
CSE332, Spring 2021L23: Deadlocks

💀🔒 Deadlocks! 💀🔒
CSE 332 Spring 2021

Instructor: Hannah C. Tang

Teaching Assistants:

Aayushi Modi Khushi Chaudhari Patrick Murphy

Aashna Sheth Kris Wong Richard Jiang

Frederick Huyan Logan Milandin Winston Jodjana

Hamsa Shankar Nachiket Karmarkar

CSE332, Spring 2021

gradescope.com/courses/256241

L23: Deadlocks

1. What is the relationship between race conditions, data races, and
bad interleavings?

2. Using our BankAccount example, describe an example of a data race

3. Using our BankAccount example, describe an example of a bad
interleaving

2

CSE332, Spring 2021L23: Deadlocks

Announcements

❖ Graph definitions lecture coming up, please do pre-work!

❖ Quiz 3:

▪ Apologies for deleting submissions on Tuesday afternoon!

▪ Please review clarifications thread to avoid misunderstanding the
question

▪ If linking to a course handout, please explain why it’s relevant to
your answer

❖ Please pull your p3 repo before pushing; we landed a fix to the
starter code

3

CSE332, Spring 2021L23: Deadlocks

Lecture Outline

❖ Avoiding Race Conditions

▪ Memory Location Categories

▪ Five Guidelines

❖ Deadlocks

4

CSE332, Spring 2021L23: Deadlocks

3 Choices: Categorizing Memory Locations

❖ Every memory location (e.g., object field) in your program
must obey at least one of the following:

1. Thread-local: Do not use the location in > 1 thread

2. Immutable: Do not write to the memory location

3. Shared-and-mutable: Use synchronization to control access

5

all memory thread-local
memory

immutable
memory

needs
synchronization

CSE332, Spring 2021L23: Deadlocks

Category #1: Thread-local

❖ Whenever possible, do not share resources

▪ Easier for each thread to maintain its own thread-local copy of a
resource than to have a global resource with shared updates

▪ Correct only if threads don’t need to communicate via the resource

• Example: java.util.Random instances

▪ Remember: call-stacks are thread-local, so never need to
synchronize on local variables

6

Guideline #-2: Minimize shared memory
The vast majority of objects should be thread-local

CSE332, Spring 2021L23: Deadlocks

Category #2: Immutable

❖ When possible, don’t mutate objects; make new ones instead!

▪ A key tenet of functional programming (see CSE 341); functional
programming concepts helpful in a concurrent setting!

▪ “Updates” encompass direct writes as well as side-effects (eg:
java.util.Random nextInt)

❖ In practice, programmers over-use mutation; minimize it

7

Guideline #-1: Read-only locations do not require synchronization
Simultaneous reads are not races and not a problem

CSE332, Spring 2021L23: Deadlocks

Category #3: Keep the Rest Synchronized

❖ After minimizing the amount of memory that is …

1. thread-shared

2. mutable

❖ … we need guidelines for how keeping other data consistent

❖ Necessary:

▪ a Java or C program with a data race is almost always wrong

❖ But Not Sufficient:

▪ Our peek() example had no data races, and was still wrong …

8

Guideline #0: No data races
• Never allow two threads to read/write or write/write the same location

at the same time
• Use locks! Even if it “seems safe”

CSE332, Spring 2021L23: Deadlocks

Lecture Outline

❖ Avoiding Race Conditions

▪ Memory Location Categories

▪ Five Guidelines

❖ Deadlocks

9

CSE332, Spring 2021L23: Deadlocks

Getting It Right

❖ Avoiding race conditions on shared resources is difficult

▪ What ‘seems fine’ in a sequential world got us into trouble when we
introduced concurrency

❖ Decades of bugs have led to some techniques known to work

▪ More info:

• “Java Concurrency in Practice”, ch 2

• Grossman Notes, section 8

▪ None of these techniques are specific to Java or a particular book!

▪ Hard to appreciate right now, but refer back to these!

10

CSE332, Spring 2021L23: Deadlocks

Guideline #1: Use Consistent Locking (1 of 2)

❖ We say the lock guards the location

▪ Clearly document the guard for each location

❖ In Java, the guard is often the object containing the location

▪ E.g.: this when inside the object’s methods

❖ The same lock can (and often should) guard multiple locations

▪ E.g.: multiple fields in a class

▪ But also often guard a larger structure with one lock to ensure
mutual exclusion on the entire structure

11

Guideline #1: Use consistent locking
For each location needing synchronization, have a lock that is always held
when reading or writing the location

CSE332, Spring 2021L23: Deadlocks

Guideline #1: Use Consistent Locking (2 of 2)

❖ The mapping from locations to locks is conceptual

▪ Must be enforced by you as the programmer!

▪ Partitions the shared-and-mutable locations by “which lock”

❖ Consistent locking is:

▪ Not sufficient: Prevents data races but still allows bad interleavings

▪ (Aside) Not Necessary: You could have different locking protocols for
different phases of your program as long as all threads are
coordinated when moving from one phase to next

• eg. at start of program, data structure is being updated (needs locks); later
it is not modified so can be read simultaneous (no locks)

12

CSE332, Spring 2021L23: Deadlocks

Guideline #2: Lock Granularity (1 of 2)

❖ Lock granularity is a continuum. The two ends are:

▪ Coarse-grained: Fewer locks, i.e., more objects per lock

• E.g.: One lock for entire data structure (e.g., array)

• E.g.: One lock for all bank accounts

▪ Fine-grained: More locks, i.e., fewer objects per lock

• E.g.: One lock per data element (e.g., array index)

• E.g.: One lock per bank account

13

…

…

CSE332, Spring 2021L23: Deadlocks

Guideline #2: Lock Granularity (2 of 2)

❖ There are tradeoffs at either end of the continuum:

▪ Coarse-grained advantages:

• Simpler to implement, especially implementing operations that access
multiple locations (because all guarded by the same lock)

• Much easier for operations that modify data-structure shape

▪ Fine-grained advantages:

• Enables more simultaneous access; coarse-grained locking may lead to
unnecessary blocking)

• Can make multi-node operations more difficult: say, rotations in an AVL tree

14

Guideline #2: Start with coarse-grained
Optimize for implementation simplicity, and move to fine-grained only if
contention on the coarser locks becomes an issue

CSE332, Spring 2021L23: Deadlocks

Lock Granularity Example: Separate Chaining Hashtable

❖ Continuum:

▪ Coarse-grained: One lock for entire hashtable

▪ Fine-grained: One lock for each bucket

❖ Which supports more concurrency for insert and lookup?

▪ Fine-grained allows simultaneous access to different buckets

❖ Which makes resize()’s implementation easier? How would
you do it?

▪ Coarse-grained; just grab one lock and proceed

❖ If there is a numElements field, maintaining it will destroy
the benefits of using separate locks for each bucket. Why?

▪ Updating it on each mutation without a lock creates a data race

▪ Updating it on each mutation with a lock is coarse-grained locking 15

CSE332, Spring 2021L23: Deadlocks

Guideline #3: Critical Section Granularity

❖ A second, orthogonal granularity issue is critical-section size;
i.e. “how much work should I do while holding lock(s)?”

❖ What happens if critical sections are too long?

▪ Performance loss because other threads are blocked

❖ What happens if critical sections are too short?

▪ Bugs! You broke up something that shouldn’t have been broken up;
other threads can see intermediate state

16

Guideline #3: Keep critical sections as small as possible while still being correct
Don’t do expensive computations or I/O in critical sections, but also don’t
introduce race conditions

CSE332, Spring 2021L23: Deadlocks

synchronized(lock) {

v1 = table.lookup(k);

v2 = expensive(v1);

table.remove(k);

table.insert(k,v2);

}

Critical Section Granularity: Example #1

❖ Change a key’s value within a hashtable without removing it
from the table

▪ Assume lock guards the whole table

▪ expensive() takes in the old value, and computes a new one, but
takes a long time

17

Papa Bear’s critical
section was too long!

(entire table locked
during expensive call)

CSE332, Spring 2021L23: Deadlocks

synchronized(lock) {

v1 = table.lookup(k);

}

v2 = expensive(v1);

synchronized(lock) {

table.remove(k);

table.insert(k,v2);

}

Critical Section Granularity: Example #2

❖ Change a key’s value within a hashtable without removing it
from the table

▪ Assume lock guards the whole table

▪ expensive() takes in the old value, and computes a new one, but
takes a long time

18

Mama Bear’s critical section
was too short!

(if another thread updated k’s
value, we will lose their update)

CSE332, Spring 2021L23: Deadlocks

Critical Section Granularity: Example #3

❖ Change a key’s value within a hashtable without removing it
from the table

▪ Assume lock guards the whole table

▪ expensive() takes in the old value, and computes a new one, but
takes a long time

19

done = false;

while (!done) {

synchronized(lock) {

v1 = table.lookup(k);

}

v2 = expensive(v1);

synchronized(lock) {

if(table.lookup(k) == v1) {

done = true;

table.remove(k);

table.insert(k,v2);

}}}

Baby Bear’s critical section
was juuuuust right!

(if another update occurred, retry
update again)

CSE332, Spring 2021L23: Deadlocks

Guideline #4: Atomicity

❖ An operation is atomic if no other thread can see it partly
executed

▪ “Atomic”, as in “appears indivisible”

▪ Typically want ADT operations atomic, even to other threads running
operations on the same ADT

20

Guideline #4: Think about atomicity first, and locks second
Think in terms of what operations need to be atomic, and make critical sections
just long enough to preserve atomicity. Only then should you design the locking
protocol to implement the critical sections

CSE332, Spring 2021L23: Deadlocks

Guideline #5: Don’t Roll Your Own

❖ In “real life”, writing a data structure from scratch is … rare

▪ Standard libraries provide most of what you need

▪ Team/Department/Company libraries usually provide the rest

▪ CSE332 teaches key trade-offs, abstractions, and analysis of such
implementations

❖ This is especially true for concurrent data structures!

▪ Hard to write correct and performant on the first try; you’re much
more likely to write code with race conditions

21

Guideline #5: Use libraries whenever they meet your needs
Standard libraries like ConcurrentHashMap were written by world experts.
Do you really want to spend your time chasing down your bugs?

CSE332, Spring 2021L23: Deadlocks

Lecture Outline

❖ Avoiding Race Conditions

▪ Memory Location Categories

▪ Five Guidelines

❖ Deadlocks

22

CSE332, Spring 2021L23: Deadlocks

The Problem (1 of 2)

❖ Consider a method to transfer money between bank accounts

❖ Potential problems?

▪ During call to a.deposit(), thread holds two locks

▪ Need to investigate whether (when?) this may be a problem
23

class BankAccount {

…

synchronized public void withdraw(int amt) {…}

synchronized public void deposit(int amt) {…}

synchronized public void transferTo(int amt,

BankAccount a) {

this.withdraw(amt);

a.deposit(amt);

}

}

CSE332, Spring 2021L23: Deadlocks

The Problem (2 of 2)

❖ Suppose x and y are different accounts

24

acquire lock for x

do withdraw from x

block on lock for y

acquire lock for y

do withdraw from y

block on lock for x

Thread A: x.transferTo(1, y)

Ti
m

e

Thread B: y.transferTo(1, x)

CSE332, Spring 2021L23: Deadlocks

The Dining Philosophers

❖ Classic formulation of a computer science problem!

▪ 5 philosophers go to dinner at an Italian restaurant

▪ They sit at a round table with one fork per setting

▪ When the spaghetti arrives, each philosopher first attempts to grab
their right fork, then their left fork

• If they successfully grab two forks, they can eat

❖ ‘Locking’ for fork results in a deadlock

25

CSE332, Spring 2021L23: Deadlocks

Deadlock

❖ A deadlock occurs when there are threads T1, …, Tn such that:

▪ For i=1,..,n-1, Ti is waiting for a resource held by T(i+1)

▪ Tn is waiting for a resource held by T1

❖ In other words, there is a cycle of waiting

▪ If we model the waiting as a graph of dependencies, cycles are bad!

▪ Deadlock avoidance is basically ensuring a cycle can never arise

26

CSE332, Spring 2021L23: Deadlocks

Back to Our BankAccount Example

❖ Options for deadlock-proof transfer:

1. Make a smaller critical section: “unsynchronize” transferTo()

• Exposes intermediate state after withdraw and before deposit

• Might be okay here, but bank will have wrong total amount (transiently)

2. Coarsen lock granularity: one lock for all accounts

• Allows transfers, but sacrifices concurrent deposits/withdrawals

3. Assign each account an ordering; consistently acquire locks in order

• If entire program obeys this ordering, can avoid cycles

• Code that acquires only one lock can ignore the order

27

CSE332, Spring 2021L23: Deadlocks

Consistently Ordering Locks

28

class BankAccount {

…

private int acctNumber; // must be unique

public void transferTo(int amt, BankAccount a) {

if (this.acctNumber < a.acctNumber)

synchronized(this) {

synchronized(a) {

this.withdraw(amt);

a.deposit(amt);

}}

else

synchronized(a) {

synchronized(this) {

this.withdraw(amt);

a.deposit(amt);

}}

}

}

CSE332, Spring 2021L23: Deadlocks

Aside: Another Example

❖ The Java standard library’s StringBuffer

29

class StringBuffer {

private int count;

private char[] value;

…

synchronized append(StringBuffer sb) {

int len = sb.length();

if(this.count + len > this.value.length)

this.expand(…);

sb.getChars(0, len, this.value, this.count);

}

synchronized getChars(int x, int, y,

char[] a, int z) {

“copy this.value[x..y] into a starting at z”

}

}

CSE332, Spring 2021L23: Deadlocks

Aside: Two problems with StringBuffer

❖ Problem #1: sb’s lock not held between sb.length and sb.getChars

▪ sb could get longer, causing append() to throw ArrayBoundsException

❖ Problem #2: Deadlock potential if two threads try to append in
opposite directions, just like in the bank-account first example

❖ Not easy to fix both problems without extra copying 

▪ Do not want unique ids on every StringBuffer

▪ Do not want one lock for all StringBuffer objects

❖ Actual Java library: fixed neither

▪ Left code as is and changed javadoc

▪ Up to clients to avoid such situations with own protocols
30

CSE332, Spring 2021L23: Deadlocks

Summary: Deadlocks

❖ Code that modifies multiple objects, like account-transfer and
string-buffer append, may introduce deadlock

❖ Easier case: objects have different (logical) types

▪ Define a fixed order among types

• E.g.: “When moving an item from the hashtable to the work queue, never
acquire the queue lock while holding the hashtable lock”

❖ Easier case: objects are in an acyclic structure

▪ Use the structure to determine a fixed order

• E.g.: “If holding a tree node’s lock, do not acquire other nodes’ locks unless
they are children in the tree”

❖ Many of these techniques depend on developer discipline and
documentation 

31

CSE332, Spring 2021L23: Deadlocks

Summary: Concurrency (1 of 2)

❖ Concurrent programming allows multiple threads to access
shared resources, possibly increasing throughput

▪ e.g. hash table, work queue

❖ It also introduces new sources of 🐛bugs🐛:

▪ Race conditions: data races and bad interleavings

▪ Critical sections too small or use wrong locks

▪ Deadlocks

32

CSE332, Spring 2021L23: Deadlocks

Summary: Concurrency (2 of 2)

❖ Concurrency requires synchronization

▪ Locks, to ensure for mutual exclusion

▪ Other synchronization primitives (see Grossman notes):

• Reader/Writer Locks

• Condition variables for signaling others

❖ Guidelines for correct use can help avoid common pitfalls

❖ Shared memory model is not the only approach, but other
approaches (e.g., message passing, streams) are not painless

33

