Graph Traversals and Dijkstra's Algorithm CSE 332 Spring 2021

Instructor: Hannah C. Tang

Teaching Assistants:

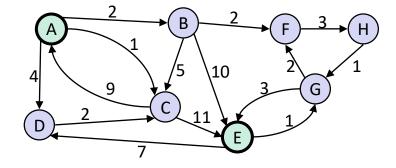
Aayushi Modi Khushi Chaudhari Aashna Sheth Kris Wong Frederick Huyan Logan Milandin Hamsa Shankar Nachiket Karmarkar

Patrick Murphy Richard Jiang Winston Jodjana

Ill gradescope

gradescope.com/courses/256241

- ✤ Find the shortest path from A to E ...
 - ... assuming this graph is unweighted
 - ... assuming this graph is weighted
 - (don't worry about finding a general algorithm; just find the path manually)



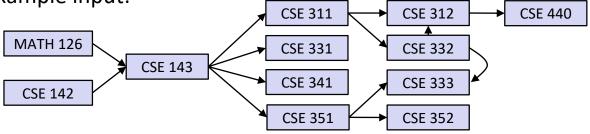
Lecture Outline

- * Topological Sort (cont.)
- Traversals
 - Introduction
 - Trees and Graphs: Level-order / Breadth-first
 - Trees: Three Flavors of Depth-first
 - Graphs: Depth-first
 - Conclusion
- Shortest Paths!
- Dijkstra's Algorithm

Topological Sort

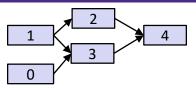
Disclaimer: Do not use for official advising purposes! Falsely implies CSE 332 is a prereq for CSE 312, etc.

- Output all the vertices of a DAG in an order such that no vertex appears before any other vertex that has a path to it
 - A DAG represents a *partial order*, and a topological sort produces a *total order* that is consistent with it
- Example input:

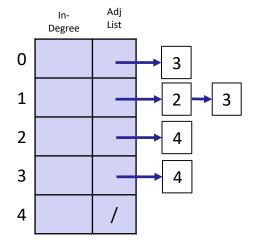


- Example output:
 - 126, 142, 143, 311, 331, 332, 312, 341, 351, 333, 352, 440

TopoSort: A Naïve Algorithm



- 1. Label ("mark") each vertex with its in-degree
 - Could write directly into a vertex's field or a parallel data structure (e.g., array)
- 2. While there are vertices not yet output:
 - Choose a vertex v with labeled with in-degree of 0
 - Output v and conceptually remove it from the graph
 - Foreach vertex w adjacent to v:
 - Decrement the in-degree of w

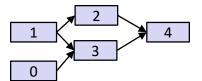


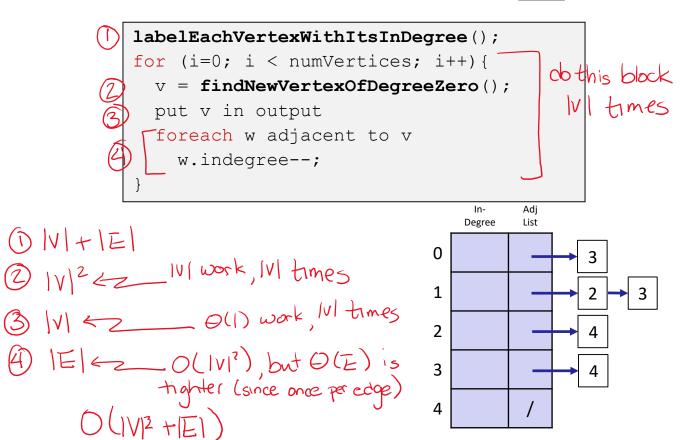
TopoSort: Notes

- Needed a vertex with in-degree of 0 to start
 - Remember: graph must be acyclic!
- If >1 vertex with in-degree=0, can break ties arbitrarily
 - Potentially many different correct orders!

7

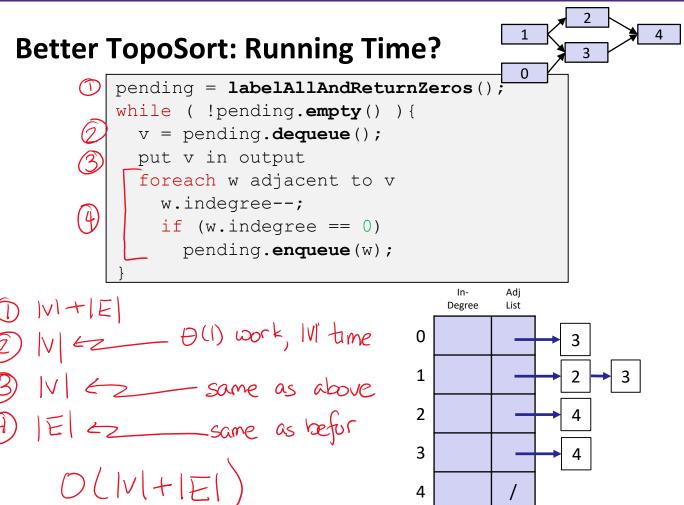
Naïve TopoSort: Running Time?





TopoSort's Runtime: Doing Better

- Avoid searching for a zero-degree node every time!
 - Keep the "pending" 0-degree nodes in a list, stack, queue, table, etc
 - The order we process them affects output, but not correctness or efficiency (as long as add/remove are both O(1))
- Sing a queue:
 - Label each vertex with its in-degree, enqueuing 0-degree nodes
 - While "pending" queue is not empty:
 - v = dequeue()
 - Output v and remove it from the graph
 - For each vertex w adjacent to v (i.e. w such that (v,w) in E):
 - decrement the in-degree of w
 - if new degree is 0, enqueue it



4

Lecture Outline

- Topological Sort (cont.)
- Traversals
 - Introduction
 - Trees and Graphs: Level-order / Breadth-first
 - Trees: Three Flavors of Depth-first
 - Graphs: Depth-first
 - Conclusion
- Shortest Paths!
- Dijkstra's Algorithm

Tree and Graph Reachability

- Find all vertices *reachable* from a starting vertex v
 - ie, there exists a path
 - Might "do something" at each visited vertex (an iterator!)
 - "Do something" is called *visiting* or *processing* a vertex
 - eg, print to output, set some field, etc.
 - Traversing a vertex or iterating over a vertex is different!
 - Just fetch adjacent/child vertices
- Related Questions:
 - Is an undirected graph connected?
 - Is a directed graph weakly / strongly connected?
 - For strongly, need a cycle back to starting vertex for each vertex in the graph

Tree and Graph Traversals

- Can answer reachability with a tree or graph traversal
 - Iterates over every vertex in a graph in some defined ordering
 - "Processes" or "visits" its contents
- There are several types of <u>tree</u> traversals
 - Level Order Traversal aka Breadth-First Traversal
 - Depth-First Traversal
 - Pre-order Traversal
 - In-order Traversal
 - Post-order Traversal

Tree/Graph Traversals Follow a Pattern

- 1. Initialization:
 - Create an empty data structure to track "remaining work"
 - Mark start as visited
- 2. While we still have work, follow the vertices:
 - 3. Get a vertex

order

depends

- **7** 4. Visit/process that vertex
 - Update its neighbors (eg, add to "remaining work" if it's not already there)

```
traverseGraph(Vertex start) {
 pending = {start}
 mark start as visited
  while (!pending.empty()) {
    next = pending.remove()
    process (next)
    foreach u adjacent to next
      if (!u.marked)
        mark u
        pending.add(u)
```

Tree/Graph Traversal: Running Time

- Assuming add() and remove() are O(1), traversal is O(|E|)
 - Remember: we default to using an adjacency list

Tree/Graph Traversal: Order

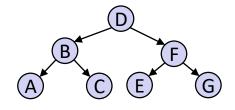
- The order we process() depends *entirely* on how pending.add() and pending.remove() are implemented
 - Queue:
 - Tree: Level-order
 - Graph: Breadth-first search (BFS)
 - Stack:
 - Tree: Depth-first (3 flavors!)
 - Graph: Depth-first search (DFS)
 - ... and more?
- ✤ DFS and BFS are "big ideas" in computer science
 - Depth: explore one part before exploring other unexplored parts
 - Breadth: explore parts closer to the start before exploring farther parts

Lecture Outline

- Topological Sort (cont.)
- Traversals
 - Introduction
 - Trees and Graphs: Level-order / Breadth-first
 - Trees: Three Flavors of Depth-first
 - Graphs: Depth-first
 - Conclusion
- Shortest Paths!
- Dijkstra's Algorithm

Trees: Level-Order / BFS

- Process top-to-bottom, left-to-right
 - Goes "broad" instead of "deep"
 - Requires a queue to track need-to-explore vertices, which is sometimes called the *fringe*



 Resembles how we converted our binary heap (ie, a complete tree) to its array representation

```
levelOrderTraverse(Vertex root) {
   q.enqueue(root)
   while (!q.empty())
    next = q.dequeue()
   process(next)
   foreach u in next.children
    q.enqueue(u)
}
```

- 1. Initialize aux data structure
- 2. Have vertices in data struct?
 - 3. Get vertex from data struct
 - 4. Visit/process vertex
 - 5. Update vertex's neighbors

Graphs: Breadth-First

- When working with graphs, we refer to level-order traversals as breadth-first traversals
 - We also need to verify if a vertex has been visited why?

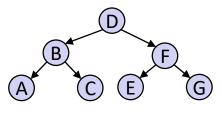
```
breadthFirstTraversal(Vertex start)
  q.enqueue (start)
                                         Initialize aux data structure
                                      1.
  mark start as visited
                                      2.
                                         Have vertices in data struct?
                                            Get vertex from data struct
                                        3.
  while (!q.empty())
                                        4. Visit/process vertex
    next = q.dequeue()
                                            Update vertex's neighbors
                                        5.
    process (next)
    foreach u in next.neighbors
       if (!u.marked)
         mark u
         q.enqueue(u)
```

Lecture Outline

- Topological Sort (cont.)
- Traversals
 - Introduction
 - Trees and Graphs: Level-order / Breadth-first
 - Trees: Three Flavors of Depth-first
 - Graphs: Depth-first
 - Conclusion
- Shortest Paths!
- Dijkstra's Algorithm

Trees: Depth-First Traversal

- Process deep vertices before shallow ones
 - Eg, visit A before F
 - Succinct implementation if using recursion;



otherwise, requires a stack to track need-to-explore vertices

```
traverseIter(Node start) {
   s.push(start)
   while (!s.empty())
      next = s.pop()
      process(next)
      foreach u in next.neighbors
        q.push(u)
}
```

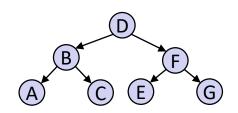
```
traverseRecur(Node x) {
    if (x == null)
        return;
    process(x.key)
    foreach c in x.children
        traverseRecur(c)
}
```

- 1. Initialize aux data structure
- 2. Have vertices in data struct?
 - 3. Get vertex from data struct
 - 4. Visit/process vertex
 - 5. Update vertex's neighbors

Trees: Depth-First: Pre-Order

- Pre-order "visits" the node before traversing its children
 - DBACFEG

<pre>preOrder(Node x) {</pre>
if (x == null)
return;
process(x.key)
<pre>preOrder(x.left)</pre>
<pre>preOrder(x.right)</pre>
}

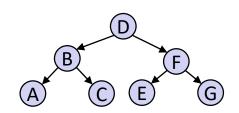


Trees: Depth-First: In-Order

- Pre-order "visits" the node before traversing its children
 - DBACFEG
- In-order traverses the left child, "visits" the node, then traverses the right child
 - ABCDEF

```
preOrder(Node x) {
    if (x == null)
        return;
    process(x.key)
    preOrder(x.left)
    preOrder(x.right)
}
```

```
inOrder(Node x) {
    if (x == null)
        return;
    inOrder(x.left)
    process(x.key)
    inOrder(x.right)
}
```



Sther

note the roots

F

Trees: Depth-First: Post-Order

Pre-order "visits" the node
 before traversing its children
 DBACFEG

- In-order traverses the left child, "visits" the node, then traverses the right child
 - ABCDEF
- Post-order traverses its children before "visiting" the node
 - ACBEGFD

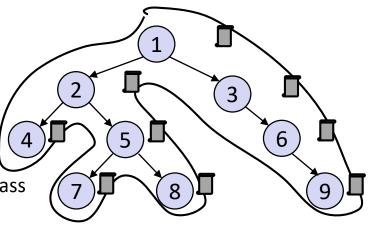
```
preOrder(Node x) {
    if (x == null)
        return;
    process(x.key)
    preOrder(x.left)
    preOrder(x.right)
}
```

```
inOrder(Node x) {
    if (x == null)
        return;
    inOrder(x.left)
    process(x.key)
    inOrder(x.right)
}
```

```
postOrder(Node x) {
    if (x == null)
        return;
    postOrder(x.left)
    postOrder(x.right)
    process(x.key)
```

Useful Trick for Depth-First Tree Traversals

- (Useful for humans, not algorithms)
- Trace a path around the graph, from the top going counter-clockwise
 - Pre-order: Process when you pass LEFT side of a node
 - In-order: Process when you pass BOTTOM of a node
 - Post-order: Process when you pass the RIGHT side of a node.



Post-order: 478529631

Lecture Outline

- Topological Sort (cont.)
- Traversals
 - Introduction
 - Trees and Graphs: Level-order / Breadth-first
 - Trees: Three Flavors of Depth-first
 - Graphs: Depth-first
 - Conclusion
- Shortest Paths!
- Dijkstra's Algorithm

Trees and Graphs: Depth-First

- Still processing "far vertices" before "near" ones,
 - Still has recursive and iterative implementations
 - Still must mark previously-visited nodes

```
es B F G
```

```
depthFirstTraversal (Vertex start)
  s.push(start)
                                     1.
                                         Initialize aux data structure
  mark start as visited
                                     2.
                                         Have vertices in data struct?
                                        3.
                                           Get vertex from data struct
  while (!s.empty())
                                           Visit/process vertex
                                        4.
    next = s.pop()
                                            Update vertex's neighbors
                                        5.
    process (next)
    foreach u in next.neighbors
       if (!u.marked)
         mark u
         s.push(u)
```

Lecture Outline

- Topological Sort (cont.)
- Traversals
 - Introduction
 - Trees and Graphs: Level-order / Breadth-first
 - Trees: Three Flavors of Depth-first
 - Graphs: Depth-first
 - Conclusion
- Shortest Paths!
- Dijkstra's Algorithm

Saving the Path

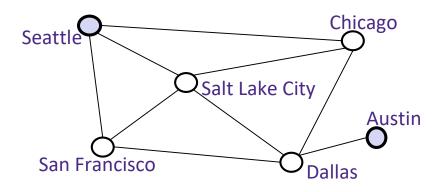
- These graph traversals can answer the "reachability question":
 - "<u>Is there</u> a path from vertex x to vertex y?"
- * But what if we want to *output the actual path* or its length?
 - Eg, getting driving directions vs knowing it's possible to get there

Modifications:

- Instead of just "marking" a vertex, store the path's <u>previous vertex</u>
 - ie: when processing u, set v.prev to u
- When you reach the goal, follow prev fields backwards to start
 - (don't forget to reverse the answer)
- Path length:
 - Same idea, but also store integer distance at each vertex

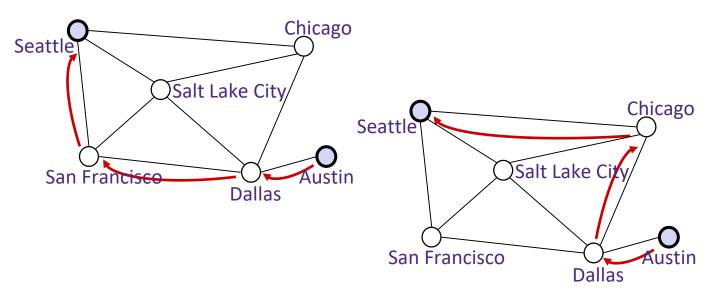
Saving the Path: Example using BFS (1 of 2)

- Find the shortest path from Seattle to Austin
 - Remember marked vertices are not re-enqueued
 - Shortest paths may not be unique



Saving the Path: Example using BFS (2 of 2)

- Find the shortest path from Seattle to Austin
 - Remember marked vertices are not re-enqueued
 - Shortest paths may not be unique



DFS/BFS Comparison

- Breadth-first search:
 - Always finds shortest paths, i.e., finds "optimal solutions"
 - Better for "what is the shortest path from x to y?"
 - But queue may hold up to O(|V|) vertices
 - Eg, at the bottom level of perfect binary tree, queue contains |V|/2 vertices
- Depth-first search:
 - Can use less space when finding a path
 - If longest path in the graph is p and highest out-degree is d then stack never has more than d*p elements

It Doesn't Have to be Either/Or

- A third approach: Iterative deepening (IDDFS):
 - Try DFS, but don't allow recursion more than K levels deep
 - If fails to find a solution, increment K and start the entire search over
- Like BFS, finds shortest paths. Like DFS, less space

Lecture Outline

- Topological Sort
- Traversals
 - Introduction
 - Trees and Graphs: Level-order / Breadth-first
 - Trees: Three Flavors of Depth-first
 - Graphs: Depth-first
 - Conclusion
- Shortest Paths!
- Dijkstra's Algorithm

Single-Source Shortest Paths

- $\ast\,$ We've seen BFS finds the minimum path length from ${\bf v}$ to ${\bf u}$
 - Runtime: O(|E|+|V|)
- Actually, BFS finds the min path length from v to every vertex
 - Still O(|E|+|V|)
 - Worst-case runtime for single-destination is no faster than worstcase runtime for all-destinations

Shortest Path: Applications

- Network routing
- Driving directions
- Cheap flight tickets
- Critical paths in project management (see textbook)

÷ ...

Wait, these are all weighted graphs!

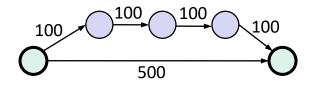
Single-Source Shortest Paths ... for Weighted Graphs

Given a weighted graph and vertex **v**, find the minimum-cost path from **v** to every vertex

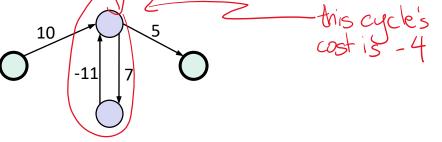
- As before:
 - All-destinations is asymptotically no harder than single-destination
- Unlike before:
 - BFS will not work

BFS for Weighted Graphs

- BFS doesn't work! Shortest path may not have fewest edges
 - Eg: cost of flight. May be cheaper to fly through a hub than fly direct



- * We will assume there are *no negative edge weights*
 - Entire problem is *ill-defined* if there are negative-cost cycles
 - Today's algorithm is wrong if there are negative-cost edges



38

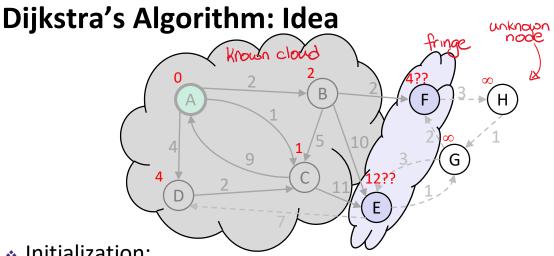
Negative Cycles vs Negative Edges

- Negative cycles: no algorithm can find a finite optimal path
 - You can always decrease the distance by going through the negative cycle a few more times
- Negative edges: Dijkstra's can't guarantee correctness
 - But other algorithms might

Lecture Outline

- Topological Sort
- Traversals
 - Introduction
 - Trees and Graphs: Level-order / Breadth-first
 - Trees: Three Flavors of Depth-first
 - Graphs: Depth-first
 - Conclusion
- Shortest Paths!
- bijkstra's Algorithm
 biger
 big

- Named after its inventor, Edsger Dijkstra (1930-2002)
 - Truly one of the "founders" of computer science
 - 1972 Turing Award
 - This algorithm is just one of his many contributions!
 - Example quote: "Computer science is no more about computers than astronomy is about telescopes"
- The idea: reminiscent of BFS, but adapted to handle weights
 - Grow the set of vertices whose shortest distance has been computed
 - Vertices not in the set will have a "best distance so far"



- Initialization:
 - Start vertex has distance 0; all other vertices have distance ∞
- At each step:
 - Pick closest unknown vertex v
 - Add it to the "cloud" of known vertices
 - Update distances for vertices with edges from v

- 1. Initialize aux data structure
- 2. Have vertices in data struct?
 - 3. Get vertex from data struct
 - Visit/process vertex 4.
 - 5. Update vertex's neighbors

Dijkstra's Algorithm: Pseudocode

```
dijkstra(Graph q, Vertex start) {
  foreach vertex v in q:
   v.distance = \infty
   v.known = false
  start.distance = 0
 while there are vertices in q that are not known:
    select vertex v with lowest cost
   v.known = true
    foreach unknown v.neighbor with weight w:
     d1 = v.distance + w // best path through v to u
     d2 = u.distance // previous best path to u
     if (d1 < d2): // if this is a better path to u
       u.distance = d1
       u.previous = v // backtracking info to
                          // recreate path
```

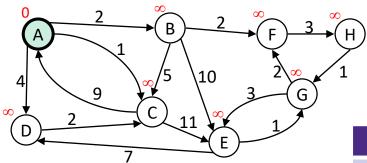
Dijkstra's Algorithm: Important Features

- Once a vertex is marked known, its shortest path is known
 - Can reconstruct path by following back-pointers ("previous" fields)
- While a vertex is not known, another shorter path might be found

Dijkstra's Algorithm vs BFS

```
dijkstra(Graph q, Vertex start) {
  foreach vertex v in q:
    v.distance = \infty
    v.known = false
  start.distance = 0
  while there are unknown vertices:
    v = lowest cost unknown vertex
    v.known = true
    foreach unknown v.neighbor
    with weight w:
      d1 = v.distance + w
      d2 = u.distance
      if (d1 < d2):
        u.distance = d1
        u.previous = v
```

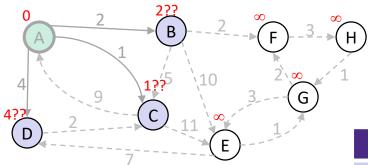
```
breadthFirst(Graph q,
             Vertex start) {
  q.enqueue (start)
  mark start as visited
  while (!q.empty())
    next = q.dequeue()
    process (next)
    foreach u in next.neighbors
      if (!u.marked)
        mark u
        q.enqueue(u)
```



Order Added to Known Set:

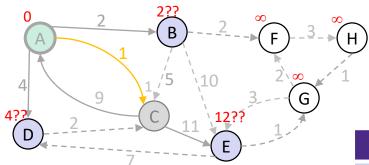
Best distance from A, so far

Vertex	Known?	Distance	Previous
А		∞	
В		∞	
С		∞	
D		∞	
E		∞	
F		∞	
G		∞	
н		∞	



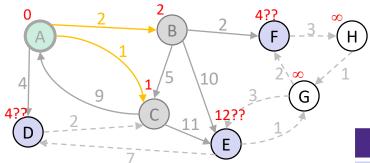
Order Added to Known Set: A

Vertex	Known?	Distance	Previous
А	Y	0	/
В		≤2	Α
С		≤1	Α
D		≤4	Α
E		∞	
F		∞	
G		∞	
н		∞	



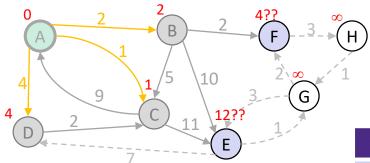
Order Added to Known Set: A, C

Vertex	Known?	Distance	Previous
А	Y	0	/
В		≤ 2	А
С	Y	1	А
D		≤4	А
E		≤ 12	С
F		∞	
G		∞	
Н		∞	



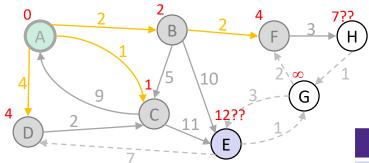
Order Added to Known Set: A, C, B

Vertex	Known?	Distance	Previous
А	Y	0	/
В	Y	2	А
С	Y	1	А
D		≤4	А
E		≤ 12	С
F		≤ 4	В
G		∞	
н		∞	



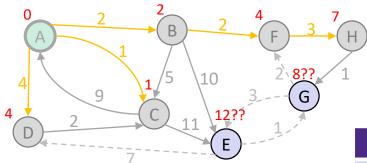
Order Added to Known Set: A, C, B, D

Vertex	Known?	Distance	Previous
А	Y	0	/
В	Y	2	А
С	Y	1	А
D	Y	4	А
E		≤ 12	С
F		≤ 4	В
G		∞	
Н		∞	



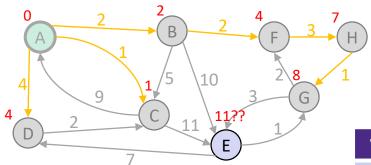
Order Added to Known Set: A, C, B, D, F

Vertex	Known?	Distance	Previous
А	Y	0	/
В	Y	2	А
С	Y	1	А
D	Y	4	А
E		≤ 12	С
F	Y	4	В
G		∞	
н		≤7	F



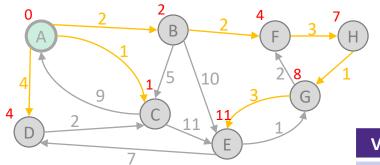
Order Added to Known Set: A, C, B, D, F, H

Vertex	Known?	Distance	Previous
А	Y	0	/
В	Y	2	А
С	Y	1	А
D	Y	4	А
E		≤ 12	С
F	Y	4	В
G		≤ 8	н
н	Y	7	F



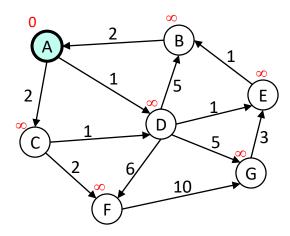
Order Added to Known Set: A, C, B, D, F, H, G

Vertex	Known?	Distance	Previous
А	Y	0	/
В	Y	2	А
С	Y	1	А
D	Y	4	А
E		≤11	G
F	Y	4	В
G	Y	8	Н
Н	Y	7	F



Order Added to Known Set: A, C, B, D, F, H, G, E (b) (b) TADA!!! (b) (b)

Vertex	Known?	Distance	Previous
А	Y	0	/
В	Y	2	А
С	Y	1	А
D	Y	4	А
E	Y	11	G
F	Y	4	В
G	Y	8	Н
н	Y	7	F



Order Added to Known Set:

Vertex	Known?	Distance	Previous
А		∞	
В		∞	
С		∞	
D		∞	
E		∞	
F		∞	
G		∞	