
CSE332, Spring 2021L22: Race Conditions

💥💥💥 Race Conditions! 💥💥💥
CSE 332 Spring 2021

Instructor: Hannah C. Tang

Teaching Assistants:

Aayushi Modi Khushi Chaudhari Patrick Murphy

Aashna Sheth Kris Wong Richard Jiang

Frederick Huyan Logan Milandin Winston Jodjana

Hamsa Shankar Nachiket Karmarkar

CSE332, Spring 2021

gradescope.com/courses/256241

L22: Race Conditions

❖ Why does a lock require help from the operating system for a correct
implementation?

2

CSE332, Spring 2021L22: Race Conditions

Announcements

❖ P3 released, contact your partner soon!

❖ Mini projects (“para”) due tonight!

3

CSE332, Spring 2021L22: Race Conditions

Lecture Outline

❖ Re-entrancy

❖ Locking in Java

❖ Race Conditions: Data Races vs. Bad Interleavings

Lecture questions: pollev.com/cse332

4

CSE332, Spring 2021L22: Race Conditions

Review: The Lock ADT

❖ A Lock ADT with operations new, acquire, release

▪ Only one executor may acquire an instance of the lock at one time

▪ Given simultaneous acquires/releases, a “correct thing” will happen

• Specifically: if we have two acquires: one will “win” and one will block

❖ Needs hardware and O/S support

▪ Needs special “check if held; if not, make held” single operation

• See computer-architecture or operating-systems course

▪ In CSE 332, we take this as a primitive and use it

❖ Used by threads to synchronize access to critical sections

▪ Therefore, must be accessible to multiple threads

5

CSE332, Spring 2021L22: Race Conditions

BankAccount Example

6

class BankAccount {

private int balance = 0;

private Lock lk = new Lock();

protected int getBalance() { return balance; }

protected void setBalance(int x) { balance = x; }

public void withdraw(int amount) {

lk.acquire(); // may block

int b = getBalance();

if (amount > b)

throw new WithdrawTooLargeException();

setBalance(b – amount);

lk.release();

}

// deposit() would also acquire/release lk

}

Note: ‘Lock’ is not an actual Java class

CSE332, Spring 2021

gradescope.com/courses/256241

L22: Race Conditions

1. Where is the critical section?

2. How many locks do we need?

a) One lock per BankAccount object?

b) Two locks per BankAccount object?

• i.e., one for withdraw() and one for deposit()

c) One lock for the entire Bank

• Bank contains multiple BankAccount instances

3. There is a bug in withdraw(), can you find it?

4. Do we need locks for:

a) getBalance?

b) setBalance?
7

CSE332, Spring 2021L22: Race Conditions

Some Common Locking Mistakes (1 of 2)

❖ A lock is very primitive; up to you to use correctly

❖ Incorrect: different locks for withdraw and deposit

▪ Mutual exclusion works only when sharing same lock

▪ balance field is the shared resource being protected

❖ Poor performance: same lock for entire Bank

▪ No simultaneous operations on different accounts

8

CSE332, Spring 2021L22: Race Conditions

Some Common Locking Mistakes (2 of 2)

❖ Bug: forgot to release a lock when exiting early

▪ Can block other threads forever if there’s an exception

❖ What about getBalance and setBalance?

▪ Assume now that they are public (which may be reasonable)

▪ If they do not acquire the same lock, then setBalance and
withdraw could interleave badly and produce a wrong result

▪ If they do acquire the same lock, then withdraw would block
forever because it tries to acquire a lock it already has!

9

if (amount > b) {

lk.release(); // hard to remember!

throw new WithdrawTooLargeException();

}
Remembering to release() before every exit is challenging!

CSE332, Spring 2021L22: Race Conditions

One (Not Very Good) Possibility

❖ Have two versions of
setBalance!
▪ withdraw() calls a non-locking

version of setBalance() (since it
already has the lock)

▪ Outside world calls the locking
version of setBalance()

❖ Could work if adhered to, but
inconvenient

❖ Alternately, we can modify the
meaning of the Lock ADT to
support re-entrant locks
▪ Java does this
▪ Then just always use the locking

version of setBalance()

10

private int setBalanceNoLock(

int x) {

balance = x;

}

public int setBalance(int x) {

lk.acquire();

setBalanceNoLock(x)

lk.release();

}

public void withdraw(int amount) {

lk.acquire();

…

setBalanceNoLock(b – amount);

lk.release();

}

CSE332, Spring 2021L22: Race Conditions

Re-entrancy

❖ A re-entrant lock (a.k.a. recursive lock)

▪ Once acquired, the lock is held by the executor,

▪ Subsequent acquire calls in that executor won’t block

❖ Example:

▪ withdraw() can acquire the lock

▪ Then, withdraw() can call setBalance(), which also acquires the lock

▪ Because they’re in the same executor and it’s a re-entrant lock, the
inner acquire won’t block!

11

CSE332, Spring 2021L22: Race Conditions

Re-entrant Lock Implementation

❖ Contains the following state:

▪ the thread (if any) that currently holds it and a count

❖ When the lock goes from not-held to held:

▪ remembers the thread and sets count = 0

❖ If the current holder calls acquire() again:

▪ it does not block and count++

❖ If the current holder calls release():

▪ if count > 0 and count--

▪ if count == 0, the lock “forgets” the thread

12

CSE332, Spring 2021L22: Race Conditions

Lecture Outline

❖ Re-entrancy

❖ Locking in Java

❖ Race Conditions: Data Races vs. Bad Interleavings

13

CSE332, Spring 2021L22: Race Conditions

Java’s Re-entrant Lock

❖ Java doesn’t have the “plain” lock we discussed earlier; it only
has re-entrant locks

❖ java.util.concurrent.locks.ReentrantLock

▪ Has methods lock() and unlock()

14

CSE332, Spring 2021L22: Race Conditions

Locking Best Practices in Java

❖ Remember our bug in withdraw()?

❖ Need to guarantee that locks are always released

▪ Recommend something like this:

myLock.lock();

try { /* method body */ }

finally { myLock.unlock(); }

▪ The code in finally will always execute afterwards

• Regardless of exceptions, returns, or “normal” completion

15

CSE332, Spring 2021L22: Race Conditions

synchronized: A Java Convenience

❖ Or use synchronized statement instead of explicitly
instantiating a ReentrantLock + try/catch/finally blocks

❖ synchronized statement:

▪ Evaluates expression to an object

• Every object (but not primitive types) can be a lock in Java

▪ Acquires the lock, blocking if necessary

• “If you get past the {, you have the lock”

▪ Releases the lock “at the matching }”, even if throw, return, etc.

• So it’s impossible to forget to release the lock

synchronized (expression) {

statements

}

16

CSE332, Spring 2021L22: Race Conditions

Version #1: Correct, But Can Be Improved

17

class BankAccount {

private int balance = 0;

private Object lk = new Object();

protected int getBalance()

{ synchronized (lk) { return balance; } }

protected void setBalance(int x)

{ synchronized (lk) { balance = x; } }

public void withdraw(int amount) {

synchronized (lk) {

int b = getBalance();

if (amount > b)

throw …

setBalance(b – amount);

}

}

// deposit() would also use synchronized(lk)

}

CSE332, Spring 2021L22: Race Conditions

Improving Version #1

❖ As written, the lock is private

▪ Seems like a good idea … ?

▪ But prevents other classes from synchronizing with BankAccount
operations

❖ More idiomatic is to synchronize on this

▪ Also more convenient: no need to have an extra object!

18

CSE332, Spring 2021L22: Race Conditions

Version #2: Still Improvable

19

class BankAccount {

private int balance = 0;

protected int getBalance()

{ synchronized (this){ return balance; } }

protected void setBalance(int x)

{ synchronized (this){ balance = x; } }

public void withdraw(int amount) {

synchronized (this) {

int b = getBalance();

if(amount > b)

throw …

setBalance(b – amount);

}

}

// deposit() would also use synchronized(this)

}

CSE332, Spring 2021L22: Race Conditions

Improving Version #2: Syntactic Sugar

❖ There is a shorter way to say the same thing as version #2

❖ Putting synchronized before a method declaration means
the entire method body is surrounded by

synchronized(this){…}

❖ Version #3 is identical to version #2, but more concise, more
standard, and therefore better style

20

CSE332, Spring 2021L22: Race Conditions

Version #3: Final Version

21

class BankAccount {

private int balance = 0;

synchronized protected int getBalance()

{ return balance; }

synchronized protected void setBalance(int x)

{ balance = x; }

synchronized public void withdraw(int amount) {

int b = getBalance();

if(amount > b)

throw …

setBalance(b – amount);

}

// deposit() would also use synchronized

}

CSE332, Spring 2021L22: Race Conditions

A Few Final Thoughts

❖ Our synchronized-less BankAccount pseudocode needs
java.util.concurrent.locks.ReentrantLock and
try { … } finally { … } blocks

▪ Or just used synchronized ☺

❖ Don’t have time to cover these highly-relevant lock variants:
readers/writer locks and condition variables

▪ See Grossman notes for more info

❖ Java provides many other features and details. See also:

▪ Chapter 14 of CoreJava, Volume 1 by Horstmann/Cornell

▪ Java Concurrency in Practice by Goetz et al

22

CSE332, Spring 2021L22: Race Conditions

Lecture Outline

❖ Re-entrancy

❖ Locking in Java

❖ Race Conditions: Data Races vs. Bad Interleavings

23

CSE332, Spring 2021L22: Race Conditions

Race Conditions

❖ A race condition occurs when the computation result depends
on scheduling (ie, how threads are interleaved)

▪ i.e.: if T1 and T2 are scheduled in a certain way, things go “wrong”

▪ Only exist due to concurrency: no interleaving with only 1 thread!

❖ We, as programmers, cannot control scheduling of threads

▪ Thus we must write programs that work independent of scheduling

24

CSE332, Spring 2021L22: Race Conditions

Data Races vs. Bad Interleavings

❖ We will make a big distinction between:

data races and bad interleavings

❖ Both are types of race conditions

▪ Confusion often results from not distinguishing these, or using the
term “race condition” to refer to only one of these two

25

Race condition

Data race Bad interleaving

CSE332, Spring 2021L22: Race Conditions

Very Briefly: Data Races

❖ A data race is a type of race condition that can happen when:

1. Different threads potentially write a variable at the same time

2. One thread potentially writes a variable at the same time another
thread reads it

❖ Two threads reading the same variable at the same time is not
a data race and doesn’t create an error

▪ The key is that one of the threads must be writing to the variable

❖ The ‘potentially’ is important!

▪ Code has a data race independent of any particular actual execution

26

CSE332, Spring 2021L22: Race Conditions

Bad Interleavings

❖ Easy to see why data races are bad

❖ However, we can still have a race condition (and bad behavior)
even without data races, thanks to bad interleavings

▪ Different threads’ reads and writes are “interleaved” without
simultaneity

❖ Warning sign: intermediate/temporary state visible to a
concurrently executing thread

▪ E.g.: partial insert in a linked list: ‘front’ field updated with new node,
but ‘count’ not yet updated

27

CSE332, Spring 2021L22: Race Conditions

A Race Condition but Not a Data Race

28

class Stack<E> {
private E[] array = (E[])new Object[SIZE];
private int index = -1;

synchronized public boolean isEmpty() {
return index == -1;

}
synchronized public void push(E val) {
array[++index] = val;

}
synchronized public E pop() {
if(isEmpty())
throw new StackEmptyException();

return array[index--];
}
public E peek() {
E ans = pop();
push(ans);
return ans;

}
}

CSE332, Spring 2021L22: Race Conditions

peek, Sequentially Speaking

❖ In a sequential world, this code is of questionable style but
unquestionably correct

▪ Imagine this is the only way to add peek functionality to an existing
class or interface

29

interface Stack<E> {

boolean isEmpty();

void push(E val);

E pop();

}

class C {

public static <E> E myPeek(Stack<E> s){

…

}

}

CSE332, Spring 2021L22: Race Conditions

Concurrency Problems with peek

❖ peek has no overall effect on the shared data

▪ It is a “reader” not a “writer”; state should be the same before and
after it executes

❖ peek’s calls to push and pop are synchronized

▪ So there are no data races on the underlying array/index

❖ But the way it is implemented creates a race condition

▪ peek has an intermediate state that shouldn’t be exposed to other
threads

▪ If exposed to other threads, peek’s intermediate state can lead to
bad interleavings

30

public E peek() {

E ans = pop();

push(ans);

return ans;

}

CSE332, Spring 2021L22: Race Conditions

Bad Interleaving #1: peek and isEmpty

❖ Property we want: If there has been a push (and no pop),
then isEmpty should return false

❖ With peek as written, property can be violated – how?

31

push(x);

boolean b = isEmpty();

Ti
m

e

Thread BThread A (peek)
E ans = pop();

push(ans);

return ans;

CSE332, Spring 2021L22: Race Conditions

Answer #1: peek and isEmpty

❖ Property we want: If there has been a push (and no pop),
then isEmpty should return false

❖ With peek as written, property can be violated – how?

32

push(x);

boolean b = isEmpty();

Ti
m

e

Thread BThread A (peek)

E ans = pop();

push(ans);

return ans;

CSE332, Spring 2021L22: Race Conditions

Bad Interleaving #2: peek and push

❖ Property we want: Values are push()’ed in LIFO order

❖ With peek as written, property can be violated – how?

33

push(x);

push(y);

Ti
m

e

Thread BThread A (peek)
E ans = pop();

push(ans);

return ans;

CSE332, Spring 2021L22: Race Conditions

Answer #2: peek and push

❖ Property we want: Values are push()’ed in LIFO order

❖ With peek as written, property can be violated – how?

34

push(x);

push(y);

Ti
m

e

Thread BThread A (peek)

E ans = pop();

push(ans);

return ans;

CSE332, Spring 2021L22: Race Conditions

Bad Interleaving #3: peek and pop

❖ Property we want: Values are returned from pop in LIFO order

❖ With peek as written, property can be violated – how?

35

push(x);

push(y);

E e = pop();

Ti
m

e

Thread BThread A (peek)
E ans = pop();

push(ans);

return ans;

CSE332, Spring 2021L22: Race Conditions

Answer #3: peek and pop

❖ Property we want: Values are returned from pop in LIFO order

❖ With peek as written, property can be violated – how?

36

push(x);

push(y);

E e = pop();Ti
m

e

Thread BThread A (peek)

E ans = pop();

push(ans);

return ans;

CSE332, Spring 2021L22: Race Conditions

Bad Interleaving #4: peek and peek

❖ Property we want: peek doesn’t throw an exception unless
stack is empty

❖ With peek as written, property can be violated – how?

37

E ans = pop();

push(ans);

return ans;

Ti
m

e

Thread B (peek)Thread A (peek)
E ans = pop();

push(ans);

return ans;

CSE332, Spring 2021L22: Race Conditions

Answer #4: peek and peek

❖ Property we want: peek doesn’t throw an exception unless
stack is empty

❖ With peek as written, property can be violated – how?

38

E ans = pop();

push(ans);

return ans;

Ti
m

e

Thread B (peek)Thread A (peek)

E ans = pop();

push(ans);

return ans;

CSE332, Spring 2021L22: Race Conditions

The Fix: Disallow Interleavings

❖ peek needs synchronization to disallow interleavings

▪ Enlarging the critical section will protect peek’s intermediate state

▪ Re-entrant locks will allow calls to push and pop

▪ Code on right is example of a peek external to the Stack class

39

class Stack<E> {

synchronized public

E peek() {

E ans = pop();

push(ans);

return ans;

}

}

class C {

public static <E>

E myPeek(Stack<E> s) {

synchronized (s) {

E ans = s.pop();

s.push(ans);

return ans;

}

}

}

CSE332, Spring 2021L22: Race Conditions

The Wrong “Fix”: Read-only Interleavings

❖ Problem so far: peek does writes which yield an incorrect
intermediate state

❖ Tempting but wrong: if peek (or isEmpty) doesn’t write
anything, maybe we can skip the synchronization?

▪ Unfortunately, does NOT work due to data races with push and
pop

40

CSE332, Spring 2021L22: Race Conditions

Turning a Bad Interleaving Into a Data Race

41

class Stack<E> {

private E[] array = (E[])new Object[SIZE];

private int index = -1;

public boolean isEmpty() { // unsynchronized; wrong?!

return index == -1;

}

synchronized public void push(E val) {

array[++index] = val;

}

synchronized public E pop() {

return array[index--];

}

public E peek() { // unsynchronized and wrong!

return array[index];

}

}

CSE332, Spring 2021L22: Race Conditions

How Could This Be a Data Race? (1 of 2)

❖ It looks like isEmpty and peek can “get away with this” since
push and pop adjust the state “in one tiny step”

❖ But this is an unsafe assumption about implementation details!

▪ What looks like “tiny steps” in code may actually be multiple steps in
the implementation:

• array[++index] = val probably takes at least two steps

• Compiler optimizations may modify “simple code” in unanticipated ways

42

CSE332, Spring 2021L22: Race Conditions

How Could This Be a Data Race? (2 of 2)

❖ Since push and pop (ie, methods which write) probably
require >=2 steps, an unsynchronized read (eg, isEmpty and
peek) will create a data race

▪ See Grossman notes for more details

❖ Moral: Do not introduce a data race, even if every interleaving
you can think of is correct

43

CSE332, Spring 2021L22: Race Conditions

Summary

❖ Java locks are re-entrant

▪ Use finally blocks or synchronized to ensure locks are
released

❖ “Race condition” refers to different things, but both are the
result of a lack of synchronization:

▪ Data races: Simultaneous read/write or write/write of the same
memory location

• Always an error

• Original peek example had no data races, but we introduced one later

▪ Bad interleavings: Exposing intermediate state to other threads

• Not all interleavings are “bad”

• Original peek had several bad interleavings

44

