
CSE332, Spring 2021L25: Graph Traversals and Dijkstra’s Algorithm

Graph Traversals and Dijkstra’s
Algorithm
CSE 332 Spring 2021

Instructor: Hannah C. Tang

Teaching Assistants:

Aayushi Modi Khushi Chaudhari Patrick Murphy

Aashna Sheth Kris Wong Richard Jiang

Frederick Huyan Logan Milandin Winston Jodjana

Hamsa Shankar Nachiket Karmarkar

CSE332, Spring 2021

gradescope.com/courses/256241

L25: Graph Traversals and Dijkstra’s Algorithm

❖ Find the shortest path from A to E …

▪ … assuming this graph is unweighted

▪ … assuming this graph is weighted

▪ (don’t worry about finding a general algorithm; just find the path manually)

2

A B

D
C

F H

E

G

2 2 3

110 2
3

111

7

1

9

2

4 5

CSE332, Spring 2021L25: Graph Traversals and Dijkstra’s Algorithm

Lecture Outline

❖ Topological Sort (cont.)

❖ Traversals

▪ Introduction

▪ Trees and Graphs: Level-order / Breadth-first

▪ Trees: Three Flavors of Depth-first

▪ Graphs: Depth-first

▪ Conclusion

❖ Shortest Paths!

❖ Dijkstra’s Algorithm

3

CSE332, Spring 2021L25: Graph Traversals and Dijkstra’s Algorithm

Topological Sort

❖ Output all the vertices of a DAG in an order such that no vertex
appears before any other vertex that has a path to it

▪ A DAG represents a partial order, and a topological sort produces a
total order that is consistent with it

❖ Example input:

❖ Example output:

▪ 126, 142, 143, 311, 331, 332, 312, 341, 351, 333, 352, 440

4

Disclaimer: Do not use for official advising purposes!
Falsely implies CSE 332 is a prereq for CSE 312, etc.

MATH 126

CSE 142

CSE 143

CSE 351

CSE 311 CSE 312

CSE 331

CSE 341

CSE 332

CSE 440

CSE 352

CSE 333

CSE332, Spring 2021L25: Graph Traversals and Dijkstra’s Algorithm

TopoSort: A Naïve Algorithm

1. Label (“mark”) each vertex with its in-degree

▪ Could write directly into a vertex’s field or a parallel data structure
(e.g., array)

2. While there are vertices not yet output:

▪ Choose a vertex v with labeled with in-degree of 0

▪ Output v and conceptually remove it from the graph

▪ Foreach vertex w adjacent to v:

• Decrement the in-degree of w

5

In-
Degree

Adj
List

0

1

2

3

4 /

3

2

4

3

4

1

0

3

2
4

CSE332, Spring 2021L25: Graph Traversals and Dijkstra’s Algorithm

TopoSort: Notes

❖ Needed a vertex with in-degree of 0 to start

▪ Remember: graph must be acyclic!

❖ If >1 vertex with in-degree=0, can break ties arbitrarily

▪ Potentially many different correct orders!

6

CSE332, Spring 2021L25: Graph Traversals and Dijkstra’s Algorithm

Naïve TopoSort: Running Time?

7

labelEachVertexWithItsInDegree();

for (i=0; i < numVertices; i++){

v = findNewVertexOfDegreeZero();

put v in output

foreach w adjacent to v

w.indegree--;

}

In-
Degree

Adj
List

0

1

2

3

4 /

3

2

4

3

4

1

0

3

2
4

CSE332, Spring 2021L25: Graph Traversals and Dijkstra’s Algorithm

TopoSort’s Runtime: Doing Better

❖ Avoid searching for a zero-degree node every time!

▪ Keep the “pending” 0-degree nodes in a list, stack, queue, table, etc

▪ The order we process them affects output, but not correctness or
efficiency (as long as add/remove are both O(1))

❖ Using a queue:

▪ Label each vertex with its in-degree, enqueuing 0-degree nodes

▪ While “pending” queue is not empty:

• v = dequeue()

• Output v and remove it from the graph

• For each vertex w adjacent to v (i.e. w such that (v,w) in E):

– decrement the in-degree of w

– if new degree is 0, enqueue it

8

CSE332, Spring 2021L25: Graph Traversals and Dijkstra’s Algorithm

pending = labelAllAndReturnZeros();

while (!pending.empty()){

v = pending.dequeue();

put v in output

foreach w adjacent to v

w.indegree--;

if (w.indegree == 0)

pending.enqueue(w);

}

Better TopoSort: Running Time?

9

In-
Degree

Adj
List

0

1

2

3

4 /

3

2

4

3

4

1

0

3

2
4

CSE332, Spring 2021L25: Graph Traversals and Dijkstra’s Algorithm

Lecture Outline

❖ Topological Sort (cont.)

❖ Traversals

▪ Introduction

▪ Trees and Graphs: Level-order / Breadth-first

▪ Trees: Three Flavors of Depth-first

▪ Graphs: Depth-first

▪ Conclusion

❖ Shortest Paths!

❖ Dijkstra’s Algorithm

10

CSE332, Spring 2021L25: Graph Traversals and Dijkstra’s Algorithm

Tree and Graph Reachability

❖ Find all vertices reachable from a starting vertex v

▪ ie, there exists a path

▪ Might “do something” at each visited vertex (an iterator!)

• “Do something” is called visiting or processing a vertex

– eg, print to output, set some field, etc.

• Traversing a vertex or iterating over a vertex is different!

– Just fetch adjacent/child vertices

❖ Related Questions:

▪ Is an undirected graph connected?

▪ Is a directed graph weakly / strongly connected?

• For strongly, need a cycle back to starting vertex for each vertex in the graph

11

CSE332, Spring 2021L25: Graph Traversals and Dijkstra’s Algorithm

Tree and Graph Traversals

❖ Can answer reachability with a tree or graph traversal

▪ Iterates over every vertex in a graph in some defined ordering

▪ “Processes” or “visits” its contents

❖ There are several types of tree traversals

▪ Level Order Traversal aka Breadth-First Traversal

▪ Depth-First Traversal

• Pre-order Traversal

• In-order Traversal

• Post-order Traversal

12

CSE332, Spring 2021L25: Graph Traversals and Dijkstra’s Algorithm

Tree/Graph Traversals Follow a Pattern

1. Initialization:

▪ Create an empty data
structure to track “remaining
work”

▪ Mark start as visited

2. While we still have work,
follow the vertices:

3. Get a vertex

4. Visit/process that vertex

5. Update its neighbors (eg,
add to “remaining work” if
it’s not already there)

13

traverseGraph(Vertex start) {

pending = {start}

mark start as visited

while (!pending.empty()) {

next = pending.remove()

process(next)

foreach u adjacent to next

if (!u.marked)

mark u

pending.add(u)

}

CSE332, Spring 2021L25: Graph Traversals and Dijkstra’s Algorithm

Tree/Graph Traversal: Running Time

❖ Assuming add() and remove() are O(1), traversal is O(|E|)

▪ Remember: we default to using an adjacency list

14

CSE332, Spring 2021L25: Graph Traversals and Dijkstra’s Algorithm

Tree/Graph Traversal: Order

❖ The order we process() depends entirely on how pending.add()
and pending.remove() are implemented

▪ Queue:

• Tree: Level-order

• Graph: Breadth-first search (BFS)

▪ Stack:

• Tree: Depth-first (3 flavors!)

• Graph: Depth-first search (DFS)

▪ … and more?

❖ DFS and BFS are “big ideas” in computer science

▪ Depth: explore one part before exploring other unexplored parts

▪ Breadth: explore parts closer to the start before exploring farther
parts

15

CSE332, Spring 2021L25: Graph Traversals and Dijkstra’s Algorithm

Lecture Outline

❖ Topological Sort (cont.)

❖ Traversals

▪ Introduction

▪ Trees and Graphs: Level-order / Breadth-first

▪ Trees: Three Flavors of Depth-first

▪ Graphs: Depth-first

▪ Conclusion

❖ Shortest Paths!

❖ Dijkstra’s Algorithm

16

CSE332, Spring 2021L25: Graph Traversals and Dijkstra’s Algorithm

Trees: Level-Order

❖ Process top-to-bottom, left-to-right

▪ Goes “broad” instead of “deep”

▪ Requires a queue to track need-to-explore
vertices, which is sometimes called the fringe

❖ Resembles how we converted our binary heap (ie, a complete
tree) to its array representation

17

A C

B

D

E

F

G

levelOrderTraverse(Vertex root) {

q.enqueue(root)

while (!q.empty())

next = q.dequeue()

process(next)

foreach u in next.children

q.enqueue(u)

}

1. Initialize aux data structure
2. Have vertices in data struct?

3. Get vertex from data struct
4. Visit/process vertex
5. Update vertex’s neighbors

CSE332, Spring 2021L25: Graph Traversals and Dijkstra’s Algorithm

Graphs: Breadth-First

❖ When working with graphs, we refer to level-order traversals
as breadth-first traversals

▪ We also need to verify if a vertex has been visited – why?

18

breadthFirstTraversal(Vertex start) {

q.enqueue(start)

mark start as visited

while (!q.empty())

next = q.dequeue()

process(next)

foreach u in next.neighbors

if (!u.marked)

mark u

q.enqueue(u)

}

1. Initialize aux data structure
2. Have vertices in data struct?

3. Get vertex from data struct
4. Visit/process vertex
5. Update vertex’s neighbors

CSE332, Spring 2021L25: Graph Traversals and Dijkstra’s Algorithm

Lecture Outline

❖ Topological Sort (cont.)

❖ Traversals

▪ Introduction

▪ Trees and Graphs: Level-order / Breadth-first

▪ Trees: Three Flavors of Depth-first

▪ Graphs: Depth-first

▪ Conclusion

❖ Shortest Paths!

❖ Dijkstra’s Algorithm

19

CSE332, Spring 2021L25: Graph Traversals and Dijkstra’s Algorithm

Trees: Depth-First Traversal

❖ Process deep vertices before shallow ones

▪ Eg, visit A before F

▪ Succinct implementation if using recursion;
otherwise, requires a stack to track need-to-explore vertices

20

A C

B

D

E

F

G

traverseRecur(Node x) {
if (x == null)
return;

process(x.key)
foreach c in x.children
traverseRecur(c)

}

traverseIter(Node start) {

s.push(start)

while (!s.empty())

next = s.pop()

process(next)

foreach u in next.neighbors

q.push(u)

}

1. Initialize aux data structure
2. Have vertices in data struct?

3. Get vertex from data struct
4. Visit/process vertex
5. Update vertex’s neighbors

CSE332, Spring 2021L25: Graph Traversals and Dijkstra’s Algorithm

Trees: Depth-First: Pre-Order

❖ Pre-order “visits” the node
before traversing its children

▪ DBACFEG

21

preOrder(Node x) {

if (x == null)

return;

process(x.key)

preOrder(x.left)

preOrder(x.right)

}

A C

B

D

E

F

G

CSE332, Spring 2021L25: Graph Traversals and Dijkstra’s Algorithm

Trees: Depth-First: In-Order

❖ Pre-order “visits” the node
before traversing its children

▪ DBACFEG

❖ In-order traverses the left
child, “visits” the node, then
traverses the right child

▪ ABCDEF

22

preOrder(Node x) {

if (x == null)

return;

process(x.key)

preOrder(x.left)

preOrder(x.right)

}

inOrder(Node x) {

if (x == null)

return;

inOrder(x.left)

process(x.key)

inOrder(x.right)

}

A C

B

D

E

F

G

CSE332, Spring 2021L25: Graph Traversals and Dijkstra’s Algorithm

Trees: Depth-First: Post-Order

❖ Pre-order “visits” the node
before traversing its children

▪ DBACFEG

❖ In-order traverses the left
child, “visits” the node, then
traverses the right child

▪ ABCDEF

❖ Post-order traverses its
children before “visiting”
the node

▪ ACBEGFD

23

preOrder(Node x) {

if (x == null)

return;

process(x.key)

preOrder(x.left)

preOrder(x.right)

}

inOrder(Node x) {

if (x == null)

return;

inOrder(x.left)

process(x.key)

inOrder(x.right)

}

postOrder(Node x) {

if (x == null)

return;

postOrder(x.left)

postOrder(x.right)

process(x.key)

}

A C

B

D

E

F

G

CSE332, Spring 2021L25: Graph Traversals and Dijkstra’s Algorithm

Useful Trick for Depth-First Tree Traversals

❖ (Useful for humans, not
algorithms)

❖ Trace a path around the
graph, from the top going
counter-clockwise

▪ Pre-order: Process when you pass
LEFT side of a node

▪ In-order: Process when you pass
BOTTOM of a node

▪ Post-order: Process when you pass
the RIGHT side of a node.

9

4

2

1

3

6

8

5

7

Post-order: 4 7 8 5 2 9 6 3 1

CSE332, Spring 2021L25: Graph Traversals and Dijkstra’s Algorithm

Lecture Outline

❖ Topological Sort (cont.)

❖ Traversals

▪ Introduction

▪ Trees and Graphs: Level-order / Breadth-first

▪ Trees: Three Flavors of Depth-first

▪ Graphs: Depth-first

▪ Conclusion

❖ Shortest Paths!

❖ Dijkstra’s Algorithm

25

CSE332, Spring 2021L25: Graph Traversals and Dijkstra’s Algorithm

Trees and Graphs: Depth-First

❖ Still processing “far vertices” before “near” ones

▪ Still has recursive and iterative implementations

▪ Still must mark previously-visited nodes

26

A

C

B

D

E

F

G

depthFirstTraversal(Vertex start) {

s.push(start)

mark start as visited

while (!s.empty())

next = s.pop()

process(next)

foreach u in next.neighbors

if (!u.marked)

mark u

s.push(u)

}

1. Initialize aux data structure
2. Have vertices in data struct?

3. Get vertex from data struct
4. Visit/process vertex
5. Update vertex’s neighbors

CSE332, Spring 2021L25: Graph Traversals and Dijkstra’s Algorithm

Lecture Outline

❖ Topological Sort (cont.)

❖ Traversals

▪ Introduction

▪ Trees and Graphs: Level-order / Breadth-first

▪ Trees: Three Flavors of Depth-first

▪ Graphs: Depth-first

▪ Conclusion

❖ Shortest Paths!

❖ Dijkstra’s Algorithm

27

CSE332, Spring 2021L25: Graph Traversals and Dijkstra’s Algorithm

Saving the Path

❖ These graph traversals can answer the “reachability question”:

▪ “Is there a path from vertex x to vertex y?”

❖ But what if we want to output the actual path or its length?

▪ Eg, getting driving directions vs knowing it’s possible to get there

❖ Modifications:

▪ Instead of just “marking” a vertex, store the path’s previous vertex

• ie: when processing u, set v.prev to u

▪ When you reach the goal, follow prev fields backwards to start

• (don’t forget to reverse the answer)

▪ Path length:

• Same idea, but also store integer distance at each vertex

28

CSE332, Spring 2021L25: Graph Traversals and Dijkstra’s Algorithm

Saving the Path: Example using BFS (1 of 2)

❖ Find the shortest path from Seattle to Austin

▪ Remember marked vertices are not re-enqueued

▪ Shortest paths may not be unique

29

Seattle

San Francisco Dallas

Chicago

Salt Lake City

Austin

CSE332, Spring 2021L25: Graph Traversals and Dijkstra’s Algorithm

Saving the Path: Example using BFS (2 of 2)

❖ Find the shortest path from Seattle to Austin

▪ Remember marked vertices are not re-enqueued

▪ Shortest paths may not be unique

30

Seattle

San Francisco
Dallas

Chicago

Salt Lake City

Austin

Seattle

San Francisco
Dallas

Chicago

Salt Lake City

Austin

CSE332, Spring 2021L25: Graph Traversals and Dijkstra’s Algorithm

DFS/BFS Comparison

❖ Breadth-first search:

▪ Always finds shortest paths, i.e., finds “optimal solutions”

• Better for “what is the shortest path from x to y?”

▪ But queue may hold up to O(|V|) vertices

• Eg, at the bottom level of perfect binary tree, queue contains |V|/2 vertices

❖ Depth-first search:

▪ Can use less space when finding a path

• If longest path in the graph is p and highest out-degree is d then stack never
has more than d*p elements

31

CSE332, Spring 2021L25: Graph Traversals and Dijkstra’s Algorithm

It Doesn’t Have to be Either/Or

❖ A third approach: Iterative deepening (IDDFS):

▪ Try DFS, but don’t allow recursion more than K levels deep

▪ If fails to find a solution, increment K and start the entire search over

❖ Like BFS, finds shortest paths. Like DFS, less space

32

CSE332, Spring 2021L25: Graph Traversals and Dijkstra’s Algorithm

Lecture Outline

❖ Topological Sort

❖ Traversals

▪ Introduction

▪ Trees and Graphs: Level-order / Breadth-first

▪ Trees: Three Flavors of Depth-first

▪ Graphs: Depth-first

▪ Conclusion

❖ Shortest Paths!

❖ Dijkstra’s Algorithm

33

CSE332, Spring 2021L25: Graph Traversals and Dijkstra’s Algorithm

Single-Source Shortest Paths

❖ We’ve seen BFS finds the minimum path length from v to u

▪ Runtime: O(|E|+|V|)

❖ Actually, BFS finds the min path length from v to every vertex

▪ Still O(|E|+|V|)

▪ Worst-case runtime for single-destination is no faster than worst-
case runtime for all-destinations

34

CSE332, Spring 2021L25: Graph Traversals and Dijkstra’s Algorithm

Shortest Path: Applications

❖ Network routing

❖ Driving directions

❖ Cheap flight tickets

❖ Critical paths in project management (see textbook)

❖ …

Wait, these are all weighted graphs!

35

CSE332, Spring 2021L25: Graph Traversals and Dijkstra’s Algorithm

Single-Source Shortest Paths … for Weighted Graphs

❖ As before:

▪ All-destinations is asymptotically no harder than single-destination

❖ Unlike before:

▪ BFS will not work

36

Given a weighted graph and vertex v,
find the minimum-cost path from v to every vertex

CSE332, Spring 2021L25: Graph Traversals and Dijkstra’s Algorithm

BFS for Weighted Graphs

❖ BFS doesn’t work! Shortest path may not have fewest edges

▪ Eg: cost of flight. May be cheaper to fly through a hub than fly direct

❖ We will assume there are no negative edge weights

▪ Entire problem is ill-defined if there are negative-cost cycles

▪ Today’s algorithm is wrong if there are negative-cost edges

37

500

100
100 100

100

7

10 5

-11

CSE332, Spring 2021L25: Graph Traversals and Dijkstra’s Algorithm

Negative Cycles vs Negative Edges

❖ Negative cycles: no
algorithm can find a
finite optimal path

▪ You can always decrease the
distance by going through
the negative cycle a few
more times

❖ Negative edges: Dijkstra’s
can’t guarantee correctness

▪ But other algorithms might

38

CSE332, Spring 2021L25: Graph Traversals and Dijkstra’s Algorithm

Lecture Outline

❖ Topological Sort

❖ Traversals

▪ Introduction

▪ Trees and Graphs: Level-order / Breadth-first

▪ Trees: Three Flavors of Depth-first

▪ Graphs: Depth-first

▪ Conclusion

❖ Shortest Paths!

❖ Dijkstra’s Algorithm

39

CSE332, Spring 2021L25: Graph Traversals and Dijkstra’s Algorithm

Dijkstra’s Algorithm

❖ Named after its inventor, Edsger Dijkstra (1930-2002)

▪ Truly one of the “founders” of computer science

▪ 1972 Turing Award

▪ This algorithm is just one of his many contributions!

▪ Example quote: “Computer science is no more about computers than
astronomy is about telescopes”

❖ The idea: reminiscent of BFS, but adapted to handle weights

▪ Grow the set of vertices whose shortest distance has been computed

▪ Vertices not in the set will have a “best distance so far”

40

CSE332, Spring 2021L25: Graph Traversals and Dijkstra’s Algorithm

Dijkstra’s Algorithm: Idea

❖ Initialization:

▪ Start vertex has distance 0; all other vertices have distance

❖ At each step:

▪ Pick closest unknown vertex v

▪ Add it to the “cloud” of known vertices

▪ Update distances for vertices with edges from v

41

1. Initialize aux data structure
2. Have vertices in data struct?

3. Get vertex from data struct
4. Visit/process vertex
5. Update vertex’s neighbors

A B

D
C

F H

E

G

2 2 3

110 2
3

111

7

1

9

2

4 5

2 4??

1

4

12??

0

CSE332, Spring 2021L25: Graph Traversals and Dijkstra’s Algorithm

Dijkstra’s Algorithm: Pseudocode
dijkstra(Graph g, Vertex start) {

foreach vertex v in g:

v.distance =

v.known = false

start.distance = 0

while there are vertices in g that are not known:

select vertex v with lowest cost

v.known = true

foreach unknown v.neighbor with weight w:

d1 = v.distance + w // best path through v to u

d2 = u.distance // previous best path to u

if (d1 < d2): // if this is a better path to u

u.distance = d1

u.previous = v // backtracking info to

// recreate path

}

42

CSE332, Spring 2021L25: Graph Traversals and Dijkstra’s Algorithm

Dijkstra’s Algorithm: Important Features

❖ Once a vertex is marked known, its shortest path is known

▪ Can reconstruct path by following back-pointers (“previous” fields)

❖ While a vertex is not known, another shorter path might be
found

43

CSE332, Spring 2021L25: Graph Traversals and Dijkstra’s Algorithm

Dijkstra’s Algorithm vs BFS

dijkstra(Graph g, Vertex start) {

foreach vertex v in g:

v.distance =

v.known = false

start.distance = 0

while there are unknown vertices:

v = lowest cost unknown vertex

v.known = true

foreach unknown v.neighbor

with weight w:

d1 = v.distance + w

d2 = u.distance

if (d1 < d2):

u.distance = d1

u.previous = v

}
44

breadthFirst(Graph g,

Vertex start) {

q.enqueue(start)

mark start as visited

while (!q.empty())

next = q.dequeue()

process(next)

foreach u in next.neighbors

if (!u.marked)

mark u

q.enqueue(u)

}

CSE332, Spring 2021L25: Graph Traversals and Dijkstra’s Algorithm

Dijkstra’s Algorithm: Example #1

45

Order Added to Known Set:

Vertex Known? Distance Previous

A

B

C

D

E

F

G

H

A B

D
C

F H

E

G

2 2 3

110 2
3

111

7

1

9

2

4 5

0

CSE332, Spring 2021L25: Graph Traversals and Dijkstra’s Algorithm

Dijkstra’s Algorithm: Example #1

46

Order Added to Known Set:
A

Vertex Known? Distance Previous

A Y 0 /

B 2 A

C 1 A

D 4 A

E

F

G

H

A B

D
C

F H

E

G

2 2 3

110 2
3

111

7

1

9

2

4 5

2??

1??

4??

0

CSE332, Spring 2021L25: Graph Traversals and Dijkstra’s Algorithm

Dijkstra’s Algorithm: Example #1

47

Order Added to Known Set:
A, C

Vertex Known? Distance Previous

A Y 0 /

B 2 A

C Y 1 A

D 4 A

E 12 C

F

G

H

A B

D
C

F H

E

G

2 2 3

110 2
3

111

7

1

9

2

4 5

2??

1

4??

12??

0

CSE332, Spring 2021L25: Graph Traversals and Dijkstra’s Algorithm

Dijkstra’s Algorithm: Example #1

48

Order Added to Known Set:
A, C, B

Vertex Known? Distance Previous

A Y 0 /

B Y 2 A

C Y 1 A

D 4 A

E 12 C

F 4 B

G

H

A B

D
C

F H

E

G

2 2 3

110 2
3

111

7

1

9

2

4 5

2 4??

1

4??

12??

0

CSE332, Spring 2021L25: Graph Traversals and Dijkstra’s Algorithm

Dijkstra’s Algorithm: Example #1

49

Order Added to Known Set:
A, C, B, D

Vertex Known? Distance Previous

A Y 0 /

B Y 2 A

C Y 1 A

D Y 4 A

E 12 C

F 4 B

G

H

A B

D
C

F H

E

G

2 2 3

110 2
3

111

7

1

9

2

4 5

2 4??

1

4

12??

0

CSE332, Spring 2021L25: Graph Traversals and Dijkstra’s Algorithm

Dijkstra’s Algorithm: Example #1

50

Order Added to Known Set:
A, C, B, D, F

Vertex Known? Distance Previous

A Y 0 /

B Y 2 A

C Y 1 A

D Y 4 A

E 12 C

F Y 4 B

G

H 7 F

A B

D
C

F H

E

G

2 2 3

110 2
3

111

7

1

9

2

4 5

2 4 7??

1

4

12??

0

CSE332, Spring 2021L25: Graph Traversals and Dijkstra’s Algorithm

Dijkstra’s Algorithm: Example #1

51

Order Added to Known Set:
A, C, B, D, F, H

Vertex Known? Distance Previous

A Y 0 /

B Y 2 A

C Y 1 A

D Y 4 A

E 12 C

F Y 4 B

G 8 H

H Y 7 F

A B

D
C

F H

E

G

2 2 3

110 2
3

111

7

1

9

2

4 5

2 4 7

1

4

8??

12??

0

CSE332, Spring 2021L25: Graph Traversals and Dijkstra’s Algorithm

Dijkstra’s Algorithm: Example #1

52

Order Added to Known Set:
A, C, B, D, F, H, G

Vertex Known? Distance Previous

A Y 0 /

B Y 2 A

C Y 1 A

D Y 4 A

E 11 G

F Y 4 B

G Y 8 H

H Y 7 F

A B

D
C

F H

E

G

2 2 3

110 2
3

111

7

1

9

2

4 5

2 4 7

1

4

8

11??

0

CSE332, Spring 2021L25: Graph Traversals and Dijkstra’s Algorithm

Dijkstra’s Algorithm: Example #1

53

Order Added to Known Set:
A, C, B, D, F, H, G, E

Vertex Known? Distance Previous

A Y 0 /

B Y 2 A

C Y 1 A

D Y 4 A

E Y 11 G

F Y 4 B

G Y 8 H

H Y 7 F

🐐🐐 TADA!!! 🐐🐐
A B

D
C

F H

E

G

2 2 3

110 2
3

111

7

1

9

2

4 5

2 4 7

1

4

8

11

0

CSE332, Spring 2021L25: Graph Traversals and Dijkstra’s Algorithm

Dijkstra’s Algorithm: Example #2

54

Order Added to Known Set:

Vertex Known? Distance Previous

A

B

C

D

E

F

G

A B

C
D

F

E

G

0
2

1
2

5

1

1

1

2 6

5 3

10

