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Announcements

❖ Please reach out to course staff if you are struggling for any 
reason
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Lecture Outline

❖ Graphs

▪ Definitions

▪ Representation: Adjacency Matrix

▪ Representation: Adjacency List

▪ Algorithms over Graphs

❖ Topological Sort
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Graphs

❖ A graph is represents relationships among items

▪ Very general definition because very general concept

❖ A graph is a pair:   G = (V, E)

▪ A set of vertices, also known as nodes

V = {v1, v2, …, vn}

▪ A set of edges, possibly directed

E = {e1, e2, …, em}

• Each edge ei is a pair of vertices (vj,vk)

• An edge “connects” the vertices
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❖ For one of the following, what are the vertices and the edges?

▪ Web pages with links

▪ Facebook friends

▪ Methods in a program that call each other

▪ Road maps (e.g., Google maps)

▪ Airline routes

▪ Family trees

▪ Course pre-requisites

❖ Wow! Using the same algorithms for problems across so many 
domains sounds like “core computer science and engineering”
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Undirected Graphs

❖ In undirected graphs, edges have no specific direction

▪ Edges are always “two-way”

❖ Thus, (u,v)  E implies (v,u)  E

▪ Only one of these edges needs to be in the set; the other is implicit

❖ Degree of a vertex: number of edges containing that vertex

▪ i.e.: the number of adjacent vertices
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Directed Graphs

❖ In directed graphs (aka digraphs), edges have a direction

❖ Thus, (u,v)  E does not imply (v,u)  E

▪ (u,v)  E means u → v; u is the source and v the destination

❖ In-Degree of a vertex: number of in-bound edges

▪ i.e.: edges where the vertex is the destination

❖ Out-Degree of a vertex: number of out-bound edges

▪ i.e.: edges where the vertex is the source
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Self-edges

❖ A self-edge (aka a loop) is an edge of the form (u,u)

❖ Depending on the use/algorithm, a graph may have:

▪ No self edges

▪ Some self edges

▪ All self edges (therefore often implicit, but we will be explicit)

❖ A node can have a degree / in-degree / out-degree of zero
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Adjacency (1 of 2)

❖ If (u,v)  E

▪ Then v is a neighbor of u, i.e., v is adjacent to u

▪ For directed edges, order matters

• u is not adjacent to v unless (v,u)  E
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Adjacency (2 of 2)

❖ For a graph G = (V,E):

▪ |V| is the number of vertices

▪ |E| is the number of edges

• Minimum size?

– 0

• Maximum size for an undirected graph with no self-edges?
– |V||V-1|/2  O(|V|2)

• Maximum for a directed graph with no self-edges?
– |V||V-1|  O(|V|2)

• If self-edges are allowed, add |V| to the answers above (applies to both 
undirected and directed graphs)
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❖ For one of the following, which would use directed edges?  Which 
would have self-edges?  Which might have 0-degree nodes?

▪ Web pages with links

▪ Facebook friends

▪ Methods in a program that call each other

▪ Road maps (e.g., Google maps)

▪ Airline routes

▪ Family trees

▪ Course pre-requisites
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Weighted Graphs

❖ In a weighed graph, each edge has a weight a.k.a. cost

▪ Typically numeric (most examples will use ints)

▪ Some graphs allow negative weights; many don’t
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Vertex and Edge Labels

❖ More generally, both vertices and edges can have (possibly 
non-numeric) labels
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Paths and Cycles (1 of 2)

❖ A path is a list of vertices [v0,v1,…,vn] such that 
(vi,vi+1) E for all 0  i < n

▪ You’d call it a path from v0 to vn

❖ A cycle is a path that begins and ends at the same node

▪ i.e., v0 == vn

❖ Example path:

▪ [Seattle, SLC, Chicago, Dallas, SF, Seattle]

▪ Also happens to be a cycle! 14
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Paths and Cycles (2 of 2)

❖ A graph that does not contain any cycles is acyclic
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Path Length and Cost

❖ Path length: Number of edges in a path

▪ Also called “unweighted cost”

❖ Path cost: Sum of the weights of each edge in a path

❖ Example: P = [Seattle, SLC, Chicago, Dallas, SF]

▪ length(P) = 4

▪ cost(P) = 9.5
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❖ Do weights make sense for each of the following graphs?  What would 
they represent, and could those weights be negative?

▪ Web pages with links

▪ Facebook friends

▪ Methods in a program that call each other

▪ Road maps (e.g., Google maps)

▪ Airline routes

▪ Family trees

▪ Course pre-requisites

17



CSE332, Spring 2021L24: Graphs and Topological Sort

Undirected Graph Connectivity

❖ An undirected graph is connected if for all pairs of vertices 
u,v, there exists a path from u to v

❖ An undirected graph is complete (aka fully connected) if for all 
pairs of vertices u,v, there exists an edge from u to v
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Directed Graph Connectivity

❖ A directed graph is strongly connected if for all pairs of vertices 
u,v, there exists a path from u to v

❖ A directed graph is weakly connected if for all pairs of vertices 
u,v, there exists a path from u to v ignoring direction of edges

❖ A directed graph is complete (aka fully connected) if for all 
pairs of vertices u,v, there exists an edge from u to v

21(not pictured: self edges)
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Trees as Graphs

❖ A tree is a graph that is:

▪ acyclic

▪ connected

❖ So all trees are graphs, but not all graphs are trees

❖ How does this relate to the trees we know and love?...
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Rooted Trees (1 of 2)

❖ We’ve previously worked with rooted trees, where:

▪ We identify a unique (“special”) vertex: the root

▪ We think of edges as directed: parent to children

❖ The same tree can be redrawn as multiple rooted trees 
depending on which node you pick as the root
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Rooted Trees (2 of 2)

❖ We’ve previously worked with rooted trees, where:

▪ We identify a unique (“special”) vertex: the root

▪ We think of edges as directed: parent to children

❖ The same tree can be redrawn as multiple rooted trees 
depending on which node you pick as the root
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❖ For the undirected graphs, are they connected?  

❖ For the directed graphs, are they strongly connected? weakly 
connected?

❖ Examples:

▪ Web pages with links

▪ Facebook friends

▪ Methods in a program that call each other

▪ Road maps (e.g., Google maps)

▪ Airline routes

▪ Family trees

▪ Course pre-requisites
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Directed Acyclic Graphs (aka DAGs)

❖ A DAG is a directed graph with no directed cycles

❖ Every rooted directed tree is a DAG

▪ But not every DAG is a rooted directed tree:

❖ Every DAG is a directed graph (by definition!)

▪ But not every directed graph is a DAG:
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Density / Sparsity (1 of 2)

❖ Recall:

▪ In an undirected graph, 0 ≤ |E| < |V|2

▪ In a directed graph: 0 ≤ |E| ≤ |V|2

❖ One more fact:

▪ In a connected undirected graph, |E| ≥ |V|-1

▪ In a weakly connected directed graph, |E| ≥ |V|-1

▪ In a strongly connected directed graph, |E| ≥ |V|  
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So for any graph,
|E|  O(|V|2)

So for any 
connected graph,

|E|  Ω(|V|)
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Density / Sparsity (2 of 2)

❖ We do not always approximate as |E| as O(|V|2)

▪ This is a correct bound, it’s just oftentimes not tight

❖ If it is tight, i.e. |E|  (|V|2), we say the graph is dense

▪ Intuitively: “lots of edges”

❖ If |E|  O(|V|) we say the graph is sparse

▪ Sparse: “most (of the possible) edges missing”
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L24: Graphs and Topological Sort

❖ For the undirected graphs, are they dense or sparse?  

❖ For the directed graphs, are they a DAG?

❖ Examples

▪ Web pages with links

▪ Facebook friends

▪ Methods in a program that call each other

▪ Road maps (e.g., Google maps)

▪ Airline routes

▪ Family trees

▪ Course pre-requisites
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Lecture Outline

❖ Graphs

▪ Definitions

▪ Representation: Adjacency Matrix

▪ Representation: Adjacency List

▪ Algorithms over Graphs

❖ Topological Sort
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Is a Graph an ADT or a Data Structure?

❖ tl;dr: 🤷🏻‍♀️

▪ They have operations like hasEdge((vj,vk))

▪ But it is unclear what the “standard operations” are

❖ Instead, we develop algorithms over graphs and then use the 
“best” data structure for that algorithm.  “Best” depends on:

▪ Properties of the graph (e.g., dense versus sparse)

▪ Common queries

• e.g., “is (u,v) an edge?” vs “what are the neighbors of node u?”

❖ There are two standard graph representations:

▪ Adjacency Matrix and Adjacency List

▪ Different trade-offs, particularly time vs space
31
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Adjacency Matrix: Representation

❖ Assign each node a number from 0 to |V|-1

❖ Graph is a |V|x|V| matrix (ie, 2-D array) of booleans

▪ M[u][v] == true means there is an edge from u to v
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Adjacency Matrix: Properties (1 of 3)
❖ Running time to:

▪ Get a vertex’s out-edges: 

• O(|V|)

▪ Get a vertex’s in-edges: 

• O(|V|)

▪ Decide if some edge exists: 

• O(1)

▪ Insert an edge: 

• O(1)

▪ Delete an edge: 

• O(1)
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❖ Space requirements:

▪ |V|2 bits

❖ Best for sparse or dense 
graphs?

▪ Best for dense graphs
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A B C D

A F T F F

B T F F F

C F T F T

D F F F F

Adjacency Matrix: Properties (2 of 3)

❖ How does the adjacency matrix vary for an undirected graph?

▪ Undirected graphs are symmetric about diagonal axis

▪ Languages with array-of-array matrix representations can save ½ the 
space by omitting the symmetric half

• Languages with “proper” 2D matrix representations (eg, C/C++) can’t do this
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Adjacency Matrix: Properties (3 of 3)

❖ How can we adapt the representation for weighted graphs?

▪ Store the weight in each cell

▪ Need some value to represent “not an edge”

• In some situations, 0 or -1 works

36

A B C D

A F T F F

B T F F F

C F T F T

D F F F F

A B C D

A 0 7 0 0

B 3 0 0 0

C 0 2 0 6

D 0 0 0 0



CSE332, Spring 2021L24: Graphs and Topological Sort

Lecture Outline

❖ Graphs

▪ Definitions

▪ Representation: Adjacency Matrix

▪ Representation: Adjacency List

▪ Algorithms over Graphs

❖ Topological Sort
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Adjacency List: Representation

❖ Assign each node a number from 0 to |V|-1

❖ Graph is an array of length |V|; each entry stores a list of all 
adjacent vertices

▪ E.g. linked list
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Adjacency List: Properties (1 of 3)
❖ Running time to:

▪ Get a vertex’s out-edges: 

• O(d) where d is out-degree of vertex

▪ Get a vertex’s in-edges: 

• O(|V| + |E|)

• (but could keep a second adjacency list for this!)

▪ Decide if some edge exists: 

• O(d) where d is out-degree of source vertex

▪ Insert an edge: 

• O(1) 

• (unless you need to check if it’s there; then O(d))

▪ Delete an edge: 

• O(d) where d is out-degree of source vertex
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❖ Space requirements:

▪ O(|V|+|E|)

❖ Best for sparse or dense graphs?

▪ Best for sparse graphs, so usually just 
stick with linked lists for the buckets
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Adjacency List: Properties (2 of 3)

❖ How does the adjacency list vary for an undirected graph?

❖ (Constant-time) improvements:

▪ If vertices can be ordered, order (aka
normalize) before insertion/lookup

• Eg, only insert/find (A, B), never (B, A)

▪ Double the edges

• Eg, insert (A, B) and also (B, A)
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Adjacency List: Properties (3 of 3)

❖ How can we adapt the representation for weighted graphs?

▪ Store the weight alongside the destination vertex

▪ No need for a special value to represent “not an edge”!
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Which Representation is Better?

❖ Graphs are often sparse:

▪ Road networks are often grids

• Every corner isn’t connected to every other corner

▪ Airlines rarely fly to all possible cities 

• Or if they do it is to/from a hub

❖ Adjacency lists should generally be your default choice

▪ Slower performance compensated by greater space savings

▪ Many graph algorithms rely heavily on getAllEdgesFrom(v)
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getAllEdgesFrom(v) hasEdge(v, w) getAllEdges() Space

Adjacency 
Matrix

Θ(V) Θ(1) Θ(V2) Θ(V2)

Adjacency 
List

Θ(d(v)) Θ(d(v)) Θ(E + V) Θ(E + V)
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Lecture Outline

❖ Graphs

▪ Definitions

▪ Representation: Adjacency Matrix

▪ Representation: Adjacency List

▪ Algorithms over Graphs

❖ Topological Sort
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ST

Graph Queries

❖ Lots of interesting questions we can ask about a graph:

▪ What is the shortest route from S to T? What is the longest route 
without cycles?

▪ Are there cycles in this graph?

▪ How can we disconnect this graph cheaply?

▪ What is the cheapest way to connect this graph?
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Graph Queries More Theoretically
❖ Some well known graph problems and their common names:

▪ s-t Path. Is there a path between vertices s and t?

▪ Connectivity. Is the graph connected?

▪ Biconnectivity. Is there a vertex whose removal disconnects the 
graph?

▪ Shortest s-t Path. What is the shortest path between vertices s and t?

▪ Cycle Detection. Does the graph contain any cycles?

▪ Planarity. Can you draw the graph on paper with no crossing edges?

▪ Isomorphism. Are two graphs the same graph (in disguise)?

▪ Euler Tour. Is there a cycle that uses every edge exactly once?

▪ Hamilton Tour. Is there a cycle that uses every vertex exactly once?

❖ Often can’t tell how difficult a graph problem is without very 
deep consideration.
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Graph Problem Difficulty

❖ Some well known graph problems:

▪ Euler Tour: Is there a cycle that uses every edge exactly once?

▪ Hamilton Tour: Is there a cycle that uses every vertex exactly once?

❖ Difficulty can be deceiving

▪ O(|E|) Euler tour algorithm was found as early as 1873 [Link]

▪ Despite decades of intense study, no efficient algorithm for a 
Hamilton tour exists. Best algorithms are exponential time

❖ Graph problems are among the most mathematically rich areas 
of CS theory

https://ethkim.github.io/TA/251/eulerian.pdf
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Lecture Outline

❖ Graphs

▪ Definitions

▪ Representation: Adjacency Matrix

▪ Representation: Adjacency List

▪ Algorithms over Graphs

❖ Topological Sort
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Topological Sort: Applications

❖ Figuring out how to finish your degree

❖ Determining the order for recomputing spreadsheet cells

❖ Computing the order to compile files using a Makefile

❖ Scheduling jobs in a big data pipeline
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Topological Sort

❖ Output all the vertices of a DAG in an order such that no vertex 
appears before any other vertex that has a path to it

▪ A DAG represents a partial order, and a topological sort produces a 
total order that is consistent with it

❖ Example input:

❖ Example output:

▪ 126, 142, 143, 311, 331, 332, 312, 341, 351, 333, 352, 440
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❖ Provide two valid topological sorts for this digraph:

❖ Why do we perform topological sorts only on DAGs?

❖ Does a DAG always have a unique topological sort?

❖ What DAGs have exactly 1 topological sort?

❖ Provide a real-world application of topological sort

▪ Eg, determining what order to watch Marvel movies in
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