Graphs and Topological Sort CSE 332 Spring 2021

Instructor: Hannah C. Tang

Teaching Assistants:

Aayushi Modi Khushi Chaudhari
Aashna Sheth Kris Wong
Frederick Huyan Logan Milandin
Hamsa Shankar Nachiket Karmarkar

Patrick Murphy
Richard Jiang
Winston Jodjana

Announcements

* Please reach out to course staff if you are struggling for any reason

Lecture Outline

* Graphs
- Definitions
- Representation: Adjacency Matrix
- Representation: Adjacency List
- Algorithms over Graphs
* Topological Sort

Graphs

* A graph is represents relationships among items
- Very general definition because very general concept
* A graph is a pair: $G=(V, E)$
- A set of vertices, also known as nodes
$\mathrm{V}=\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{n}}\right\}$

- A set of edges, possibly directed
$E=\left\{e_{1}, e_{2}, \ldots, e_{m}\right\}$
- Each edge $\mathbf{e}_{\mathbf{i}}$ is a pair of vertices $\left(\mathbf{v}_{\mathbf{j}}, \mathbf{v}_{\mathbf{k}}\right)$
- An edge "connects" the vertices

$$
\begin{aligned}
V= & \{H a n, \text { Leia, Luke }\} \\
E= & \{(\text { Luke, Leia), } \\
& (\text { Han, Leia), } \\
& (\text { Leia, Han })\}
\end{aligned}
$$

*lı gradescope

* For one of the following, what are the vertices and the edges?
- Web pages with links
- Facebook friends
- Methods in a program that call each other
- Road maps (e.g., Google maps)
- Airline routes
- Family trees
- Course pre-requisites
* Wow! Using the same algorithms for problems across so many domains sounds like "core computer science and engineering"

Undirected Graphs

* In undirected graphs, edges have no specific direction
- Edges are always "two-way"

* Thus, (u, v) \in Eimplies (v, u) $\in E$
- Only one of these edges needs to be in the set; the other is implicit
* Degree of a vertex: number of edges containing that vertex
- i.e.: the number of adjacent vertices

Directed Graphs

* In directed graphs (aka digraphs), edges have a direction

* Thus, (u,v) $\in \mathrm{E}$ does not imply (v,u) $\in \mathrm{E}$
- (u,v) $\in E$ means $u \rightarrow v ; u$ is the source and v the destination
* In-Degree of a vertex: number of in-bound edges
- i.e.: edges where the vertex is the destination
* Out-Degree of a vertex: number of out-bound edges
- i.e.: edges where the vertex is the source

Self-edges

* A self-edge (aka a loop) is an edge of the form (u, u)
* Depending on the use/algorithm, a graph may have:
- No self edges
- Some self edges
- All self edges (therefore often implicit, but we will be explicit)
* A node can have a degree / in-degree / out-degree of zero

Adjacency (1 of 2)

* If (u,v) $\in E$
- Then v is a neighbor of u, i.e., v is adjacent to u

- For directed edges, order matters
- u is not adjacent to v unless $(v, u) \in E$

$$
\begin{aligned}
V= & \{A, B, C, D\} \\
E= & \{(C, B), \\
& (A, B), \\
& (B, A) \\
& (C, D)\}
\end{aligned}
$$

Adjacency (2 of 2)

*For a graph G $=(\mathrm{V}, \mathrm{E})$:

- | V| is the number of vertices

- | $\mathrm{E} \mid$ is the number of edges
- Minimum size?
- 0
- Maximum size for an undirected graph with no self-edges? A_{A}
- |V||V-1|/2 $\in \mathrm{O}\left(|\mathrm{V}|^{2}\right)$
- Maximum for a directed graph with no self-edges?
- |V||V-1| $\in O\left(|V|^{2}\right)$

- If self-edges are allowed, add |V| to the answers above (applies to both undirected and directed graphs)

*lı gradescope

* For one of the following, which would use directed edges? Which would have self-edges? Which might have 0 -degree nodes?
- Web pages with links
- Facebook friends
- Methods in a program that call each other
- Road maps (e.g., Google maps)
- Airline routes
- Family trees
- Course pre-requisites

Weighted Graphs

* In a weighed graph, each edge has a weight a.k.a. cost
- Typically numeric (most examples will use ints)
- Some graphs allow negative weights; many don't

Vertex and Edge Labels

* More generally, both vertices and edges can have (possibly non-numeric) labels

Paths and Cycles (1 of 2)

* A path is a list of vertices $\left[\mathrm{v}_{0}, \mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{n}}\right.$] such that $\left(v_{i}, v_{i+1}\right) \in E$ for all $0 \leq i<n$
- You'd call it a path from v_{0} to v_{n}
* A cycle is a path that begins and ends at the same node
- i.e., $\mathrm{v}_{0}==\mathrm{v}_{\mathrm{n}}$
* Example path:

- [Seattle, SLC, Chicago, Dallas, SF, Seattle]
- Also happens to be a cycle!

Paths and Cycles (2 of 2)

* A graph that does not contain any cycles is acyclic

Path Length and Cost

*Path length: Number of edges in a path

- Also called "unweighted cost"
* Path cost: Sum of the weights of each edge in a path
* Example: P = [Seattle, SLC, Chicago, Dallas, SF]
- length(P) = 4
- $\operatorname{cost}(\mathrm{P})=9.5$

„ll gradescope

* Do weights make sense for each of the following graphs? What would they represent, and could those weights be negative?
- Web pages with links
- Facebook friends
- Methods in a program that call each other
- Road maps (e.g., Google maps)
- Airline routes
- Family trees
- Course pre-requisites

Undirected Graph Connectivity

* An undirected graph is connected if for all pairs of vertices \mathbf{u}, \mathbf{v}, there exists a path from \mathbf{u} to \mathbf{v}

Connected graph

Disconnected graph

* An undirected graph is complete (aka fully connected) if for all pairs of vertices \mathbf{u}, v, there exists an edge from \mathbf{u} to \mathbf{v}

(not pictured: self edges)

Directed Graph Connectivity

* A directed graph is strongly connected if for all pairs of vertices \mathbf{u}, \mathbf{v}, there exists a path from \mathbf{u} to \mathbf{v}

* A directed graph is weakly connected if for all pairs of vertices \mathbf{u}, \mathbf{v}, there exists a path from \mathbf{u} to \mathbf{v} ignoring direction of edges
* A directed graph is complete (aka fully connected) if for all pairs of vertices \mathbf{u}, v, there exists an edge from \mathbf{u} to \mathbf{v}

Trees as Graphs

* A tree is a graph that is:
- acyclic

Example:

* So all trees are graphs, but not all graphs are trees
: How does this relate to the trees we know and love?...

Rooted Trees (1 of 2)

* We've previously worked with rooted trees, where:
- We identify a unique ("special") vertex: the root
- We think of edges as directed: parent to children
* The same tree can be redrawn as multiple rooted trees depending on which node you pick as the root

Rooted Trees (2 of 2)

* We've previously worked with rooted trees, where:
- We identify a unique ("special") vertex: the root
- We think of edges as directed: parent to children
* The same tree can be redrawn as multiple rooted trees depending on which node you pick as the root

*ll gradescope

* For the undirected graphs, are they connected?
* For the directed graphs, are they strongly connected? weakly connected?
* Examples:
- Web pages with links
- Facebook friends
- Methods in a program that call each other
- Road maps (e.g., Google maps)
- Airline routes
- Family trees
- Course pre-requisites

Directed Acyclic Graphs (aka DAGs)

* A DAG is a directed graph with no directed cycles
* Every rooted directed tree is a DAG
- But not every DAG is a rooted directed tree:

Not a rooted directed tree;
has an undirected cycle

* Every DAG is a directed graph (by definition!)
- But not every directed graph is a DAG:

Density / Sparsity (1 of 2)

* Recall:
- In an undirected graph, $0 \leq|E|<|V|^{2}$
- In a directed graph: $0 \leq|E| \leq|V|^{2}$

$$
\begin{aligned}
& \text { So for any graph, } \\
& |E| \in O\left(|V|^{2}\right)
\end{aligned}
$$

* One more fact:
- In a connected undirected graph, $|\mathrm{E}| \geq|\mathrm{V}|-1$
- In a weakly connected directed graph, $|\mathrm{E}| \geq|\mathrm{V}|-1$
- In a strongly connected directed graph, $|\mathrm{E}| \geq|\mathrm{V}|$

Density / Sparsity (2 of 2)

* We do not always approximate as |E| as $\mathrm{O}\left(|\mathrm{V}|^{2}\right)$
- This is a correct bound, it's just oftentimes not tight
* If it is tight, i.e. $|\mathrm{E}| \in \Theta\left(|\mathrm{V}|^{2}\right)$, we say the graph is dense
- Intuitively: "lots of edges"
* If $|E| \in \mathrm{O}(|\mathrm{V}|)$ we say the graph is sparse
- Sparse: "most (of the possible) edges missing"

„ll gradescope

* For the undirected graphs, are they dense or sparse?
* For the directed graphs, are they a DAG?
* Examples
- Web pages with links
- Facebook friends
- Methods in a program that call each other
- Road maps (e.g., Google maps)
- Airline routes
- Family trees
- Course pre-requisites

Lecture Outline

* Graphs
- Definitions
- Representation: Adjacency Matrix
- Representation: Adjacency List
- Algorithms over Graphs
* Topological Sort

Is a Graph an ADT or a Data Structure?

* tl;dr: 家
- They have operations like hasEdge ($\left(\mathrm{v}_{\mathrm{j}}, \mathrm{v}_{\mathrm{k}}\right)$)
" But it is unclear what the "standard operations" are
* Instead, we develop algorithms over graphs and then use the "best" data structure for that algorithm. "Best" depends on:
- Properties of the graph (e.g., dense versus sparse)
- Common queries
- e.g., "is (u,v) an edge?" vs "what are the neighbors of node u?"
* There are two standard graph representations:
- Adjacency Matrix and Adjacency List
- Different trade-offs, particularly time vs space

Adjacency Matrix: Representation

* Assign each node a number from 0 to $|\mathrm{V}|-1$
* Graph is a $|\mathrm{V}| \mathrm{x}|\mathrm{V}|$ matrix (ie, 2-D array) of booleans
- $M[u][v]$ == true means there is an edge from u to v

Adjacency Matrix: Properties (1 of 3)

* Running time to:
- Get a vertex's out-edges:
- O(|V|)
- Get a vertex's in-edges:
- O(|V|)
- Decide if some edge exists:
- O(1)
- Insert an edge:
- O(1)
- Delete an edge:

* Space requirements:
- $|\mathrm{V}|^{2}$ bits
* Best for sparse or dense graphs?
- Best for dense graphs

	A	B	C	D
A	F	T	F	F
B	T	F	F	F
C	F	T	F	T
D	F	F	F	F

Adjacency Matrix: Properties (2 of 3)

* How does the adjacency matrix vary for an undirected graph?
- Undirected graphs are symmetric about diagonal axis
- Languages with array-of-array matrix representations can save $1 / 2$ the space by omitting the symmetric half
- Languages with "proper" 2D matrix representations (eg, C/C++) can't do this

Adjacency Matrix: Properties (3 of 3)

* How can we adapt the representation for weighted graphs?
- Store the weight in each cell
- Need some value to represent "not an edge"
- In some situations, 0 or -1 works

Lecture Outline

* Graphs
- Definitions
- Representation: Adjacency Matrix
- Representation: Adjacency List
- Algorithms over Graphs
* Topological Sort

Adjacency List: Representation

* Assign each node a number from 0 to |V|-1
* Graph is an array of length |V| ; each entry stores a list of all adjacent vertices
- E.g. linked list

Adjacency List: Properties (1 of 3)

* Running time to:
- Get a vertex's out-edges:
- $\mathrm{O}(d)$ where d is out-degree of vertex
- Get a vertex's in-edges:
- $\mathrm{O}(|\mathrm{V}|+|\mathrm{E}|)$
- (but could keep a second adjacency list for this!)
- Decide if some edge exists:
- $\mathrm{O}(d)$ where d is out-degree of source vertex
- Insert an edge:
- O(1)
- (unless you need to check if it's there; then $O(d)$)
- Delete an edge:
- $\mathrm{O}(d)$ where d is out-degree of source vertex

* Space requirements:
- O(|V|+|E|)
* Best for sparse or dense graphs?
- Best for sparse graphs, so usually just stick with linked lists for the buckets

Adjacency List: Properties (2 of 3)

* How does the adjacency list vary for an undirected graph?
* (Constant-time) improvements:
- If vertices can be ordered, order (aka normalize) before insertion/lookup
- Eg, only insert/find (A, B), never (B, A)
- Double the edges
- Eg, insert (A, B) and also (B, A)

Adjacency List: Properties (3 of 3)

* How can we adapt the representation for weighted graphs?
- Store the weight alongside the destination vertex
- No need for a special value to represent "not an edge"!

Which Representation is Better?

* Graphs are often sparse:
- Road networks are often grids
- Every corner isn't connected to every other corner
- Airlines rarely fly to all possible cities
- Or if they do it is to/from a hub
* Adjacency lists should generally be your default choice
- Slower performance compensated by greater space savings
- Many graph algorithms rely heavily on getAllEdgesFrom(v)

	getAllEdgesFrom (v)	hasEdge (V, w)	getAllEdges ()	Space
Adjacency Matrix	$\Theta(\mathrm{V})$	$\Theta(1)$	$\Theta\left(\mathrm{V}^{2}\right)$	$\Theta\left(\mathrm{V}^{2}\right)$
Adjacency List	$\Theta(\mathrm{d}(\mathrm{v}))$	$\Theta(\mathrm{d}(\mathrm{v}))$	$\Theta(\mathrm{E}+\mathrm{V})$	$\Theta(\mathrm{E}+\mathrm{V})$

Lecture Outline

* Graphs
- Definitions
- Representation: Adjacency Matrix
- Representation: Adjacency List
- Algorithms over Graphs
* Topological Sort

Graph Queries

* Lots of interesting questions we can ask about a graph:
- What is the shortest route from S to T? What is the longest route without cycles?
- Are there cycles in this graph?
- How can we disconnect this graph cheaply?
- What is the cheapest way to connect this graph?

Graph Queries More Theoretically

* Some well known graph problems and their common names:
- s-t Path. Is there a path between vertices s and t?
- Connectivity. Is the graph connected?
- Biconnectivity. Is there a vertex whose removal disconnects the graph?
- Shortest s-t Path. What is the shortest path between vertices s and t ?
- Cycle Detection. Does the graph contain any cycles?
- Planarity. Can you draw the graph on paper with no crossing edges?
- Isomorphism. Are two graphs the same graph (in disguise)?
- Euler Tour. Is there a cycle that uses every edge exactly once?
- Hamilton Tour. Is there a cycle that uses every vertex exactly once?
* Often can't tell how difficult a graph problem is without very deep consideration.

Graph Problem Difficulty

* Some well known graph problems:
- Euler Tour: Is there a cycle that uses every edge exactly once?
- Hamilton Tour: Is there a cycle that uses every vertex exactly once?
* Difficulty can be deceiving
- O(|E|) Euler tour algorithm was found as early as 1873 [Link]
- Despite decades of intense study, no efficient algorithm for a Hamilton tour exists. Best algorithms are exponential time
* Graph problems are among the most mathematically rich areas of CS theory

Lecture Outline

* Graphs
- Definitions
- Representation: Adjacency Matrix
- Representation: Adjacency List
- Algorithms over Graphs
* Topological Sort

Topological Sort: Applications

* Figuring out how to finish your degree

* Determining the order for recomputing spreadsheet cells
* Computing the order to compile files using a Makefile
* Scheduling jobs in a big data pipeline

Topological Sort

Disclaimer: Do not use for official advising purposes! Falsely implies CSE 332 is a prereq for CSE 312, etc.

* Output all the vertices of a DAG in an order such that no vertex appears before any other vertex that has a path to it
- A DAG represents a partial order, and a topological sort produces a total order that is consistent with it
* Example input:

* Example output:
- 126, 142, 143, 311, 331, 332, 312, 341, 351, 333, 352, 440

*lı gradescope

* Provide two valid topological sorts for this digraph:

* Why do we perform topological sorts only on DAGs?
* Does a DAG always have a unique topological sort?
* What DAGs have exactly 1 topological sort?
* Provide a real-world application of topological sort
- Eg, determining what order to watch Marvel movies in

