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❖ Find the shortest path from A to E …

▪ … assuming this graph is unweighted

▪ … assuming this graph is weighted

▪ (don’t worry about finding a general algorithm; just find the path manually)
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Lecture Outline

❖ Topological Sort (cont.)

❖ Traversals

▪ Introduction

▪ Trees and Graphs: Level-order / Breadth-first

▪ Trees: Three Flavors of Depth-first

▪ Graphs: Depth-first

▪ Conclusion

❖ Shortest Paths!

❖ Dijkstra’s Algorithm
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Topological Sort

❖ Output all the vertices of a DAG in an order such that no vertex 
appears before any other vertex that has a path to it

▪ A DAG represents a partial order, and a topological sort produces a 
total order that is consistent with it

❖ Example input:

❖ Example output:

▪ 126, 142, 143, 311, 331, 332, 312, 341, 351, 333, 352, 440
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TopoSort: A Naïve Algorithm

1. Label (“mark”) each vertex with its in-degree

▪ Could write directly into a vertex’s field or a parallel data structure 
(e.g., array)

2. While there are vertices not yet output:

▪ Choose a vertex v with labeled with in-degree of 0

▪ Output v and conceptually remove it from the graph

▪ Foreach vertex w adjacent to v:

• Decrement the in-degree of w

5

In-
Degree

Adj 
List

0

1

2

3

4 /

3

2

4

3

4

1

0

3

2
4



CSE332, Spring 2021L25: Graph Traversals and Dijkstra’s Algorithm

TopoSort: Notes

❖ Needed a vertex with in-degree of 0 to start

▪ Remember: graph must be acyclic!

❖ If >1 vertex with in-degree=0, can break ties arbitrarily

▪ Potentially many different correct orders!
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Naïve TopoSort: Running Time?
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labelEachVertexWithItsInDegree();

for (i=0; i < numVertices; i++){

v = findNewVertexOfDegreeZero();

put v in output

foreach w adjacent to v

w.indegree--;

}
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TopoSort’s Runtime: Doing Better

❖ Avoid searching for a zero-degree node every time!

▪ Keep the “pending” 0-degree nodes in a list, stack, queue, table, etc

▪ The order we process them affects output, but not correctness or 
efficiency (as long as add/remove are both O(1))

❖ Using a queue:

▪ Label each vertex with its in-degree, enqueuing 0-degree nodes

▪ While “pending” queue is not empty:

• v = dequeue()

• Output v and remove it from the graph

• For each vertex w adjacent to v (i.e. w such that (v,w) in E):

– decrement the in-degree of w

– if new degree is 0, enqueue it
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pending = labelAllAndReturnZeros();

while ( !pending.empty() ){

v = pending.dequeue();

put v in output

foreach w adjacent to v

w.indegree--;

if (w.indegree == 0)

pending.enqueue(w);

}

Better TopoSort: Running Time?
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Lecture Outline

❖ Topological Sort (cont.)

❖ Traversals

▪ Introduction

▪ Trees and Graphs: Level-order / Breadth-first

▪ Trees: Three Flavors of Depth-first

▪ Graphs: Depth-first

▪ Conclusion

❖ Shortest Paths!

❖ Dijkstra’s Algorithm
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Tree and Graph Reachability

❖ Find all vertices reachable from a starting vertex v 

▪ ie, there exists a path

▪ Might “do something” at each visited vertex (an iterator!)

• “Do something” is called visiting or processing a vertex

– eg, print to output, set some field, etc.

• Traversing a vertex or iterating over a vertex is different!

– Just fetch adjacent/child vertices

❖ Related Questions:

▪ Is an undirected graph connected?

▪ Is a directed graph weakly / strongly connected?

• For strongly, need a cycle back to starting vertex for each vertex in the graph
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Tree and Graph Traversals

❖ Can answer reachability with a tree or graph traversal

▪ Iterates over every vertex in a graph in some defined ordering

▪ “Processes” or “visits” its contents

❖ There are several types of tree traversals

▪ Level Order Traversal aka Breadth-First Traversal

▪ Depth-First Traversal

• Pre-order Traversal

• In-order Traversal

• Post-order Traversal
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Tree/Graph Traversals Follow a Pattern

1. Initialization:

▪ Create an empty data 
structure to track “remaining 
work”

▪ Mark start as visited

2. While we still have work, 
follow the vertices:

3. Get a vertex

4. Visit/process that vertex

5. Update its neighbors (eg, 
add to “remaining work” if 
it’s not already there)
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traverseGraph(Vertex start) {

pending = {start}

mark start as visited

while (!pending.empty()) {

next = pending.remove()

process(next)

foreach u adjacent to next

if (!u.marked)

mark u

pending.add(u)

}
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Tree/Graph Traversal: Running Time

❖ Assuming add() and remove() are O(1), traversal is O(|E|)

▪ Remember: we default to using an adjacency list
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Tree/Graph Traversal: Order

❖ The order we process() depends entirely on how pending.add() 
and pending.remove() are implemented

▪ Queue:

• Tree: Level-order

• Graph: Breadth-first search (BFS)

▪ Stack:

• Tree: Depth-first (3 flavors!)

• Graph: Depth-first search (DFS)

▪ … and more?

❖ DFS and BFS are “big ideas” in computer science

▪ Depth: explore one part before exploring other unexplored parts

▪ Breadth: explore parts closer to the start before exploring farther 
parts
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Lecture Outline

❖ Topological Sort (cont.)

❖ Traversals

▪ Introduction

▪ Trees and Graphs: Level-order / Breadth-first

▪ Trees: Three Flavors of Depth-first

▪ Graphs: Depth-first

▪ Conclusion

❖ Shortest Paths!

❖ Dijkstra’s Algorithm
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Trees: Level-Order

❖ Process top-to-bottom, left-to-right

▪ Goes “broad” instead of “deep”

▪ Requires a queue to track need-to-explore
vertices, which is sometimes called the fringe

❖ Resembles how we converted our binary heap (ie, a complete 
tree) to its array representation
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levelOrderTraverse(Vertex root) {

q.enqueue(root)

while (!q.empty())

next = q.dequeue()

process(next)

foreach u in next.children

q.enqueue(u)

}

1. Initialize aux data structure
2. Have vertices in data struct?

3. Get vertex from data struct
4. Visit/process vertex
5. Update vertex’s neighbors
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Graphs: Breadth-First

❖ When working with graphs, we refer to level-order traversals 
as breadth-first traversals

▪ We also need to verify if a vertex has been visited – why?
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breadthFirstTraversal(Vertex start) {

q.enqueue(start)

mark start as visited

while (!q.empty())

next = q.dequeue()

process(next)

foreach u in next.neighbors

if (!u.marked)

mark u

q.enqueue(u)

}

1. Initialize aux data structure
2. Have vertices in data struct?

3. Get vertex from data struct
4. Visit/process vertex
5. Update vertex’s neighbors
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Lecture Outline

❖ Topological Sort (cont.)

❖ Traversals

▪ Introduction

▪ Trees and Graphs: Level-order / Breadth-first

▪ Trees: Three Flavors of Depth-first

▪ Graphs: Depth-first

▪ Conclusion

❖ Shortest Paths!

❖ Dijkstra’s Algorithm
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Trees: Depth-First Traversal

❖ Process deep vertices before shallow ones

▪ Eg, visit A before F

▪ Succinct implementation if using recursion;
otherwise, requires a stack to track need-to-explore vertices
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traverseRecur(Node x) {
if (x == null)
return;

process(x.key)
foreach c in x.children
traverseRecur(c)

}

traverseIter(Node start) {

s.push(start)

while (!s.empty())

next = s.pop()

process(next)

foreach u in next.neighbors

q.push(u)

}

1. Initialize aux data structure
2. Have vertices in data struct?

3. Get vertex from data struct
4. Visit/process vertex
5. Update vertex’s neighbors
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Trees: Depth-First: Pre-Order

❖ Pre-order “visits” the node 
before traversing its children

▪ DBACFEG
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preOrder(Node x) {

if (x == null)

return;

process(x.key)

preOrder(x.left)

preOrder(x.right)

}
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Trees: Depth-First: In-Order

❖ Pre-order “visits” the node 
before traversing its children

▪ DBACFEG

❖ In-order traverses the left 
child, “visits” the node, then 
traverses the right child

▪ ABCDEF
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preOrder(Node x) {

if (x == null)

return;

process(x.key)

preOrder(x.left)

preOrder(x.right)

}

inOrder(Node x) {

if (x == null)

return;

inOrder(x.left)

process(x.key)

inOrder(x.right)

}
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Trees: Depth-First: Post-Order

❖ Pre-order “visits” the node 
before traversing its children

▪ DBACFEG

❖ In-order traverses the left 
child, “visits” the node, then 
traverses the right child

▪ ABCDEF

❖ Post-order traverses its 
children before “visiting” 
the node

▪ ACBEGFD
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preOrder(Node x) {

if (x == null)

return;

process(x.key)

preOrder(x.left)

preOrder(x.right)

}

inOrder(Node x) {

if (x == null)

return;

inOrder(x.left)

process(x.key)

inOrder(x.right)

}

postOrder(Node x) {

if (x == null)

return;

postOrder(x.left)

postOrder(x.right)

process(x.key)

}
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Useful Trick for Depth-First Tree Traversals

❖ (Useful for humans, not 
algorithms)

❖ Trace a path around the
graph, from the top going 
counter-clockwise

▪ Pre-order: Process when you pass 
LEFT side of a node

▪ In-order: Process when you pass 
BOTTOM of a node

▪ Post-order: Process when you pass 
the RIGHT side of a node.
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Lecture Outline

❖ Topological Sort (cont.)

❖ Traversals

▪ Introduction

▪ Trees and Graphs: Level-order / Breadth-first

▪ Trees: Three Flavors of Depth-first

▪ Graphs: Depth-first

▪ Conclusion

❖ Shortest Paths!

❖ Dijkstra’s Algorithm
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Trees and Graphs: Depth-First

❖ Still processing “far vertices” before “near” ones

▪ Still has recursive and iterative implementations

▪ Still must mark previously-visited nodes
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depthFirstTraversal(Vertex start) {

s.push(start)

mark start as visited

while (!s.empty())

next = s.pop()

process(next)

foreach u in next.neighbors

if (!u.marked)

mark u

s.push(u)

}

1. Initialize aux data structure
2. Have vertices in data struct?

3. Get vertex from data struct
4. Visit/process vertex
5. Update vertex’s neighbors
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Lecture Outline

❖ Topological Sort (cont.)

❖ Traversals

▪ Introduction

▪ Trees and Graphs: Level-order / Breadth-first

▪ Trees: Three Flavors of Depth-first

▪ Graphs: Depth-first

▪ Conclusion

❖ Shortest Paths!

❖ Dijkstra’s Algorithm
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Saving the Path

❖ These graph traversals can answer the “reachability question”:

▪ “Is there a path from vertex x to vertex y?”

❖ But what if we want to output the actual path or its length?

▪ Eg, getting driving directions vs knowing it’s possible to get there

❖ Modifications:

▪ Instead of just “marking” a vertex, store the path’s previous vertex 

• ie: when processing u, set v.prev to u

▪ When you reach the goal, follow prev fields backwards to start

• (don’t forget to reverse the answer)

▪ Path length:

• Same idea, but also store integer distance at each vertex
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Saving the Path: Example using BFS (1 of 2)

❖ Find the shortest path from Seattle to Austin

▪ Remember marked vertices are not re-enqueued

▪ Shortest paths may not be unique

29
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Saving the Path: Example using BFS (2 of 2)

❖ Find the shortest path from Seattle to Austin

▪ Remember marked vertices are not re-enqueued

▪ Shortest paths may not be unique
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DFS/BFS Comparison

❖ Breadth-first search:

▪ Always finds shortest paths, i.e., finds “optimal solutions”

• Better for “what is the shortest path from x to y?”

▪ But queue may hold up to O(|V|) vertices

• Eg, at the bottom level of perfect binary tree, queue contains |V|/2 vertices

❖ Depth-first search:

▪ Can use less space when finding a path

• If longest path in the graph is p and highest out-degree is d then stack never 
has more than d*p elements
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It Doesn’t Have to be Either/Or

❖ A third approach: Iterative deepening (IDDFS): 

▪ Try DFS, but don’t allow recursion more than K levels deep

▪ If fails to find a solution, increment K and start the entire search over

❖ Like BFS, finds shortest paths.  Like DFS, less space
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Lecture Outline

❖ Topological Sort

❖ Traversals

▪ Introduction

▪ Trees and Graphs: Level-order / Breadth-first

▪ Trees: Three Flavors of Depth-first

▪ Graphs: Depth-first

▪ Conclusion

❖ Shortest Paths!

❖ Dijkstra’s Algorithm
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Single-Source Shortest Paths

❖ We’ve seen BFS finds the minimum path length from v to u

▪ Runtime: O(|E|+|V|)

❖ Actually, BFS finds the min path length from v to every vertex

▪ Still O(|E|+|V|)

▪ Worst-case runtime for single-destination is no faster than worst-
case runtime for all-destinations
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Shortest Path: Applications

❖ Network routing

❖ Driving directions

❖ Cheap flight tickets

❖ Critical paths in project management (see textbook)

❖ …

Wait, these are all weighted graphs!
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Single-Source Shortest Paths … for Weighted Graphs

❖ As before:

▪ All-destinations is asymptotically no harder than single-destination

❖ Unlike before:

▪ BFS will not work

36

Given a weighted graph and vertex v, 
find the minimum-cost path from v to every vertex 
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BFS for Weighted Graphs

❖ BFS doesn’t work! Shortest path may not have fewest edges

▪ Eg: cost of flight.  May be cheaper to fly through a hub than fly direct

❖ We will assume there are no negative edge weights

▪ Entire problem is ill-defined if there are negative-cost cycles

▪ Today’s algorithm is wrong if there are negative-cost edges
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Negative Cycles vs Negative Edges

❖ Negative cycles: no
algorithm can find a
finite optimal path

▪ You can always decrease the 
distance by going through 
the negative cycle a few 
more times

❖ Negative edges: Dijkstra’s 
can’t guarantee correctness

▪ But other algorithms might
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Lecture Outline

❖ Topological Sort

❖ Traversals

▪ Introduction

▪ Trees and Graphs: Level-order / Breadth-first

▪ Trees: Three Flavors of Depth-first

▪ Graphs: Depth-first

▪ Conclusion

❖ Shortest Paths!

❖ Dijkstra’s Algorithm
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Dijkstra’s Algorithm

❖ Named after its inventor, Edsger Dijkstra (1930-2002)

▪ Truly one of the “founders” of computer science

▪ 1972 Turing Award

▪ This algorithm is just one of his many contributions!

▪ Example quote: “Computer science is no more about computers than 
astronomy is about telescopes”

❖ The idea: reminiscent of BFS, but adapted to handle weights

▪ Grow the set of vertices whose shortest distance has been computed

▪ Vertices not in the set will have a “best distance so far”
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Dijkstra’s Algorithm: Idea

❖ Initialization:

▪ Start vertex has distance 0; all other vertices have distance 

❖ At each step:

▪ Pick closest unknown vertex v

▪ Add it to the “cloud” of known vertices

▪ Update distances for vertices with edges from v

41

1. Initialize aux data structure
2. Have vertices in data struct?

3. Get vertex from data struct
4. Visit/process vertex
5. Update vertex’s neighbors
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Dijkstra’s Algorithm: Pseudocode
dijkstra(Graph g, Vertex start) {

foreach vertex v in g:

v.distance = 

v.known = false

start.distance = 0

while there are vertices in g that are not known:

select vertex v with lowest cost

v.known = true

foreach unknown v.neighbor with weight w:

d1 = v.distance + w  // best path through v to u

d2 = u.distance // previous best path to u

if (d1 < d2):        // if this is a better path to u

u.distance = d1

u.previous = v     // backtracking info to

// recreate path

}
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Dijkstra’s Algorithm: Important Features

❖ Once a vertex is marked known, its shortest path is known

▪ Can reconstruct path by following back-pointers (“previous” fields)

❖ While a vertex is not known, another shorter path might be 
found
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Dijkstra’s Algorithm vs BFS

dijkstra(Graph g, Vertex start) {

foreach vertex v in g:

v.distance = 

v.known = false

start.distance = 0

while there are unknown vertices:

v = lowest cost unknown vertex

v.known = true

foreach unknown v.neighbor

with weight w:

d1 = v.distance + w

d2 = u.distance

if (d1 < d2):

u.distance = d1

u.previous = v

}
44

breadthFirst(Graph g,

Vertex start) {

q.enqueue(start)

mark start as visited

while (!q.empty())

next = q.dequeue()

process(next)

foreach u in next.neighbors

if (!u.marked)

mark u

q.enqueue(u)

}
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Dijkstra’s Algorithm: Example #1

45
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Dijkstra’s Algorithm: Example #1

46

Order Added to Known Set:
A

Vertex Known? Distance Previous

A Y 0 /

B  2 A

C  1 A

D  4 A
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A B
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Dijkstra’s Algorithm: Example #1

47

Order Added to Known Set:
A, C

Vertex Known? Distance Previous

A Y 0 /

B  2 A

C Y 1 A

D  4 A

E  12 C
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G 
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A B
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F H
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Dijkstra’s Algorithm: Example #1

48

Order Added to Known Set:
A, C, B

Vertex Known? Distance Previous

A Y 0 /

B Y 2 A

C Y 1 A

D  4 A

E  12 C

F  4 B
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Dijkstra’s Algorithm: Example #1

49

Order Added to Known Set:
A, C, B, D

Vertex Known? Distance Previous

A Y 0 /

B Y 2 A

C Y 1 A

D Y 4 A

E  12 C

F  4 B
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Dijkstra’s Algorithm: Example #1

50

Order Added to Known Set:
A, C, B, D, F

Vertex Known? Distance Previous

A Y 0 /

B Y 2 A

C Y 1 A

D Y 4 A

E  12 C

F Y 4 B
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H  7 F
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Dijkstra’s Algorithm: Example #1
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Order Added to Known Set:
A, C, B, D, F, H

Vertex Known? Distance Previous

A Y 0 /

B Y 2 A

C Y 1 A

D Y 4 A

E  12 C

F Y 4 B

G  8 H

H Y 7 F
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8??

12??

0
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Dijkstra’s Algorithm: Example #1
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Order Added to Known Set:
A, C, B, D, F, H, G

Vertex Known? Distance Previous

A Y 0 /

B Y 2 A

C Y 1 A

D Y 4 A

E  11 G

F Y 4 B

G Y 8 H

H Y 7 F

A B

D
C

F H

E

G

2 2 3

110 2
3

111

7

1

9

2

4 5

2 4 7

1

4

8

11??

0
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Dijkstra’s Algorithm: Example #1

53

Order Added to Known Set:
A, C, B, D, F, H, G, E

Vertex Known? Distance Previous

A Y 0 /

B Y 2 A

C Y 1 A

D Y 4 A

E Y 11 G

F Y 4 B

G Y 8 H

H Y 7 F

🐐🐐 TADA!!! 🐐🐐
A B

D
C

F H

E

G

2 2 3

110 2
3

111

7

1

9

2

4 5

2 4 7

1

4

8

11

0
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Dijkstra’s Algorithm: Example #2
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Order Added to Known Set:

Vertex Known? Distance Previous

A 

B 

C 

D 

E 

F 

G 

A B

C
D

F

E

G

0 
2

1
2

5

1

1

1

2 6

5 3

10












