YA UNIVERSITY of WASHINGTON L25: Graph Traversals and Dijkstra’s Algorithm CSE332, Spring 2021

Graph Traversals and Dijkstra’s
Algorithm

CSE 332 Spring 2021

Instructor: Hannah C. Tang

Teaching Assistants:

Aayushi Modi  Khushi Chaudhari Patrick Murphy
Aashna Sheth  Kris Wong Richard Jiang
Frederick Huyan Logan Milandin Winston Jodjana
Hamsa Shankar Nachiket Karmarkar



W UNIVERSITY of WASHINGTON L25: Graph Traversals and Dijkstra’s Algorithm CSE332, Spring 2021

llII gr ad e S Cop e gradescope.com/courses/256241

« Find the shortest path from Ato E ...
® .. assuming this graph is unweighted
® .. assuming this graph is weighted

= (don’t worry about finding a general algorithm; just find the path manually)




YA UNIVERSITY of WASHINGTON

L25: Graph Traversals and Dijkstra’s Algorithm

Lecture Outline

+ Topological Sort (cont.)

+ Traversals
® Introduction
® Trees and Graphs: Level-order / Breadth-first
® Trees: Three Flavors of Depth-first
® Graphs: Depth-first
= Conclusion

« Shortest Paths!

< Dijkstra’s Algorithm

CSE332, Spring 2021



W UNIVERSITY of WASHINGTON L25: Graph Traversals and Dijkstra’s Algorithm CSE332, Spring 2021

Disclaimer: Do not use for official advising purposes!

T0p0|0gica| So rt Falsely implies CSE 332 is a prereq for CSE 312, etc.

« QOutput all the vertices of a DAG in an order such that no vertex
appears before any other vertex that has a path to it

= A DAG represents a partial order, and a topological sort produces a
total order that is consistent with it

« Example input:

CSE 311 » CSE 312 » CSE 440
7Y
MATH 126 CSE 331 CSE 332
CSE 143 >
CSE 341 E
CSE 142 CSE 333
CSE 351 » CSE 352

+ Example output:
= 126, 142, 143, 311, 331, 332, 312, 341, 351, 333, 352, 440



W UNIVERSITY of WASHINGTON L25: Graph Traversals and Dijkstra’s Algorithm CSE332, Spring 2021

TopoSort: A Naive Algorithm

1. Label (“mark”) each vertex with its in-degree
®=  Could write directly into a vertex’s field or a parallel data structure
(e.g., array)
2. While there are vertices not yet output:
®= Choose a vertex v with labeled with in-degree of 0
®  Qutput v and conceptually remove it from the graph

=  Foreach vertex w adjacent to v: oo p
Decrement the in-degree of w 0
» 3
1 > 2 = 3
2 » 4
3 > 4
4 /
5




W UNIVERSITY of WASHINGTON L25: Graph Traversals and Dijkstra’s Algorithm CSE332, Spring 2021

TopoSort: Notes

+ Needed a vertex with in-degree of 0 to start
= Remember: graph must be acyclic!

« If >1 vertex with in-degree=0, can break ties arbitrarily
= Potentially many different correct orders!



W UNIVERSITY of WASHINGTON L25: Graph Traversals and Dijkstra’s Algorithm CSE332, Spring 2021

Naive TopoSort: Running Time?

Q) labelEachVertexWithItsInDegree () ;
for (i=0; i < numVertices; i++) { |

v = findNewVertexOfDegreeZero () ; dD{Me,Ekxi:
) Pput v in output V|| Hmes

—

foreach w adjacent to v

) w.indegree—--; _J
}

In- Adj
Degree List

() GWQ;)

® N+ \E| . e
@ |y|* ez V1R, V) fimes 1 e
@ Wl c2____ o) wok, Wl trmes , iy
D Elea_o(Iv®) bt OE) s J 2
’hzféerésnuzon&:??cbjé> /
4
OQvE +ED :




W UNIVERSITY of WASHINGTON L25: Graph Traversals and Dijkstra’s Algorithm CSE332, Spring 2021

TopoSort’s Runtime: Doing Better

+ Avoid searching for a zero-degree node every time!
= Keep the “pending” 0-degree nodes in a list, stack, queue, table, etc

® The order we process them affects output, but not correctness or
efficiency ( )

+ Using a queue:
= Label each vertex with its in-degree, enqueuing 0-degree nodes
= While “pending” queue is not empty:
- v =dequeue()
« Output v and remove it from the graph
- For each vertex w adjacent to v (i.e. w such that (v,w) in E):

— decrement the in-degree of w
— if new degree is 0, enqueue it



W UNIVERSITY of WASHINGTON L25: Graph Traversals and Dijkstra’s Algorithm CSE332, Spring 2021

Better TopoSort: Running Time?

(D| pending = labelAllAndReturnZeros () ;

N while ( !pending.empty () ) {

@D v = pending.dequeue () ;

C) put v in output

foreach w adjacent to v
w.lilndegree--;

GD if (w.indegree == 0)

pending.enqueue (w) ;

}
In- Adj

@ l\/\ — l E \ | Degree List
Cj> h/léizf”'—— B ) abfk)lw Yime 0

B V| = —same as aove ' gl
® el ez _came 6s ‘edor

DLvl+Igl) 1

4
w

N
\ 4
I




YA UNIVERSITY of WASHINGTON

L25: Graph Traversals and Dijkstra’s Algorithm

Lecture Outline

+ Topological Sort (cont.)

+ Traversals
® Introduction
® Trees and Graphs: Level-order / Breadth-first
® Trees: Three Flavors of Depth-first
® Graphs: Depth-first
= Conclusion

« Shortest Paths!

< Dijkstra’s Algorithm

CSE332, Spring 2021

10



W UNIVERSITY of WASHINGTON L25: Graph Traversals and Dijkstra’s Algorithm CSE332, Spring 2021

Tree and Graph Reachability

« Find all vertices reachable from a starting vertex v
" je, there exists a path

= Might “do something” at each visited vertex (an iterator!)
- “Do something” is called visiting or processing a vertex

— eg, print to output, set some field, etc.
- Traversing a vertex or iterating over a vertex is different!

— Just fetch adjacent/child vertices

+ Related Questions:
® |s an undirected graph connected?

= |s a directed graph weakly / strongly connected?
- For strongly, need a cycle back to starting vertex for each vertex in the graph

11



W UNIVERSITY of WASHINGTON L25: Graph Traversals and Dijkstra’s Algorithm CSE332, Spring 2021

Tree and Graph Traversals

« Can answer reachability with a tree or graph traversal
" |terates over every vertex in a graph in some defined ordering
= “Processes” or “visits” its contents

« There are several types of tree traversals
= Level Order Traversal aka Breadth-First Traversal

® Depth-First Traversal
« Pre-order Traversal
« In-order Traversal
- Post-order Traversal

12



W UNIVERSITY of WASHINGTON

L25: Graph Traversals and Dijkstra’s Algorithm

Tree/Graph Traversals Follow a Pattern

1. Initialization:

® Create an empty data
structure to track “remaining
work”

= Mark start as visited

2. While we still have work,
follow the vertices:

3. Get a vertex

4.

-
ocdec

cerends

on migo

Visit/process that vertex

Update its neighbors (eg,
add to “remaining work” if
it’s not already there)

CSE332, Spring 2021

traverseGraph (Vertex start) {
{start}
mark start as visited

pending =

while (!pending.empty()) {

next = pending.remove ()

process (next)

foreach u adjacent to next
if ('u.marked)

mark u

pending.add (u)

13




W UNIVERSITY of WASHINGTON L25: Graph Traversals and Dijkstra’s Algorithm CSE332, Spring 2021

Tree/Graph Traversal: Running Time

« Assuming add() and remove() are O(1), traversal is O(|E|)
= Remember: we default to using an adjacency list

14



W UNIVERSITY of WASHINGTON

L25: Graph Traversals and Dijkstra’s Algorithm CSE332, Spring 2021

Tree/Graph Traversal: Order

« The order we process() depends entirely on how pending.add()
and pending.remove() are implemented
" Queue:
« Tree: Level-order
 Graph: Breadth-first search (BFS)
= Stack:
« Tree: Depth-first (3 flavors!)
« Graph: Depth-first search (DFS)
= ..and more?

« DFS and BFS are “big ideas” in computer science

= Depth: explore one part before exploring other unexplored parts

= Breadth: explore parts closer to the start before exploring farther
parts

15



YA UNIVERSITY of WASHINGTON

L25: Graph Traversals and Dijkstra’s Algorithm

Lecture Outline

+ Topological Sort (cont.)

« Traversals
" |ntroduction

= Trees and Graphs: Level-order / Breadth-first
® Trees: Three Flavors of Depth-first

® Graphs: Depth-first

= Conclusion

« Shortest Paths!

< Dijkstra’s Algorithm

CSE332, Spring 2021

16



YA UNIVERSITY of WASHINGTON L25: Graph Traversals and Dijkstra’s Algorithm CSE332, Spring 2021

Trees: Level-Order / BF S
(D

+ Process top-to-bottom, left-to-right 0

(F)
@ ©E G

= Goes “broad” instead of “deep”

= Requires a queue to track need-to-explore
vertices, which is sometimes called the fringe

« Resembles how we converted our binary heap (ie, a complete
tree) to its array representation

levelOrderTraverse (Vertex root) |

g.enqueue (root) 1.
while (!g.empty/())

next = g.dequeue ()

Initialize aux data structure
2. Have vertices in data struct?
process (next) 3. Get vertex from data struct

foreach u in next.children 4.  Visit/process vertex
gq.enqueue (u) 5. Update vertex’s neighbors

17



YA UNIVERSITY of WASHINGTON L25: Graph Traversals and Dijkstra’s Algorithm CSE332, Spring 2021

Graphs: Breadth-First

« When working with graphs, we refer to level-order traversals

as breadth-first traversals

= We also need to verify if a vertex has been visited — why?

breadthFirstTraversal (Vertex start)

{

g.enqueue (start)
mark start as visited

while (!g.empty())
next = g.dequeue ()
process (next)

1.
2.

3.
4.
5.

Initialize aux data structure

Have vertices in data struct?
Get vertex from data struct
Visit/process vertex
Update vertex’s neighbors

foreach u in next.neighbors
if (!u.marked)
mark u
J.enqueue (u)

18




YA UNIVERSITY of WASHINGTON

L25: Graph Traversals and Dijkstra’s Algorithm

Lecture Outline

+ Topological Sort (cont.)

+ Traversals
® Introduction
® Trees and Graphs: Level-order / Breadth-first
® Trees: Three Flavors of Depth-first
® Graphs: Depth-first
= Conclusion

« Shortest Paths!

< Dijkstra’s Algorithm

CSE332, Spring 2021

19



YA UNIVERSITY of WASHINGTON

Trees: Depth-First Traversal

+ Process deep vertices before shallow ones

= Eg, visit A before F

L25: Graph Traversals and Dijkstra’s Algorithm

= Succinct implementation if using recursion;
otherwise, requires a stack to track need-to-explore vertices

traverselIter (Node start)
s.push (start)
while (!s.empty/())
next = s.pop ()
process (next)

g.push (u)
}

{

foreach u in next.neighbors

(D)
(8) (F)
@ ©E G

1.
2.

3.
4.
5.

Initialize aux data structure

Have vertices in data struct?
Get vertex from data struct
Visit/process vertex
Update vertex’s neighbors

traverseRecur (Node x) {
if (x == null)
return;
process (x. key)
foreach ¢ in x.children
traverseRecur (c)

20

CSE332, Spring 2021




W UNIVERSITY of WASHINGTON L25: Graph Traversals and Dijkstra’s Algorithm CSE332, Spring 2021

preOrder (Node x) {
Trees: Depth-First: Pre-Order | *° > — =0
process (x.key)
preOrder (x.left)

o _ I{ V24
« Pre-order “visits” the node preorder (x.right)

before traversing its children }
= DBACFEG

® ©E G

21



W UNIVERSITY of WASHINGTON L25: Graph Traversals and Dijkstra’s Algorithm CSE332, Spring 2021

preOrder (Node x) {
Trees: Depth-First: In-Order AE fie == il
return;
process (x.key)
preOrder (x.left)

v _ I{ V24
« Pre-order “visits” the node preorder (x.right)

before traversing its children }
" DBACFEG inOrder (Node x) {
if (x == null)
return;
« In-order traverses the left inOrder (x.left)
child, “visits” the node, then process (x.key)
. . inOrder (x.right)
traverses the right child |
= ABCDEF

® ©E G

22



YA UNIVERSITY of WASHINGTON

L25: Graph Traversals and Dijkstra’s Algorithm

CSE332, Spring 2021

preOrder (Node x) {

Trees: Depth-First: Post-Order | ** * = »ui0)

return;
process (x.key)
. 7RSI preOrder (x.left)
—o + Pre-order “visits” the node preorder (x . right)
é before traversing its children }
(@“ DBACFEG inOrder (Node x) {
- if (x == null)
= return;
8 « In-order traverses the left inOrder (x.left)
9 child, “visits” the node, then process (x.key)
- . . inOrder (x.right)
v traverses the right child |
o = ABF
e

postOrder (Node x) {
if (x == null)
. return;
Po'st-order travers§§ !ts O (55t
children before “visiting”

postOrder (x.right)
the node process (x.key)

23



YA UNIVERSITY of WASHINGTON L25: Graph Traversals and Dijkstra’s Algorithm CSE332, Spring 2021

Useful Trick for Depth-First Tree Traversals

« Trace a path around the
graph, from the top going
counter-clockwise

= Pre-order: Process when you pass
LEFT side of a hode

® |In-order: Process when you pass
BOTTOM of a node

® Post-order: Process when you pass
the RIGHT side of a node.

Post-order: 478529631




YA UNIVERSITY of WASHINGTON

L25: Graph Traversals and Dijkstra’s Algorithm

Lecture Outline

+ Topological Sort (cont.)

+ Traversals
® Introduction
® Trees and Graphs: Level-order / Breadth-first
® Trees: Three Flavors of Depth-first
= Graphs: Depth-first
= Conclusion

« Shortest Paths!

< Dijkstra’s Algorithm

CSE332, Spring 2021

25



YA UNIVERSITY of WASHINGTON L25: Graph Traversals and Dijkstra’s Algorithm CSE332, Spring 2021

Trees and Graphs: Depth-First

< Still processing “far vertices” before “near” ones
= Still has recursive and iterative implementations

® Still must mark previously-visited nodes

depthFirstTraversal (Vertex start) ({

s.push (start)
mark start as visited

while (!s.empty/())
next = s.pop ()
process (next)

1.
2.

3.
4.
5.

Initialize aux data structure

Have vertices in data struct?
Get vertex from data struct
Visit/process vertex
Update vertex’s neighbors

foreach u in next.neighbors
if (!u.marked)
mark u
s.push (u)

26



YA UNIVERSITY of WASHINGTON

L25: Graph Traversals and Dijkstra’s Algorithm

Lecture Outline

+ Topological Sort (cont.)

+ Traversals
® Introduction
® Trees and Graphs: Level-order / Breadth-first
® Trees: Three Flavors of Depth-first
® Graphs: Depth-first
= Conclusion

« Shortest Paths!

< Dijkstra’s Algorithm

CSE332, Spring 2021

27



W UNIVERSITY of WASHINGTON L25: Graph Traversals and Dijkstra’s Algorithm CSE332, Spring 2021

Saving the Path

« These graph traversals can answer the “reachability question”:
= “Is there a path from vertex x to vertex y?”

« But what if we want to output the actual path or its length?

= Eg, getting driving directions vs knowing it’s possible to get there

« Modifications:

" Instead of just “marking” a vertex, store the path’s previous vertex
- ie: when processing u, set v.prevtou

= When you reach the goal, follow prev fields backwards to start
- (don’t forget to reverse the answer)

= Path length:
- Same idea, but also store integer distance at each vertex

28



W UNIVERSITY of WASHINGTON L25: Graph Traversals and Dijkstra’s Algorithm CSE332, Spring 2021

Saving the Path: Example using BFS (1 of 2)

+ Find the shortest path from Seattle to Austin
= Remember marked vertices are not re-enqueued
= Shortest paths may not be unique

San Francisco

29



W UNIVERSITY of WASHINGTON L25: Graph Traversals and Dijkstra’s Algorithm CSE332, Spring 2021

Saving the Path: Example using BFS (2 of 2)

+ Find the shortest path from Seattle to Austin
= Remember marked vertices are not re-enqueued
= Shortest paths may not be unique

Chicago
O

Chicago
O

a}cisee—’ (Us—Austin

Dallas

San Fr

O
(U Austin

Dallas

San Francisco

30



W UNIVERSITY of WASHINGTON L25: Graph Traversals and Dijkstra’s Algorithm CSE332, Spring 2021

DFS/BFS Comparison

«» Breadth-first search:

= Always finds shortest paths, i.e., finds “optimal solutions”
- Better for “what is the shortest path from x to y?”
= But queue may hold up to O(|V|) vertices
- Eg, at the bottom level of perfect binary tree, queue contains |V|/2 vertices

+ Depth-first search:

® Can use less space when finding a path

- If longest path in the graph is p and highest out-degree is d then stack never
has more than d*p elements

31



YA UNIVERSITY of WASHINGTON

L25: Graph Traversals and Dijkstra’s Algorithm

CSE332, Spring 2021

It Doesn’t Have to be Either/Or

+ A third approach: Iterative deepening (IDDFS):
= Try DFS, but don’t allow recursion more than K levels deep

= |f fails to find a solution, increment K and start the entire search over

<« Like BFS, finds shortest paths. Like DFS, less space

32



YA UNIVERSITY of WASHINGTON

L25: Graph Traversals and Dijkstra’s Algorithm

Lecture Outline

+ Topological Sort

+ Traversals
® Introduction
® Trees and Graphs: Level-order / Breadth-first
® Trees: Three Flavors of Depth-first
® Graphs: Depth-first
= Conclusion

«» Shortest Paths!

< Dijkstra’s Algorithm

CSE332, Spring 2021

33



YA UNIVERSITY of WASHINGTON

L25: Graph Traversals and Dijkstra’s Algorithm CSE332, Spring 2021

Single-Source Shortest Paths

« We’ve seen BFS finds the minimum path length from v to u
= Runtime: O(|E|+|V])

<« Actually, BFS finds the min path length from v to every vertex
= Still O(|E[+|V|)

= Worst-case runtime for single-destination is no faster than worst-
case runtime for all-destinations

34



CSE332, Spring 2021

YA UNIVERSITY of WASHINGTON L25: Graph Traversals and Dijkstra’s Algorithm

Shortest Path: Applications

« Network routing

<« Driving directions

+ Cheap flight tickets

<« Critical paths in project management (see textbook)

Wait, these are all weighted graphs!



W UNIVERSITY of WASHINGTON L25: Graph Traversals and Dijkstra’s Algorithm CSE332, Spring 2021

Single-Source Shortest Paths ... for Weighted Graphs

Given a weighted graph and vertex v,
find the minimum-cost path from v to every vertex

+ As before:

= All-destinations is asymptotically no harder than single-destination
+ Unlike before:

= BFS will not work

36



W UNIVERSITY of WASHINGTON L25: Graph Traversals and Dijkstra’s Algorithm CSE332, Spring 2021

BFS for Weighted Graphs

« BFS doesn’t work! Shortest path may not have fewest edges
= Eg: cost of flight. May be cheaper to fly through a hub than fly direct

100 100
100 100

500

« We will assume there are no negative edge weights
® Entire problem is ill-defined if there are negative-cost cycles
" Today’s algorithm is wrong if there are negative-cost edges

37




W UNIVERSITY of WASHINGTON L25: Graph Traversals and Dijkstra’s Algorithm CSE332, Spring 2021

Negative Cycles vs Negative

o~

Edges

;A g

NIV49 F10HM

« Negative cycles: no INJIOFHONI 1SYI

algorithm can find a
finite optimal path
® You can always decrease the X

distance by going through i B
; \ . CAN YOU BEAT THE BEST?

the negative cycle a few

more times

INTOSTHE"SPIDER:VERSE collec
N THEATER

amount of time,

+ Negative edges: Dijkstra’s
can’t guarantee correctness
= But other algorithms might

38



YA UNIVERSITY of WASHINGTON

L25: Graph Traversals and Dijkstra’s Algorithm

Lecture Outline

+ Topological Sort

+ Traversals
® Introduction
® Trees and Graphs: Level-order / Breadth-first
® Trees: Three Flavors of Depth-first
® Graphs: Depth-first
= Conclusion

« Shortest Paths!

<« Dijkstra’s Algorithm

CSE332, Spring 2021

39



W UNIVERSITY of WASHINGTON L25: Graph Traversals and Dijkstra’s Algorithm CSE332, Spring 2021

‘tra s Algorithm

> Named after its inventor, Edsger Dijkstra (1930-2002)

® Truly one of the “founders” of computer science
® 1972 Turing Award

® This algorithm is just one of his many contributions!

= Example quote: “Computer science is no more about computers than
astronomy is about telescopes”

« The idea: reminiscent of BFS, but adapted to handle weights

= Grow the set of vertices whose shortest distance has been computed
= Vertices not in the set will have a “best distance so far”

40



W UNIVERSITY of WASHINGTON L25: Graph Traversals and Dijkstra’s Algorithm CSE332, Spring 2021

« Initialization:

= Start vertex has distance 0; all other vertices have distance o

1. |Initialize aux data structure

+ At each step: 2. Have vertices in data struct?
. 3. Get vertex from data struct
® Pick closest unknown vertex v 4. Visit/process vertex

= Add it to the “cloud” of known vertices 5. Update vertex’s neighbors

= Update distances for vertices with edges from v

41



YA UNIVERSITY of WASHINGTON L25: Graph Traversals and Dijkstra’s Algorithm CSE332, Spring 2021

Dijkstra’s Algorithm: Pseudocode

dijkstra (Graph g, Vertex start) {
foreach vertex v in g:
v.distance = o
v.known = false
start.distance = 0

while there are vertices in g that are not known:
select vertex v with lowest cost
v.known = true
foreach unknown v.neighbor with weight w:
dl = v.distance + w // best path through v to u

d2 = u.distance // previous best path to u

if (dl < d2): // if this is a better path to u
u.distance = dl
u.previous = v // backtracking info to

// recreate path

42



W UNIVERSITY of WASHINGTON L25: Graph Traversals and Dijkstra’s Algorithm CSE332, Spring 2021

Dijkstra’s Algorithm: Important Features

« Once a vertex is marked known, its shortest path is known
= Can reconstruct path by following back-pointers (“previous” fields)

< While a vertex is not known, another shorter path might be
found

43



YA UNIVERSITY of WASHINGTON L25: Graph Traversals and Dijkstra’s Algorithm CSE332, Spring 2021

Dijkstra’s Algorithm vs BFS

dijkstra (Graph g, Vertex start) { breadthFirst (Graph g,
Vertex start) {
foreach vertex v in g: g.enqueue (start)
v.distance = ®©
v.known = false mark start as visited
start.distance = 0

while (!g.empty())

while there are unknown vertices:
next = g.dequeue ()

v = lowest cost unknown vertex

v.known = true process (next)

foreach unknown v.neighbor foreach u in next.neighbors
with weight w:
dl = v.distance + w if (!u.marked)
d2 = u.distance mark u
if (dl < d2):
u.distance = dl

u.previous v

g.enqueue (u)

44



YA UNIVERSITY of WASHINGTON

Dijkstra’s Algorithm: Example #1

Order Added to Known Set:

L25: Graph Traversals and Dijkstra’s Algorithm

I O m m O O W

CSE332, Spring 2021

A)sorgox

o0
o0

o0

45



W UNIVERSITY of WASHINGTON L25: Graph Traversals and Dijkstra’s Algorithm CSE332, Spring 2021

Dijkstra’s Algorithm: Example #1
0 27? o o
® @
1?? ~
A B
© ® Varto | Kniven? | Distan | Previos
A Y 0

IA
=
> > > ~

Order Added to Known Set:
A

I & m m O O @
8

46



W UNIVERSITY of WASHINGTON L25: Graph Traversals and Dijkstra’s Algorithm CSE332, Spring 2021

Dijkstra’s Algorithm: Example #1
0 27? o o
® @
4@ @ 12?7 @
® Vertex | Known? | Distanc | pevious
A Y 0

<
[EEN
0O » > r»

Order Added to Known Set:
A C

T 6O m m O O W
7AN
=
N

47



W UNIVERSITY of WASHINGTON L25: Graph Traversals and Dijkstra’s Algorithm CSE332, Spring 2021

Dijkstra’s Algorithm: Example #1
0 2 472 0
® ®

: ©
472 (©) ,, \u2
© ® Varto | Kniven? | Distan | Previos
A Y 0

Order Added to Known Set:
ACB

<
[EEN
@ O > > > -

I &6 m m ©O O W
IA
[E
N

48



YA UNIVERSITY of WASHINGTON

Dijkstra’s Algorithm: Example #1

( ®

'‘® © é

©

Order Added to Known Set:
A CB,D

L25: Graph Traversals and Dijkstra’s Algorithm

®

A

I O m m O O W

Y
Y
Y
Y

CSE332, Spring 2021

@ O > > T ~

49



YA UNIVERSITY of WASHINGTON

Dijkstra’s Algorithm: Example #1

'‘® © é

©

Order Added to Known Set:

ACB,D,F

772

L25: Graph Traversals and Dijkstra’s Algorithm

®W

I O m m O O W

Y
Y
Y
Y

S B N O

CSE332, Spring 2021

@ O > > T ~

50



W UNIVERSITY of WASHINGTON L25: Graph Traversals and Dijkstra’s Algorithm CSE332, Spring 2021

Dijkstra’s Algorithm: Example #1
0 2 4
® @
8??
1
o ©

1277

© ® Vertox | Known? | Distance | Previous
A

Y
Y
Y
Y

Order Added to Known Set:
A CB,D,FH

I O m m O O W
IA
=
N
m I W O > r» > ~

51



W UNIVERSITY of WASHINGTON L25: Graph Traversals and Dijkstra’s Algorithm CSE332, Spring 2021

Dijkstra’s Algorithm: Example #1
0 2 4
® @
8
1
@ 11727 @

© ® Vertex | Known? | istance | Pevious
A

Y 0 /

B Y 2 A

C Y 1 A

D Y 4 A

Order Added to Known Set: E <11 G
A,CB,D,F,HG F v 4 B
G Y 8 H

H Y 7 F

52



YA UNIVERSITY of WASHINGTON

L25: Graph Traversals and Dijkstra’s Algorithm

Dijkstra’s Algorithm: Example #1

'‘® @é

©

Order Added to Known Set:

A CB,DFHG,E

A

I O m m O O W

< < < < < =< =< =<

S B N O

CSE332, Spring 2021

OamO N ) TADA!! ) €

m I W O > > > ~

53



W UNIVERSITY of WASHINGTON L25: Graph Traversals and Dijkstra’s Algorithm CSE332, Spring 2021

Dijkstra’s Algorithm: Example #2

Veren | Known? | Distance | Previus
A 0

o0

o0

o0

Order Added to Known Set:

@ m m O O W

54



