Graphs and Topological Sort CSE 332 Spring 2021

Instructor: Hannah C. Tang

Teaching Assistants:

Aayushi Modi Khushi Chaudhari Aashna Sheth Kris Wong Frederick Huyan Logan Milandin Hamsa Shankar Nachiket Karmarkar

Patrick Murphy Richard Jiang Winston Jodjana

Announcements

 Please reach out to course staff if you are struggling for any reason

Lecture Outline

- Graphs
 - Definitions
 - Representation: Adjacency Matrix
 - Representation: Adjacency List
 - Algorithms over Graphs
- Topological Sort

Graphs

- A graph is represents relationships among items
 - Very general definition because very general concept
- A graph is a pair: G = (V, E)
 - A set of vertices, also known as nodes

$$V = \{v_1, v_2, ..., v_n\}$$

A set of *edges*, possibly *directed*

$$E = \{e_1, e_2, ..., e_m\}$$

- Each edge \mathbf{e}_i is a pair of vertices $(\mathbf{v}_j, \mathbf{v}_k)$
- An edge "connects" the vertices

Ill gradescope

gradescope.com/courses/256241

- * For one of the following, what are the *vertices* and the *edges*?
 - Web pages with links
 - Facebook friends
 - Methods in a program that call each other
 - Road maps (e.g., Google maps)
 - Airline routes
 - Family trees
 - Course pre-requisites
- Wow! Using the same algorithms for problems across so many domains sounds like "core computer science and engineering"

Undirected Graphs

- * In undirected graphs, edges have no specific direction
 - Edges are always "two-way"

- * Thus, $(u, v) \in E$ implies $(v, u) \in E$
 - Only one of these edges needs to be in the set; the other is implicit
- * *Degree* of a vertex: number of edges containing that vertex
 - i.e.: the number of adjacent vertices

Directed Graphs

In directed graphs (aka digraphs), edges have a direction

* Thus, $(u, v) \in E$ does <u>not</u> imply $(v, u) \in E$

• $(u, v) \in E$ means $u \rightarrow v$; u is the *source* and v the *destination*

In-Degree of a vertex: number of in-bound edges

- i.e.: edges where the vertex is the destination
- * Out-Degree of a vertex: number of out-bound edges
 - i.e.: edges where the vertex is the source

* A *self-edge* (aka a *loop*) is an edge of the form (u,u)

- Depending on the use/algorithm, a graph may have:
 - No self edges
 - Some self edges
 - All self edges (therefore often implicit, but we will be explicit)
- A node can have a degree / in-degree / out-degree of zero

Adjacency (1 of 2)

- * If $(u, v) \in E$
 - Then v is a *neighbor* of u, i.e., v is *adjacent* to u
 - For directed edges, order matters
 - u is not adjacent to v unless (v, u) $\in E$

 $V = \{A, B, C, D\}$ E = { (C, B), (A, B), (B, A) (C, D) }

Adjacency (2 of 2)

- For a graph G = (V, E):
 - IV is the number of vertices
 - |E| is the number of edges
 - Minimum size?
 - 0
 - Maximum size for an undirected graph with no self-edges? $- |V| |V-1|/2 \in O(|V|^2)$
 - Maximum for a directed graph with no self-edges? - $|V| |V-1| \in O(|V|^2)$
 - If self-edges are allowed, add |V| to the answers above (applies to both undirected and directed graphs)

Ill gradescope

gradescope.com/courses/256241

- For one of the following, which would use *directed edges*? Which would have *self-edges*? Which might have *0-degree nodes*?
 - Web pages with links
 - Facebook friends
 - Methods in a program that call each other
 - Road maps (e.g., Google maps)
 - Airline routes
 - Family trees
 - Course pre-requisites

Weighted Graphs

- In a weighed graph, each edge has a weight a.k.a. cost
 - Typically numeric (most examples will use ints)
 - Some graphs allow negative weights; many don't

Vertex and Edge Labels

 More generally, both vertices and edges can have (possibly non-numeric) labels

Paths and Cycles (1 of 2)

- * A path is a list of vertices [v₀, v₁, ..., v_n] such that (v_i, v_{i+1}) ∈ E for all 0 ≤ i < n</pre>
 - $\hfill \mbox{ You'd call it a path from } v_0$ to v_n
- * A cycle is a path that begins and ends at the same node

- [Seattle, SLC, Chicago, Dallas, SF, Seattle]
- Also happens to be a cycle!

Paths and Cycles (2 of 2)

* A graph that does not contain any cycles is *acyclic*

Path Length and Cost

- Path length: Number of edges in a path
 - Also called "unweighted cost"
- * Path cost: Sum of the weights of each edge in a path
- * Example: P = [Seattle, SLC, Chicago, Dallas, SF]
 - Iength(P) = 4
 - cost(P) = 9.5

Ill gradescope

gradescope.com/courses/256241

- Do weights make sense for each of the following graphs? What would they represent, and could those weights be negative?
 - Web pages with links
 - Facebook friends
 - Methods in a program that call each other
 - Road maps (e.g., Google maps)
 - Airline routes
 - Family trees
 - Course pre-requisites

Undirected Graph Connectivity

An undirected graph is *connected* if for all pairs of vertices
 u, v, there exists a *path* from u to v

An undirected graph is *complete* (aka *fully connected*) if for all pairs of vertices u, v, there exists an *edge* from u to v

(not pictured: self edges)

Directed Graph Connectivity

A directed graph is *strongly connected* if for all pairs of vertices
u, v, there exists a *path* from u to v

A directed graph is *weakly connected* if for all pairs of vertices
 u, v, there exists a path from u to v ignoring direction of edges

A directed graph is *complete* (aka *fully connected*) if for all pairs of vertices u, v, there exists an *edge* from u to v

Trees as Graphs

- * A *tree* is a graph that is:
 - acyclic
 - connected
- So all trees are graphs, but not all graphs are trees
- How does this relate to the trees we know and love?...

Rooted Trees (1 of 2)

- We've previously worked with *rooted trees*, where:
 - We identify a unique ("special") vertex: the root
 - We think of edges as directed: parent to children
- The same tree can be redrawn as multiple rooted trees depending on which node you pick as the root

Rooted Trees (2 of 2)

- * We've previously worked with *rooted trees*, where:
 - We identify a unique ("special") vertex: the root
 - We think of edges as directed: parent to children
- The same tree can be redrawn as multiple rooted trees depending on which <u>node you pick as the root</u>

Ill gradescope

gradescope.com/courses/256241

- For the <u>undirected</u> graphs, are they *connected*?
- For the <u>directed</u> graphs, are they strongly connected? weakly connected?
- Examples:
 - Web pages with links
 - Facebook friends
 - Methods in a program that call each other
 - Road maps (e.g., Google maps)
 - Airline routes
 - Family trees
 - Course pre-requisites

Directed Acyclic Graphs (aka DAGs)

* A **DAG** is a directed graph with no directed cycles

- Every rooted directed tree is a DAG
 - But not every DAG is a rooted directed tree:

Not a rooted directed tree; has an undirected cycle

- Every DAG is a directed graph (by definition!)
 - But not every directed graph is a DAG:

Not a DAG; has a directed cycle

Density / Sparsity (1 of 2)

- In an undirected graph, 0 ≤ |E| < |V|²
 In a directed graph: 0 ≤ |E| ≤ |V|²

So for any graph,
$$|E| \in O(|V|^2)$$

- One more fact:
 - In a *connected* undirected graph, $|E| \ge |V|-1$
 - In a weakly connected directed graph, $|E| \ge |V|-1$
 - In a strongly connected directed graph, $|E| \ge |V|$

So for any connected graph, $|\mathsf{E}| \in \Omega(|\mathsf{V}|)$

Density / Sparsity (2 of 2)

- ✤ We do not always approximate as |E| as O(|V|²)
 - This is a correct bound, it's just oftentimes not tight
- - Intuitively: "lots of edges"

- * If $|E| \in O(|V|)$ we say the graph is *sparse*
 - Sparse: "most (of the possible) edges missing"

Ill gradescope

gradescope.com/courses/256241

- * For the <u>undirected</u> graphs, are they *dense* or *sparse*?
- For the <u>directed</u> graphs, are they a **DAG**?
- Examples
 - Web pages with links
 - Facebook friends
 - Methods in a program that call each other
 - Road maps (e.g., Google maps)
 - Airline routes
 - Family trees
 - Course pre-requisites

Lecture Outline

- Graphs
 - Definitions
 - Representation: Adjacency Matrix
 - Representation: Adjacency List
 - Algorithms over Graphs
- Topological Sort

Is a Graph an ADT or a Data Structure?

- 🔹 tl;dr: 😰
 - They have operations like <code>hasEdge((v_i,v_k))</code>
 - But it is unclear what the "standard operations" are
- Instead, we develop algorithms over graphs and then use the "best" data structure for that algorithm. "Best" depends on:
 - Properties of the graph (e.g., dense versus sparse)
 - Common queries
 - e.g., "is (u,v) an edge?" vs "what are the neighbors of node u?"
- There are two standard graph representations:
 - Adjacency Matrix and Adjacency List
 - Different trade-offs, particularly time vs space

Adjacency Matrix: Representation

- * Assign each node a number from 0 to |V| 1
- * Graph is a $|V| \times |V|$ matrix (ie, 2-D array) of booleans
 - M[u][v] == true means there is an edge from u to v

Adjacency Matrix: Properties (1 of 3)

- Running time to:
 - Get a vertex's out-edges:
 - O(|V|)
 - Get a vertex's in-edges:
 - O(|V|)
 - Decide if some edge exists:
 - O(1)
 - Insert an edge:
 - O(1)
 - Delete an edge:

- Space requirements:
 - V|² bits
- Best for sparse or dense graphs?
 - Best for dense graphs

Adjacency Matrix: Properties (2 of 3)

- * How does the adjacency matrix vary for an undirected graph?
 - Undirected graphs are symmetric about diagonal axis
 - Languages with array-of-array matrix representations can save ½ the space by omitting the symmetric half
 - Languages with "proper" 2D matrix representations (eg, C/C++) can't do this

Adjacency Matrix: Properties (3 of 3)

- * How can we adapt the representation for weighted graphs?
 - Store the weight in each cell
 - Need some value to represent "not an edge"
 - In some situations, 0 or -1 works

Lecture Outline

- Graphs
 - Definitions
 - Representation: Adjacency Matrix
 - Representation: Adjacency List
 - Algorithms over Graphs
- Topological Sort

Adjacency List: Representation

- * Assign each node a number from 0 to |V| 1
- ♦ Graph is an array of length | ∨ |; each entry stores a list of all adjacent vertices
 - E.g. linked list

Adjacency List: Properties (1 of 3)

- Running time to:
 - Get a vertex's out-edges:
 - O(*d*) where *d* is out-degree of vertex
 - Get a vertex's in-edges:
 - O(|V| + |E|)
 - (but could keep a second adjacency list for this!)
 - Decide if some edge exists:
 - O(d) where d is out-degree of source vertex
 - Insert an edge:
 - O(1)
 - (unless you need to check if it's there; then O(d))
 - Delete an edge:
 - O(d) where d is out-degree of source vertex

- Space requirements:
 - O(|V|+|E|)
- Best for sparse or dense graphs?
 - Best for sparse graphs, so usually just stick with linked lists for the buckets

Let d(v)=out-degree

Adjacency List: Properties (2 of 3)

- How does the adjacency list vary for an undirected graph?
- (Constant-time) improvements:
 - If vertices can be ordered, order (aka normalize) before insertion/lookup
 - Eg, only insert/find (A, B), never (B, A)
 - Double the edges
 - Eg, insert (A, B) and also (B, A)

Adjacency List: Properties (3 of 3)

- * How can we adapt the representation for weighted graphs?
 - Store the weight alongside the destination vertex
 - No need for a special value to represent "not an edge"!

Which Representation is Better?

- Graphs are often sparse:
 - Road networks are often grids
 - Every corner isn't connected to every other corner
 - Airlines rarely fly to all possible cities
 - Or if they do it is to/from a hub
- Adjacency lists should generally be your default choice
 - Slower performance compensated by greater space savings
 - Many graph algorithms rely heavily on getAllEdgesFrom(v)

	getAllEdgesFrom(v)	hasEdge(v, w)	getAllEdges()	Space
Adjacency Matrix	Θ(V)	Θ(1)	Θ(V ²)	Θ(V ²)
Adjacency List	Θ(d(v))	Θ(d(v))	Θ(E + V)	Θ(E + V)

Lecture Outline

- Graphs
 - Definitions
 - Representation: Adjacency Matrix
 - Representation: Adjacency List
 - Algorithms over Graphs
- Topological Sort

Graph Queries

- Lots of interesting questions we can ask about a graph:
 - What is the shortest route from S to T? What is the longest route without cycles?
 - Are there cycles in this graph?
 - How can we disconnect this graph cheaply?
 - What is the cheapest way to connect this graph?

Graph Queries More Theoretically

- Some well known graph problems and their common names:
 - **s-t Path**. Is there a path between vertices s and t?
 - **Connectivity.** Is the graph connected?
 - Biconnectivity. Is there a vertex whose removal disconnects the graph?
 - Shortest s-t Path. What is the shortest path between vertices s and t?
 - Cycle Detection. Does the graph contain any cycles?
 - Planarity. Can you draw the graph on paper with no crossing edges?
 - Isomorphism. Are two graphs the same graph (in disguise)?
 - Euler Tour. Is there a cycle that uses every *edge* exactly once?
 - Hamilton Tour. Is there a cycle that uses every vertex exactly once?
- Often can't tell how difficult a graph problem is without very deep consideration.

Graph Problem Difficulty

- Some well known graph problems:
 - Euler Tour: Is there a cycle that uses every *edge* exactly once?
 - Hamilton Tour: Is there a cycle that uses every vertex exactly once?
- Difficulty can be deceiving
 - O(|E|) Euler tour algorithm was found as early as 1873 [Link]
 - Despite decades of intense study, no efficient algorithm for a Hamilton tour exists. Best algorithms are exponential time
- Graph problems are among the most mathematically rich areas of CS theory

Lecture Outline

- Graphs
 - Definitions
 - Representation: Adjacency Matrix
 - Representation: Adjacency List
 - Algorithms over Graphs

* Topological Sort

Topological Sort: Applications

Figuring out how to finish your degree

- Determining the order for recomputing spreadsheet cells
- Computing the order to compile files using a Makefile
- Scheduling jobs in a big data pipeline

Topological Sort

Disclaimer: Do not use for official advising purposes! Falsely implies CSE 332 is a prereq for CSE 312, etc.

- Output all the vertices of a DAG in an order such that no vertex appears before any other vertex that has a path to it
 - A DAG represents a *partial order*, and a topological sort produces a *total order* that is consistent with it
- Example input:

- Example output:
 - 126, 142, 143, 311, 331, 332, 312, 341, 351, 333, 352, 440

Ill gradescope

gradescope.com/courses/256241

Provide two valid topological sorts for this digraph:

- Why do we perform topological sorts only on DAGs?
- Does a DAG always have a unique topological sort?
- What DAGs have exactly 1 topological sort?
- Provide a real-world application of topological sort
 - Eg, determining what order to watch Marvel movies in