algorithm
- Kruskal's Algorithm, sorta

Correctness: Intuition (1 of 2)

* Statement: all "known" vertices have the correct shortest path
* True initially: shortest path to start vertex has cost 0
* If the new vertex marked "known" also has the correct shortest path, then by induction this statement holds
* Thus, when the algorithm terminates (ie, everything is "known"), we will have the correct shortest path to every vertex

Correctness: Intuition (2 of 2)

: Key fact we need: when we mark a vertex "known", we won't discover a shorter path later!

* This holds only because Dijkstra's algorithm picks the vertex with the next shortest path-so-far
* The proof of this fact is by contradiction ...

```
dijkstra(Graph g, Vertex start)
    foreach vertex v in g:
        v.distance = \infty
        v.known = false
    start.distance = 0
    while there are unknown vertices:
    v = lowest cost unknown vertex
    v.known = true
    foreach unknown v.neighbor
    with weight w:
        d1 = v.distance + w
        d2 = u.distance
        if (d1 < d2):
            u.distance = d1
            u.previous = v
```


Correctness: Rough Idea

* Let v be the next vertex marked known ("added to the cloud")
- The best-known path to v only contains nodes "in the cloud" and has weight w
- (we used Dijkstra's to select this path, and we only know about paths through the cloud to a vertex in the fringe)
- Assume the actual shortest path to v is different
- It must use at least one non-cloud vertex (otherwise we'd know about it)
- Let u be the first non-cloud vertex on this path
- The path weight from u to v - weight ($u, ~ v$) - must be ≥ 0 (no negative weights)
- Thus, the total weight of the path from src to u must be <w (otherwise weight (src, u) + weight $(\mathrm{u}, \mathrm{v}) \quad>\mathrm{w}$ and this path wouldn't be shorter)
- But if weight (src, u) < w, then vould not have been picked CONTRADICTION!!!

Runtime, First Approach

```
```

dijkstra(Graph g, Vertex start) {

```
```

dijkstra(Graph g, Vertex start) {
foreach vertex v in g:
foreach vertex v in g:
v.distance = \infty
v.distance = \infty
v.known = false
v.known = false
start.distance = 0
start.distance = 0
while there are unknown vertices:
while there are unknown vertices:
v = lowest cost unknown vertex
v = lowest cost unknown vertex
v.known = true
v.known = true
foreach unknown v.neighbor
foreach unknown v.neighbor
with weight w:
with weight w:
d1 = v.distance + w
d1 = v.distance + w
d2 = u.distance
d2 = u.distance
if (d1 < d2):
if (d1 < d2):
u.distance = d1
u.distance = d1
u.previous = v

```
            u.previous = v
```

```
}
```

```
}
```

$\} 0(|\mathrm{~V}|)$
$\} O\left(|V|^{2}\right)$

LO(|E|)
(notice each edge is processed only once)

Improving Asymptotic Runtime

* Current runtime: $\mathrm{O}\left(|\mathrm{V}|^{2}+|\mathrm{E}|\right) \in \mathrm{O}\left(|\mathrm{V}|^{2}\right)$
* We had a similar "problem" with toposort being $\mathrm{O}\left(|\mathrm{V}|^{2}+|\mathrm{E}|\right)$
- Caused by each iteration looking for the next vertex to process
- Solved it with a queue of zero-degree vertices!
- But here we need:
- The lowest-cost vertex
- Ability to change costs, since they can change as we process edges
* Solution?
- A priority queue of unknown vertices, using distance-from-src as priority
- Must support decreaseKey operation find + percolate up.
- Conceptually simple, but a pain to code up

Runtime, Second Approach

```
dijkstra(Graph g, Vertex start) {
    foreach vertex v in g:
        v.distance = \infty
                            ] O(|V|)
    start.distance = 0
    heap = buildHeap(g.vertices)
    while (! heap.empty()) :
        V = heap.deleteMin()
    ]- O(|V| log |V|)
    foreach unknown v.neighbor
        with weight w:
            dl = v.distance + w
            d2 = u.distance
            if (d1 < d2):
            heap.decreaseKey(u, d1)
            u.previous = v
```


(each edge processed once)
〕- $\mathrm{O}(|\mathrm{E}| \log |\mathrm{V}|)$

Runtime as a Function of Density

* First approach (linear scan): $\mathrm{O}\left(|\mathrm{V}|^{2}+|\mathrm{E}|\right)$
* Second approach (heap): $\mathrm{O}(|\mathrm{V}| \log |\mathrm{V}|+|\mathrm{E}| \log |\mathrm{V}|)$
* So which is better?
- In a sparse graph, $|\mathrm{E}| \in \mathrm{O}(|\mathrm{V}|)$
- So second approach (heap) is better? O(|E|log|V|)
- In a dense graph, $|E| \in \Theta\left(|V|^{2}\right)$
- So first approach (linear scan) is better? O(|E|)
* But: remember these are worst-case and asymptotic
- Heap might have worse constant factors
- Maybe decreaseKey is cheap, making |E|log|V| more like |E|
- It's called rarely, or vertices don't percolate far

Lecture Outline

* Dijkstra’s Algorithm
- Review
- For Reading: Correctness and Runtime
* Minimum Spanning Tree
- Introduction
- Prim's Algorithm
- Kruskal's Algorithm, sorta

Problem Statement

* Your friend at the electric company needs to connect all these cities to the power plant
* She knows the cost to lay wires between any pair of cities and wants the cheapest way to ensure electricity gets to every city
* Assume:

- The graph is connected and undirected
- (In general, edge weights can be negative; just not in this example)

Solution Statement

* We need a set of edges such that:
- Every vertex touches at least one edge ("the edges span the graph")
- The graph using just those edges is connected
- The total weight of these edges is minimized
* Claim: The set of edges we pick never forms a cycle. Why?
- V-1 edges is the exact number of edges to connect all vertices
- Taking away 1 edge breaks connectiveness
- Adding 1 edge makes a cycle

Solution Statement (va)

* We need a set of edges such that Minimum Spanning Tree:
- Every vertex touches at least one edge ("the edges span the graph")
- The graph using just those edges is connected
- The total weight of these edges is minimized
spanning tree

minimum spanning tree

Minimum Spanning Trees

* Given an undirected graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$, a minimum spanning tree is a graph $\mathrm{G}^{\prime}=\left(\mathrm{V}, \mathrm{E}^{\prime}\right)$ such that:
- E^{\prime} is a subset of E
- $\left|E^{\prime}\right|=|V|-1$
- G^{\prime} is connected

Applications of MSTs

* Handwriting recognition
- http://dspace.mit.edu/bitstrea m/handle/1721.1/16727/4355 1593-MIT.pdf;sequence=2

Figure 4-3: A typical minimum spanning tree

- e.g. arrangement of nuclei in cancer cells

For more, see: http://www.ics.uci.edu/~eppstein/gina/mst.html

*lı gradescope

* Find the MST for this graph:

* Important: pay attention to your MST-finding process. What are you iterating through (eg: vertices? edges?)? In what order are you iterating through those objects?

MST Algorithms: Two Different Approaches

Prim's Algorithm

Almost identical to Dijkstra's
Start with one node, grow greedily

Kruskals's Algorithm

Completely different!
Start with a forest of MSTs, union them together
(Need a new data structure for this)

Lecture Outline

* Dijkstra’s Algorithm
- Review
- For Reading: Correctness and Runtime
* Minimum Spanning Tree
- Introduction
- Prim's Algorithm
- Kruskal's Algorithm, sorta

Prim's Algorithm**

* Intuition: a vertex-based greedy algorithm
- Builds MST by greedily adding vertices
* Summary: Grow a single tree by picking a vertex from the fringe that has the smallest cost
- Unlike Dijkstra's, cost is the edge weight into the known set

** This algorithm was developed in 1930 by Votěch Jarník, then independently rediscovered by Robert Prim in 1957 and then Dijkstra in 1959. It's also known as Jarník's, Prim-Jarník, or DJP

Prim's Algorithm: Pseudocode

```
prim(Graph g)
    foreach vertex v in g:
        v.distance = < 
    start = g.getSomeArbitraryVertex()
    start.distance = 0
    heap = buildHeap(g.vertices)
    mst = {}
    while (! heap.empty()) :
        v = heap.deleteMin()
        if mst.hasVertex(v) :
            continue;
    mst.addEdge(v, v.previous)
    foreach edge (v, u) in v.neighbors():
        dl = v.distance
        d2 = u.distance
        if (d1 < d2):
            heap.decreaseKey(u, dl)
            u.previous = v
}
```


Prim's Algorithm vs. Dijkstra's Algorithm (1 of 2)

* Dijkstra's picks an unknown vertex with smallest distance to the source
- ie, path weights
. Prim's picks an unknown vertex with smallest distance to the known set
- i.e., edge weights
* Some differences in the initialization, but otherwise identical

Prim's Algorithm vs. Dijkstra’s Algorithm (2 of 2)

```
prim(Graph g) { dijkstra(Graph g, Vertex start) {
    foreach vertex v in g:
        v.distance = \infty
    start = g.someArbitraryVertex
    start.distance = 0
    heap = buildHeap(g.vertices)
    mst = {}
    while (! heap.empty()) :
        v = heap.deleteMin()
        if mst.hasVertex(v):
        continue;
        mst.addEdge(v, v.previous)
    foreach edge (v, u)
        in v.neighbors():
        d1 = v.distance
        d2 = u.distance
        if (d1 < d2):
            heap.decreaseKey(u, d1)
            u.previous = v
}
```

```
    foreach vertex v in g:
```

 foreach vertex v in g:
 v.distance \(=\infty\)
 v.distance \(=\infty\)
 start.distance \(=0\)
 start.distance \(=0\)
 heap \(=\) buildHeap(g.vertices)
 heap \(=\) buildHeap(g.vertices)
 while (! heap.empty()):
 while (! heap.empty()):
 \(\mathrm{v}=\) heap.deleteMin()
    ```
                            \(\mathrm{v}=\) heap.deleteMin()
```


Prim's Algorithm: Example

| Vertex | Known? | Distance | Previous |
| :---: | :---: | :---: | :---: |
| A | | ∞ | |
| B | | ∞ | |
| C | | ∞ | |
| D | | ∞ | |
| E | | ∞ | |
| F | | ∞ | |
| G | | ∞ | |

Prim's Algorithm: Example

Prim's Algorithm: Example

| Vertex | Known? | Distance | Previous |
| :---: | :---: | :---: | :---: |
| A | Y | 0 | I |
| B | | 2 | A |
| C | | 2 | A |
| D | | 1 | A |
| E | | ∞ | |
| F | | ∞ | |
| G | | ∞ | |

Prim's Algorithm: Example

| Vertex | Known? | Distance | Previous |
| :---: | :---: | :---: | :---: |
| A | Y | 0 | I |
| B | | 2 | A |
| C | | 1 | D |
| D | Y | 1 | A |
| E | | 1 | D |
| F | | 6 | D |
| G | | 5 | D |

Prim's Algorithm: Example

| Vertex | Known? | Distance | Previous |
| :---: | :---: | :---: | :---: |
| A | Y | 0 | I |
| B | | 2 | A |
| C | Y | 1 | D |
| D | Y | 1 | A |
| E | | 1 | D |
| F | | 2 | C |
| G | | 5 | D |

Prim's Algorithm: Example

| Vertex | Known? | Distance | Previous |
| :---: | :---: | :---: | :---: |
| A | Y | 0 | I |
| B | | 1 | E |
| C | Y | 1 | D |
| D | Y | 1 | A |
| E | Y | 1 | D |
| F | | 2 | C |
| G | | 3 | E |

Prim's Algorithm: Example

| Vertex | Known? | Distance | Previous |
| :---: | :---: | :---: | :---: |
| A | Y | 0 | I |
| B | Y | 1 | E |
| C | Y | 1 | D |
| D | Y | 1 | A |
| E | Y | 1 | D |
| F | | 2 | C |
| G | | 3 | E |

Prim's Algorithm: Example

| Vertex | Known? | Distance | Previous |
| :---: | :---: | :---: | :---: |
| A | Y | 0 | I |
| B | Y | 1 | E |
| C | Y | 1 | D |
| D | Y | 1 | A |
| E | Y | 1 | D |
| F | Y | 2 | C |
| G | | 3 | E |

Prim's Algorithm: Example

| Vertex | Known? | Distance | Previous |
| :---: | :---: | :---: | :---: |
| A | Y | 0 | I |
| B | Y | 1 | E |
| C | Y | 1 | D |
| D | Y | 1 | A |
| E | Y | 1 | D |
| F | Y | 2 | C |
| G | Y | 3 | E |

Prim's Algorithm: Demos and Visualizations

* Dijkstra's Visualization
- https://www.youtube.com/watch?v=10iQOhrVwJk
- Dijkstra's proceeds radially from its source, because it chooses edges by path length from source. Within the fringe, it "jumps around"
* Prim's Visualization
- https://www.youtube.com/watch?v=6uqOcQZOyoY
- Prim's proceeds radially from the MST-under-construction, because it chooses edges by edge weight (there's no source). Within the fringe, it "jumps around"
* Demo:
- https://docs.google.com/presentation/d/1GPizbySYMsUhnXSXKkbqV 4UhPCvrt750MiaPPgUeCY/present?ueb=true\&slide=id.g9a60b2f52 0205

Prim's Algorithm: Analysis

* Correctness:
- A bit tricky to prove, but intuitively similar to Dijkstra
- Might return to this time permitting (unlikely)
* Run-time:
- Same as Dijkstra's! O(|E|log|V| + |V|log|V|) using a priority queue
- But since $\mathrm{E} \in \mathrm{O}\left(|\mathrm{V}|^{2}\right)$, can also state as $\mathrm{O}(|\mathrm{E}| \log |\mathrm{V}|)$)

Prim's Algorithm: Student Activity

| Vertex | Known? | Distance | Previous |
| :---: | :---: | :---: | :---: |
| A | | ∞ | |
| B | | ∞ | |
| C | | ∞ | |
| D | ∞ | | |
| E | ∞ | | |
| F | ∞ | | |
| G | | | |

Lecture Outline

* Dijkstra’s Algorithm
- Review
- For Reading: Correctness and Runtime
* Minimum Spanning Tree
- Introduction
- Prim's Algorithm
- Kruskal's Algorithm, sorta

Kruskal's Algorithm: A Different Approach

* Prim's thinks vertex by vertex
- Eg, add the closest vertex to the currently reachable set
* What if you think edge by edge instead?
- Eg, start from the lightest edge; add it if it connects new things to each other (don't add it if it would create a cycle)

Kruskal's Algorithm

* Intuition: an edge-based greedy algorithm
- Builds MST by greedily adding edges
* Summary:
- Start with a forest of |V| MSTs
- Successively connect them ((ie, eliminate a tree) by adding edges
- Do not add an edge if it creates a cycle

Kruskal's Algorithm: Pseudo-pseudocode

}

```
```

```
kruskals (Graph g) {
```

```
kruskals (Graph g) {
    mst = {}
    mst = {}
    forests = buildForests(g.vertices)
    forests = buildForests(g.vertices)
    edges = buildHeap(g.edges)
    edges = buildHeap(g.edges)
    while (forests.numForests() != 1):
    while (forests.numForests() != 1):
        e = edges.deleteMin()
        e = edges.deleteMin()
        u_id = forests.getForestId(e.u)
        u_id = forests.getForestId(e.u)
        v_id = forests.getForestId(e.v)
        v_id = forests.getForestId(e.v)
        if (u_id != v_id):
        if (u_id != v_id):
            mst.addEdge (e)
            mst.addEdge (e)
            forests.connect(e.u, e.v)
```

 forests.connect(e.u, e.v)
    ```
```

ices)

```
```

ices)

```
```

ices)

```
```

Does this fit our 5-step pattern for a graph
traversal?
What data structure is this?!?!

```
```

