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L22: Race Conditions

❖ Why does a lock require help from the operating system for a correct 
implementation?
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Announcements

❖ P3 released, contact your partner soon!

❖ Mini projects (“para”) due tonight!
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Lecture Outline

❖ Re-entrancy

❖ Locking in Java

❖ Race Conditions: Data Races vs. Bad Interleavings

Lecture questions: pollev.com/cse332
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Review: The Lock ADT

❖ A Lock ADT with operations  new, acquire, release

▪ Only one executor may acquire an instance of the lock at one time

▪ Given simultaneous acquires/releases, a “correct thing” will happen

• Specifically: if we have two acquires: one will “win” and one will block

❖ Needs hardware and O/S support

▪ Needs special “check if held; if not, make held” single operation

• See computer-architecture or operating-systems course

▪ In CSE 332, we take this as a primitive and use it

❖ Used by threads to synchronize access to critical sections

▪ Therefore, must be accessible to multiple threads
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BankAccount Example
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class BankAccount {

private int balance = 0;

private Lock lk = new Lock();

protected int  getBalance()      { return balance; }

protected void setBalance(int x) { balance = x; }

public void withdraw(int amount) {

lk.acquire();  // may block

int b = getBalance();

if (amount > b)

throw new WithdrawTooLargeException();

setBalance(b – amount);

lk.release();

}

// deposit() would also acquire/release lk

}

Note: ‘Lock’ is not an actual Java class
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L22: Race Conditions

1. Where is the critical section?

2. How many locks do we need?

a) One lock per BankAccount object?

b) Two locks per BankAccount object?

• i.e., one for withdraw() and one for deposit()

c) One lock for the entire Bank

• Bank contains multiple BankAccount instances

3. There is a bug in withdraw(), can you find it?

4. Do we need locks for:

a) getBalance?

b) setBalance?
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Some Common Locking Mistakes (1 of 2)

❖ A lock is very primitive; up to you to use correctly

❖ Incorrect: different locks for withdraw and deposit

▪ Mutual exclusion works only when sharing same lock

▪ balance field is the shared resource being protected

❖ Poor performance: same lock for entire Bank

▪ No simultaneous operations on different accounts
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Some Common Locking Mistakes (2 of 2)

❖ Bug: forgot to release a lock when exiting early

▪ Can block other threads forever if there’s an exception

❖ What about getBalance and setBalance?

▪ Assume now that they are public (which may be reasonable)

▪ If they do not acquire the same lock, then setBalance and 
withdraw could interleave badly and produce a wrong result

▪ If they do acquire the same lock, then withdraw would block 
forever because it tries to acquire a lock it already has!
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if (amount > b) {

lk.release(); // hard to remember!

throw new WithdrawTooLargeException();

}
Remembering to release() before every exit is challenging!
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One (Not Very Good) Possibility

❖ Have two versions of 
setBalance!
▪ withdraw() calls a non-locking 

version of setBalance() (since it 
already has the lock)

▪ Outside world calls the locking 
version of setBalance()

❖ Could work if adhered to, but 
inconvenient

❖ Alternately, we can modify the 
meaning of the Lock ADT to 
support re-entrant locks
▪ Java does this
▪ Then just always use the locking 

version of setBalance() 
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private int setBalanceNoLock(

int x) { 

balance = x; 

}

public int setBalance(int x) {

lk.acquire();

setBalanceNoLock(x)

lk.release();

}

public void withdraw(int amount) {

lk.acquire();

…

setBalanceNoLock(b – amount);

lk.release(); 

}
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Re-entrancy

❖ A re-entrant lock (a.k.a. recursive lock)

▪ Once acquired, the lock is held by the executor,

▪ Subsequent acquire calls in that executor won’t block

❖ Example:

▪ withdraw() can acquire the lock

▪ Then, withdraw() can call setBalance(), which also acquires the lock

▪ Because they’re in the same executor and it’s a re-entrant lock, the 
inner acquire won’t block!
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Re-entrant Lock Implementation

❖ Contains the following state:

▪ the thread (if any) that currently holds it and a count

❖ When the lock goes from not-held to held:

▪ remembers the thread and sets count = 0

❖ If the current holder calls acquire() again:

▪ it does not block and count++

❖ If the current holder calls release():

▪ if count > 0 and count--

▪ if count == 0, the lock “forgets” the thread
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Lecture Outline

❖ Re-entrancy

❖ Locking in Java

❖ Race Conditions: Data Races vs. Bad Interleavings
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Java’s Re-entrant Lock

❖ Java doesn’t have the “plain” lock we discussed earlier; it only 
has re-entrant locks

❖ java.util.concurrent.locks.ReentrantLock

▪ Has methods lock() and unlock() 
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Locking Best Practices in Java

❖ Remember our bug in withdraw()?

❖ Need to guarantee that locks are always released

▪ Recommend something like this:

myLock.lock();

try { /* method body */ }

finally { myLock.unlock(); }

▪ The code in finally will always execute afterwards

• Regardless of exceptions, returns, or “normal” completion
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synchronized: A Java Convenience

❖ Or use synchronized statement instead of explicitly 
instantiating a ReentrantLock + try/catch/finally blocks

❖ synchronized statement:

▪ Evaluates expression to an object

• Every object (but not primitive types) can be a lock in Java

▪ Acquires the lock, blocking if necessary

• “If you get past the {, you have the lock”

▪ Releases the lock “at the matching }”, even if throw, return, etc.

• So it’s impossible to forget to release the lock

synchronized (expression) {

statements

}
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Version #1: Correct, But Can Be Improved
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class BankAccount {

private int balance = 0;

private Object lk = new Object();

protected int getBalance() 

{ synchronized (lk) { return balance; } }

protected void setBalance(int x) 

{ synchronized (lk) { balance = x; } }

public void withdraw(int amount) {

synchronized (lk) {

int b = getBalance();

if (amount > b)

throw …

setBalance(b – amount);

} 

}

// deposit() would also use synchronized(lk)

}
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Improving Version #1

❖ As written, the lock is private

▪ Seems like a good idea … ?

▪ But prevents other classes from synchronizing with BankAccount
operations

❖ More idiomatic is to synchronize on this

▪ Also more convenient: no need to have an extra object!
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Version #2: Still Improvable
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class BankAccount {

private int balance = 0;

protected int getBalance() 

{ synchronized (this){ return balance; } }

protected void setBalance(int x) 

{ synchronized (this){ balance = x; } }

public void withdraw(int amount) {

synchronized (this) {

int b = getBalance();

if(amount > b)

throw …

setBalance(b – amount);

} 

}

// deposit() would also use synchronized(this)

}
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Improving Version #2: Syntactic Sugar

❖ There is a shorter way to say the same thing as version #2

❖ Putting synchronized before a method declaration means 
the entire method body is surrounded by 

synchronized(this){…}

❖ Version #3 is identical to version #2, but more concise, more 
standard, and therefore better style
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Version #3: Final Version
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class BankAccount {

private int balance = 0;

synchronized protected int getBalance() 

{ return balance; } 

synchronized protected void setBalance(int x) 

{ balance = x; } 

synchronized public void withdraw(int amount) {

int b = getBalance();

if(amount > b)

throw …

setBalance(b – amount);

}

// deposit() would also use synchronized

}
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A Few Final Thoughts

❖ Our synchronized-less BankAccount pseudocode needs  
java.util.concurrent.locks.ReentrantLock and 
try { … } finally { … } blocks

▪ Or just used synchronized ☺

❖ Don’t have time to cover these highly-relevant lock variants: 
readers/writer locks and condition variables

▪ See Grossman notes for more info

❖ Java provides many other features and details.  See also:

▪ Chapter 14 of CoreJava, Volume 1 by Horstmann/Cornell

▪ Java Concurrency in Practice by Goetz et al
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Lecture Outline

❖ Re-entrancy

❖ Locking in Java

❖ Race Conditions: Data Races vs. Bad Interleavings
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Race Conditions

❖ A race condition occurs when the computation result depends 
on scheduling (ie, how threads are interleaved)

▪ i.e.: if T1 and T2 are scheduled in a certain way, things go “wrong”

▪ Only exist due to concurrency: no interleaving with only 1 thread!

❖ We, as programmers, cannot control scheduling of threads 

▪ Thus we must write programs that work independent of scheduling

24
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Data Races vs. Bad Interleavings

❖ We will make a big distinction between:

data races and         bad interleavings

❖ Both are types of race conditions

▪ Confusion often results from not distinguishing these, or using the 
term “race condition” to refer to only one of these two

25

Race condition

Data race Bad interleaving
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Very Briefly: Data Races

❖ A data race is a type of race condition that can happen when:

1. Different threads potentially write a variable at the same time

2. One thread potentially writes a variable at the same time another 
thread reads it

❖ Two threads reading the same variable at the same time is not 
a data race and doesn’t create an error

▪ The key is that one of the threads must be writing to the variable

❖ The ‘potentially’ is important!

▪ Code has a data race independent of any particular actual execution
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Bad Interleavings

❖ Easy to see why data races are bad

❖ However, we can still have a race condition (and bad behavior) 
even without data races, thanks to bad interleavings

▪ Different threads’ reads and writes are “interleaved” without 
simultaneity

❖ Warning sign: intermediate/temporary state visible to a 
concurrently executing thread

▪ E.g.: partial insert in a linked list: ‘front’ field updated with new node, 
but ‘count’ not yet updated

27
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A Race Condition but Not a Data Race
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class Stack<E> {
private E[] array = (E[])new Object[SIZE];
private int index = -1;

synchronized public boolean isEmpty() {
return index == -1; 

}
synchronized public void push(E val) {
array[++index] = val;

}
synchronized public E pop() {
if(isEmpty())
throw new StackEmptyException(); 

return array[index--];
}
public E peek() {
E ans = pop();
push(ans);
return ans;

}
}
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peek, Sequentially Speaking

❖ In a sequential world, this code is of questionable style but 
unquestionably correct

▪ Imagine this is the only way to add peek functionality to an existing 
class or interface
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interface Stack<E> {

boolean isEmpty();

void push(E val);

E pop();

}

class C {

public static <E> E myPeek(Stack<E> s){

…

}

}
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Concurrency Problems with peek

❖ peek has no overall effect on the shared data

▪ It is a “reader” not a “writer”; state should be the same before and 
after it executes

❖ peek’s calls to push and pop are synchronized 

▪ So there are no data races on the underlying array/index

❖ But the way it is implemented creates a race condition

▪ peek has an intermediate state that shouldn’t be exposed to other 
threads

▪ If exposed to other threads, peek’s intermediate state can lead to 
bad interleavings

30

public E peek() {

E ans = pop();

push(ans);

return ans;

}
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Bad Interleaving #1: peek and isEmpty

❖ Property we want: If there has been a push (and no pop), 
then isEmpty should return false

❖ With peek as written, property can be violated – how?

31

push(x);

boolean b = isEmpty();

Ti
m

e

Thread BThread A (peek)
E ans = pop();

push(ans);

return ans;
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Answer #1: peek and isEmpty

❖ Property we want: If there has been a push (and no pop), 
then isEmpty should return false

❖ With peek as written, property can be violated – how?
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push(x);

boolean b = isEmpty();

Ti
m

e

Thread BThread A (peek)

E ans = pop();

push(ans);

return ans;
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Bad Interleaving #2: peek and push

❖ Property we want: Values are push()’ed in LIFO order

❖ With peek as written, property can be violated – how?
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push(x);

push(y);

Ti
m

e

Thread BThread A (peek)
E ans = pop();

push(ans);

return ans;
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Answer #2: peek and push

❖ Property we want: Values are push()’ed in LIFO order

❖ With peek as written, property can be violated – how?
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push(x);

push(y);

Ti
m

e

Thread BThread A (peek)

E ans = pop();

push(ans);

return ans;



CSE332, Spring 2021L22: Race Conditions

Bad Interleaving #3: peek and pop

❖ Property we want: Values are returned from pop in LIFO order

❖ With peek as written, property can be violated – how?
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push(x);

push(y);

E e = pop();

Ti
m

e

Thread BThread A (peek)
E ans = pop();

push(ans);

return ans;
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Answer #3: peek and pop

❖ Property we want: Values are returned from pop in LIFO order

❖ With peek as written, property can be violated – how?
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push(x);

push(y);

E e = pop();Ti
m

e

Thread BThread A (peek)

E ans = pop();

push(ans);

return ans;
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Bad Interleaving #4: peek and peek

❖ Property we want: peek doesn’t throw an exception unless 
stack is empty

❖ With peek as written, property can be violated – how?
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E ans = pop();

push(ans);

return ans;

Ti
m

e

Thread B (peek)Thread A (peek)
E ans = pop();

push(ans);

return ans;
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Answer #4: peek and peek

❖ Property we want: peek doesn’t throw an exception unless 
stack is empty

❖ With peek as written, property can be violated – how?
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E ans = pop();

push(ans);

return ans;

Ti
m

e

Thread B (peek)Thread A (peek)

E ans = pop();

push(ans);

return ans;
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The Fix: Disallow Interleavings

❖ peek needs synchronization to disallow interleavings

▪ Enlarging the critical section will protect peek’s intermediate state

▪ Re-entrant locks will allow calls to push and pop

▪ Code on right is example of a peek external to the Stack class
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class Stack<E> {

synchronized public

E peek() {

E ans = pop();

push(ans);

return ans;

}

}

class C {

public static <E>

E myPeek(Stack<E> s) {

synchronized (s) {

E ans = s.pop();

s.push(ans);

return ans;

}

}

}
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The Wrong “Fix”: Read-only Interleavings

❖ Problem so far: peek does writes which yield an incorrect 
intermediate state

❖ Tempting but wrong: if peek (or isEmpty) doesn’t write 
anything, maybe we can skip the synchronization?

▪ Unfortunately, does NOT work due to data races with push and 
pop
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Turning a Bad Interleaving Into a Data Race
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class Stack<E> {

private E[] array = (E[])new Object[SIZE];

private int index = -1;

public boolean isEmpty() {  // unsynchronized; wrong?!

return index == -1; 

}

synchronized public void push(E val) {

array[++index] = val;

}

synchronized public E pop() { 

return array[index--];

}

public E peek() {  // unsynchronized and wrong!

return array[index];

}

}
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How Could This Be a Data Race? (1 of 2)

❖ It looks like isEmpty and peek can “get away with this” since 
push and pop adjust the state “in one tiny step”

❖ But this is an unsafe assumption about implementation details!

▪ What looks like “tiny steps” in code may actually be multiple steps in 
the implementation:

• array[++index] = val probably takes at least two steps

• Compiler optimizations may modify “simple code” in unanticipated ways
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How Could This Be a Data Race? (2 of 2)

❖ Since push and pop (ie, methods which write) probably 
require >=2 steps, an unsynchronized read (eg, isEmpty and 
peek) will create a data race

▪ See Grossman notes for more details

❖ Moral: Do not introduce a data race, even if every interleaving 
you can think of is correct
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Summary

❖ Java locks are re-entrant

▪ Use finally blocks or synchronized to ensure locks are 
released

❖ “Race condition” refers to different things, but both are the 
result of a lack of synchronization:

▪ Data races: Simultaneous read/write or write/write of the same 
memory location

• Always an error

• Original peek example had no data races, but we introduced one later

▪ Bad interleavings: Exposing intermediate state to other threads

• Not all interleavings are “bad”

• Original peek had several bad interleavings
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