Graphs, Topological Sort, and Traversals CSE 332 Spring 2021

Instructor: Hannah C. Tang

Teaching Assistants:

Aayushi Modi Khushi Chaudhari Aashna Sheth Kris Wong Frederick Huyan Logan Milandin Hamsa Shankar Nachiket Karmarkar Patrick Murphy Richard Jiang Winston Jodjana

Graphs

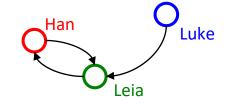
- A graph is represents relationships among items
 - Very general definition because very general concept
- A graph is a pair: G = (V, E)
 - A set of vertices, also known as nodes

$$v = \{v_1, v_2, ..., v_n\}$$

A set of *edges*, possibly *directed*

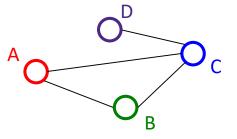
$$E = \{e_1, e_2, ..., e_m\}$$

- Each edge \mathbf{e}_{i} is a pair of vertices $(\mathbf{v}_{j}\,,\mathbf{v}_{k})$
- An edge "connects" the vertices



Undirected Graphs

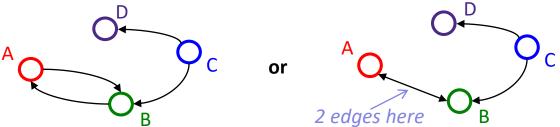
- * In undirected graphs, edges have no specific direction
 - Edges are always "two-way"



- * Thus, $(u, v) \in E$ implies $(v, u) \in E$
 - Only one of these edges needs to be in the set; the other is implicit
- * *Degree* of a vertex: number of edges containing that vertex
 - i.e.: the number of adjacent vertices

Directed Graphs

In directed graphs (aka digraphs), edges have a direction



* Thus, $(u, v) \in E$ does <u>not</u> imply $(v, u) \in E$

• $(u, v) \in E$ means $u \rightarrow v$; u is the *source* and v the *destination*

In-Degree of a vertex: number of in-bound edges

- i.e.: edges where the vertex is the destination
- * Out-Degree of a vertex: number of out-bound edges
 - i.e.: edges where the vertex is the source

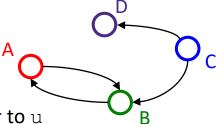
Self-edges

A self-edge (aka a loop) is an edge of the form (u,u)

- Depending on the use/algorithm, a graph may have:
 - No self edges
 - Some self edges
 - All self edges (therefore often implicit, but we will be explicit)
- A node can have a degree / in-degree / out-degree of zero

Adjacency (1 of 2)

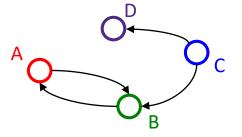
- * If $(u, v) \in E$
 - Then v is a *neighbor* of u, i.e., v is *adjacent* to u
 - For directed edges, order matters
 - u is not adjacent to v unless (v, u) $\in E$



 $V = \{A, B, C, D\}$ E = { (C, B), (A, B), (B, A) (C, D) }

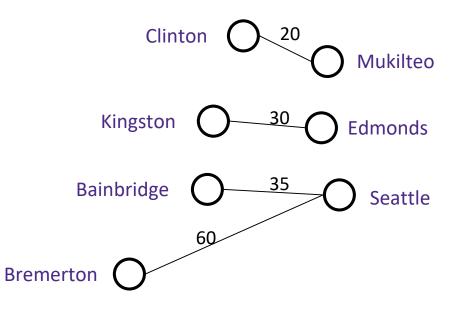
Adjacency (2 of 2)

- For a graph G = (V, E):
 - IV is the number of vertices
 - IE | is the number of edges
 - Minimum size?
 - 0
 - Maximum size for an undirected graph with no self-edges? $-|\nabla| |\nabla^{-1}|/2 \in O(|\nabla|^2)$
 - Maximum for a directed graph with no self-edges? $-|V||V-1| \in O(|V|^2)$
 - If self-edges are allowed, add |V| to the answers above (applies to both undirected and directed graphs)



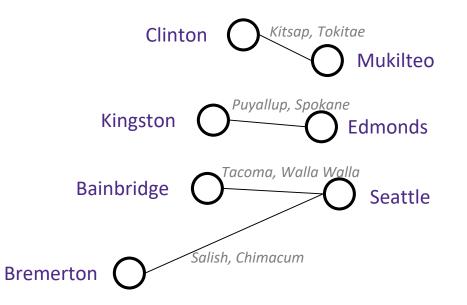
Weighted Graphs

- In a weighed graph, each edge has a weight a.k.a. cost
 - Typically numeric (most examples will use ints)
 - Some graphs allow negative weights; many don't



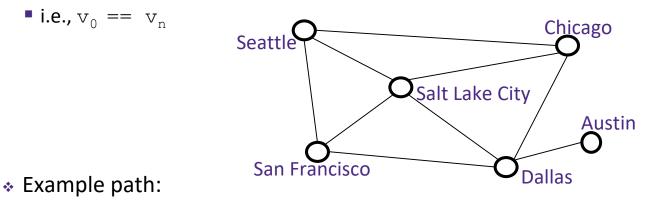
Vertex and Edge Labels

 More generally, both vertices and edges can have (possibly non-numeric) labels



Paths and Cycles (1 of 2)

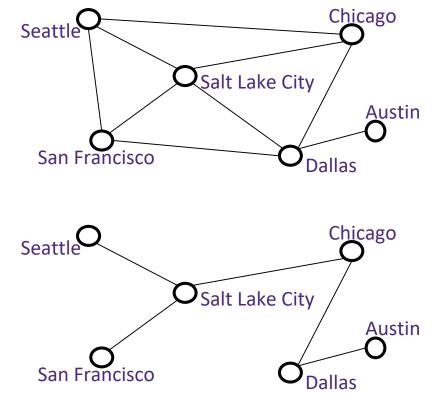
- * A path is a list of vertices $[v_0, v_1, ..., v_n]$ such that $(v_i, v_{i+1}) \in E$ for all 0 ≤ i < n</pre>
 - $\hfill \mbox{ You'd call it a path from } v_0$ to v_n
- * A cycle is a path that begins and ends at the same node



- [Seattle, SLC, Chicago, Dallas, SF, Seattle]
- Also happens to be a cycle!

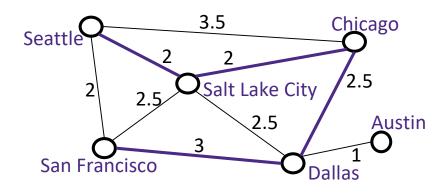
Paths and Cycles (2 of 2)

* A graph that does not contain any cycles is *acyclic*



Path Length and Cost

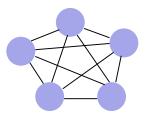
- * Path length: Number of edges in a path
 - Also called "unweighted cost"
- * Path cost: Sum of the weights of each edge in a path
- Example: P = [Seattle, SLC, Chicago, Dallas, SF]
 - Iength(P) = 4
 - cost(P) = 9.5



Undirected Graph Connectivity

An undirected graph is *connected* if for all pairs of vertices
 u, v, there exists a *path* from u to v

An undirected graph is *complete* (aka *fully connected*) if for all pairs of vertices u, v, there exists an *edge* from u to v



(not pictured: self edges)

Directed Graph Connectivity

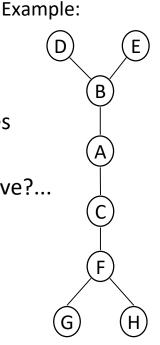
A directed graph is *strongly connected* if for all pairs of vertices
 u, v, there exists a *path* from u to v

A directed graph is *weakly connected* if for all pairs of vertices
 u, v, there exists a path from u to v ignoring direction of edges

A directed graph is *complete* (aka *fully connected*) if for all pairs of vertices u, v, there exists an *edge* from u to v

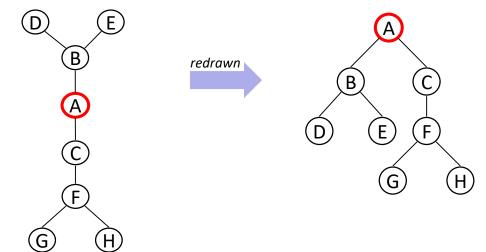
Trees as Graphs

- * A *tree* is a graph that is:
 - acyclic
 - connected
- So all trees are graphs, but not all graphs are trees
- How does this relate to the trees we know and love?...



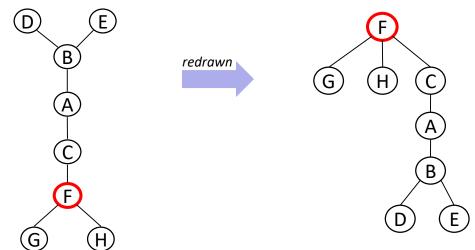
Rooted Trees (1 of 2)

- * We've previously worked with *rooted trees*, where:
 - We identify a unique ("special") vertex: the root
 - We think of edges as directed: parent to children
- The same tree can be redrawn as multiple rooted trees depending on which node you pick as the root



Rooted Trees (2 of 2)

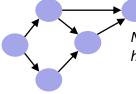
- We've previously worked with *rooted trees*, where:
 - We identify a unique ("special") vertex: the root
 - We think of edges as directed: parent to children
- The same tree can be redrawn as multiple rooted trees depending on which <u>node you pick as the root</u>



Directed Acyclic Graphs (aka DAGs)

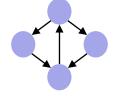
* A **DAG** is a directed graph with no directed cycles

- Every rooted directed tree is a DAG
 - But not every DAG is a rooted directed tree:



Not a rooted directed tree; has an undirected cycle

- Every DAG is a directed graph (by definition!)
 - But not every directed graph is a DAG:



Not a DAG; has a directed cycle

Density / Sparsity (1 of 2)

- In an undirected graph, 0 ≤ |E| < |V|²
 In a directed graph: 0 ≤ |E| ≤ |V|²

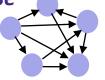
So for any graph,
$$|E| \in O(|V|^2)$$

- One more fact:
 - In a *connected* undirected graph, $|E| \ge |V|-1$
 - In a weakly connected directed graph, $|E| \ge |V|-1$
 - In a strongly connected directed graph, $|E| \ge |V|$

So for any connected graph, $|\mathsf{E}| \in \Omega(|\mathsf{V}|)$

Density / Sparsity (2 of 2)

- ✤ We do not always approximate as |E| as O(|V|²)
 - This is a correct bound, it's just oftentimes not tight
- ★ If it is tight, i.e. $|E| \in \Theta(|V|^2)$, we say the graph is *dense*
 - Intuitively: "lots of edges"



- * If $|E| \in O(|V|)$ we say the graph is *sparse*
 - Sparse: "most (of the possible) edges missing"

