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Graphs

❖ A graph is represents relationships among items

▪ Very general definition because very general concept

❖ A graph is a pair:   G = (V, E)

▪ A set of vertices, also known as nodes

V = {v1, v2, …, vn}

▪ A set of edges, possibly directed

E = {e1, e2, …, em}

• Each edge ei is a pair of vertices (vj,vk)

• An edge “connects” the vertices
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Undirected Graphs

❖ In undirected graphs, edges have no specific direction

▪ Edges are always “two-way”

❖ Thus, (u,v)  E implies (v,u)  E

▪ Only one of these edges needs to be in the set; the other is implicit

❖ Degree of a vertex: number of edges containing that vertex

▪ i.e.: the number of adjacent vertices
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Directed Graphs

❖ In directed graphs (aka digraphs), edges have a direction

❖ Thus, (u,v)  E does not imply (v,u)  E

▪ (u,v)  E means u → v; u is the source and v the destination

❖ In-Degree of a vertex: number of in-bound edges

▪ i.e.: edges where the vertex is the destination

❖ Out-Degree of a vertex: number of out-bound edges

▪ i.e.: edges where the vertex is the source
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Self-edges

❖ A self-edge (aka a loop) is an edge of the form (u,u)

❖ Depending on the use/algorithm, a graph may have:

▪ No self edges

▪ Some self edges

▪ All self edges (therefore often implicit, but we will be explicit)

❖ A node can have a degree / in-degree / out-degree of zero
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Adjacency (1 of 2)

❖ If (u,v)  E

▪ Then v is a neighbor of u, i.e., v is adjacent to u

▪ For directed edges, order matters

• u is not adjacent to v unless (v,u)  E
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Adjacency (2 of 2)

❖ For a graph G = (V,E):

▪ |V| is the number of vertices

▪ |E| is the number of edges

• Minimum size?

– 0

• Maximum size for an undirected graph with no self-edges?
– |V||V-1|/2  O(|V|2)

• Maximum for a directed graph with no self-edges?
– |V||V-1|  O(|V|2)

• If self-edges are allowed, add |V| to the answers above (applies to both 
undirected and directed graphs)
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Weighted Graphs

❖ In a weighed graph, each edge has a weight a.k.a. cost

▪ Typically numeric (most examples will use ints)

▪ Some graphs allow negative weights; many don’t
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Vertex and Edge Labels

❖ More generally, both vertices and edges can have (possibly 
non-numeric) labels

13

Kitsap, Tokitae

Puyallup, Spokane

Tacoma, Walla Walla

Salish, Chimacum

Mukilteo

Edmonds

Seattle

Bremerton

Bainbridge

Kingston

Clinton



CSE332, Spring 2021L24: Graphs, Topological Sort, and Traversals

Paths and Cycles (1 of 2)

❖ A path is a list of vertices [v0,v1,…,vn] such that 
(vi,vi+1) E for all 0  i < n

▪ You’d call it a path from v0 to vn

❖ A cycle is a path that begins and ends at the same node

▪ i.e., v0 == vn

❖ Example path:

▪ [Seattle, SLC, Chicago, Dallas, SF, Seattle]

▪ Also happens to be a cycle! 14
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Paths and Cycles (2 of 2)

❖ A graph that does not contain any cycles is acyclic
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Path Length and Cost

❖ Path length: Number of edges in a path

▪ Also called “unweighted cost”

❖ Path cost: Sum of the weights of each edge in a path

❖ Example: P = [Seattle, SLC, Chicago, Dallas, SF]

▪ length(P) = 4

▪ cost(P) = 9.5
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Undirected Graph Connectivity

❖ An undirected graph is connected if for all pairs of vertices 
u,v, there exists a path from u to v

❖ An undirected graph is complete (aka fully connected) if for all 
pairs of vertices u,v, there exists an edge from u to v

20

Connected graph Disconnected graph

(not pictured: self edges)



CSE332, Spring 2021L24: Graphs, Topological Sort, and Traversals

Directed Graph Connectivity

❖ A directed graph is strongly connected if for all pairs of vertices 
u,v, there exists a path from u to v

❖ A directed graph is weakly connected if for all pairs of vertices 
u,v, there exists a path from u to v ignoring direction of edges

❖ A directed graph is complete (aka fully connected) if for all 
pairs of vertices u,v, there exists an edge from u to v
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Trees as Graphs

❖ A tree is a graph that is:

▪ acyclic

▪ connected

❖ So all trees are graphs, but not all graphs are trees

❖ How does this relate to the trees we know and love?...
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Rooted Trees (1 of 2)

❖ We’ve previously worked with rooted trees, where:

▪ We identify a unique (“special”) vertex: the root

▪ We think of edges as directed: parent to children

❖ The same tree can be redrawn as multiple rooted trees 
depending on which node you pick as the root
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Rooted Trees (2 of 2)

❖ We’ve previously worked with rooted trees, where:

▪ We identify a unique (“special”) vertex: the root

▪ We think of edges as directed: parent to children

❖ The same tree can be redrawn as multiple rooted trees 
depending on which node you pick as the root

24

F

G H C

A

B

D E

A

B

D E

C

F

HG

redrawn



CSE332, Spring 2021L24: Graphs, Topological Sort, and Traversals

Directed Acyclic Graphs (aka DAGs)

❖ A DAG is a directed graph with no directed cycles

❖ Every rooted directed tree is a DAG

▪ But not every DAG is a rooted directed tree:

❖ Every DAG is a directed graph (by definition!)

▪ But not every directed graph is a DAG:
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Density / Sparsity (1 of 2)

❖ Recall:

▪ In an undirected graph, 0 ≤ |E| < |V|2

▪ In a directed graph: 0 ≤ |E| ≤ |V|2

❖ One more fact:

▪ In a connected undirected graph, |E| ≥ |V|-1

▪ In a weakly connected directed graph, |E| ≥ |V|-1

▪ In a strongly connected directed graph, |E| ≥ |V|  

27

So for any graph,
|E|  O(|V|2)

So for any 
connected graph,
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Density / Sparsity (2 of 2)

❖ We do not always approximate as |E| as O(|V|2)

▪ This is a correct bound, it’s just oftentimes not tight

❖ If it is tight, i.e. |E|  (|V|2), we say the graph is dense

▪ Intuitively: “lots of edges”

❖ If |E|  O(|V|) we say the graph is sparse

▪ Sparse: “most (of the possible) edges missing”
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