YA UNIVERSITY of WASHINGTON L21: Concurrency; Mutual Exclusion CSE332, Spring 2021

Concurrency and Mutual Exclusion
CSE 332 Spring 2021

Instructor: Hannah C. Tang

Teaching Assistants:

Aayushi Modi Khushi Chaudhari Patrick Murphy
Aashna Sheth Kris Wong Richard Jiang
Frederick Huyan Logan Milandin Winston Jodjana
Hamsa Shankar Nachiket Karmarkar

YA UNIVERSITY of WASHINGTON L21: Concurrency; Mutual Exclusion CSE332, Spring 2021

gradescope.com/courses/256241

all gradescope

+ Define “non-determinism”

+ Consider this sequential code from L5: Recursive Algorithm Analysis,
which sums the elements of an array (!!)
®= Where in memory is ARRLEN? mid? arr’s contents?

int sum(int/[]

arr)

{

}

return he

}

return help(arr, O,

lp(arr, lo, mid)

arr.length);

int hi)

int help(int[] arr, int lo,
if(lo == hi) return 0;
if(lo == hi-1) return arr[lo];
int mid = (hi+lo)/2;

+ help(arr,

{

mid,

hi);

static final int ARRLEN = 4;

int main(int][]
int[]
sum(arr) ;
return 0;

arr)

{

arr = new int [ARRLEN];

YA UNIVERSITY of WASHINGTON L21: Concurrency; Mutual Exclusion CSE332, Spring 2021

Announcements

YA UNIVERSITY of WASHINGTON L21: Concurrency; Mutual Exclusion CSE332, Spring 2021

Lecture Outline

+ Farewell to Parallelism

+ Sharing Resources

« Concurrency: Managing Correct Access to Shared Resources

«» Mutual Exclusion and Critical Sections

YA UNIVERSITY of WASHINGTON L21: Concurrency; Mutual Exclusion CSE332, Spring 2021

Parallelism Recap (1 of 3)

« We studied two parallelism primitives
" Map
= Reduce

« We combined these primitives into complex parallel algorithms
= sum: reduction

= prefix: reduction + map
= pack: map + prefix + map (or just prefix)
= quicksort: parallelized recursive calls; partition using pack + pack

" mergesort: parallelized recursive calls; merge using parallelized
recursive calls

YA UNIVERSITY of WASHINGTON L21: Concurrency; Mutual Exclusion CSE332, Spring 2021

Parallelism Recap (2 of 3)

« We studied one parallelism model in detail: ForkJoin

= ... and noted where we “plugged in” our logic

class SumThread extends java.lang.Thread {
// .. member fields and constructors elided ..
public void run() { // override: implement “main”
if(hi - lo < SEQUENTIAL CUTOFF) {
// Just do the calculation in this thread
for (int i=lo; i < hi; i++)
ans += arr[i];

else {
// Create two new threads to calculate the left and right sums
SumThread left = new SumThread(arr, lo, (hi+lo)/2);
SumThread right= new SumThread(arr, (hi+lo)/2, hi);
left.start () ;
right.start () ;

// Combine their results
left.join () ;

right.join () ;

ans = left.ans + right.ans;

YA UNIVERSITY of WASHINGTON L21: Concurrency; Mutual Exclusion CSE332, Spring 2021

Parallelism Recap (3 of 3)

<+ ... which will also help us understand other parallelism models
and where we need to “plug in” our code

output = new array of size bitsum[n-1]
FORALL (i=0; i < dinput.length; i++) {

output [1 =
}

class SumMapper extends org.apache.Hadoop.mapreduce.Mapper {
// .. member fields and constructors elided ..
public void map (Object mapkey, Integer mapval, Context context) {
context.write (mapkey, new IntWritable (mapval));
}

class SumReducer extends org.apache.Hadoop.mapreduce.Reducer {
public void reduce (Object redkey, Iterable<IntWritable> redvals,
Context context) {
int sum = 0;
for (IntWritable v : redvals) {
sum += v.get ()
}

context.write (“result”, new IntWritable (sum)) ;

YA UNIVERSITY of WASHINGTON L21: Concurrency; Mutual Exclusion CSE332, Spring 2021

Lecture Outline

« Farewell to Parallelism

+ Sharing Resources

« Concurrency: Managing Correct Access to Shared Resources

«» Mutual Exclusion and Critical Sections

YA UNIVERSITY of WASHINGTON L21: Concurrency; Mutual Exclusion CSE332, Spring 2021

Review: Parallelism and Sharing Resources

« We’ve studied parallel algorithms using the fork-join model
and focused on reducing span via parallel tasks

<« This model has a simple structure to avoid race conditions
® Each thread had a part of memory the “only it accessed”
« Example: each array sub-range accessed by only one thread

= Result of forked executor not accessed until after join() called
= Structure (mostly) ensures bad simultaneous access wouldn’t occur

YA UNIVERSITY of WASHINGTON L21: Concurrency; Mutual Exclusion CSE332, Spring 2021

Parallelism’s Pitfall

« Fork-join model doesn’t work well when:

= Executors implementing the same algorithm access overlapping
memory

= Executors implementing different algorithms access the same
resources

- (rather than implementing the same algorithm)

10

YA UNIVERSITY of WASHINGTON L21: Concurrency; Mutual Exclusion CSE332, Spring 2021

Parallelism: Non-overlapping Sharing

class SumTask extends RecursiveTask<Integer> ({
int lo; int hi; int[] arr; // just the “input” arguments!

protected Integer compute() { // override: implement “main”
if(hi - lo < SEQUENTIAL_CUTOFF) {
// Just do the calculation in this thread
int ans = 0; // local variable instead of a member field
for (int i=lo; 1 < hi; i++)
ans += arr[i];

return ans; // direct return of answer

} else {
// Create ONE new thread to calculate the left sum
SumTask left = new SumTask (arr, lo, (hi+lo)/2);
SumTask right = new SumTask (arr, (hi+lo)/2, hi);

left.fork(); // create a thread and call its compute ()
int rightAns = right.compute(); // call compute() directly

// Combine results
int leftAns = left.join();
return leftAns + rightAns;

YA UNIVERSITY of WASHINGTON L21: Concurrency; Mutual Exclusion CSE332, Spring 2021

Can Overlapped Sharing Happen?

Multiple threads, each with its own Heap for allocated objects,
independent call stack and program shared by all threads
counter '

Static objects, shared by
all threads

12

YA UNIVERSITY of WASHINGTON L21: Concurrency; Mutual Exclusion CSE332, Spring 2021

Overlapped Sharing (1 of 2)

« Threads are not just useful for parallelism
= j.e., not always about implementing algorithms faster

+ Threads are useful for:
® Responsiveness
+ Respond to events in one thread while another is performing computation
= Processor utilization (hide 1/0 latency)
- If 1 thread “goes to disk,” process still has something else to do
= Failure isolation
« Prevent an exception in one task from stopping conceptually-parallel tasks

14

YA UNIVERSITY of WASHINGTON L21: Concurrency; Mutual Exclusion CSE332, Spring 2021

Overlapped Sharing (2 of 2)

« What if we have multiple threads:

® Processing different bank-account operations
« What if 2 threads modify the same account at the same time?

= Using a shared cache (e.g., hashtable) of recent files
- What if 2 threads insert the same file at the same time?

® Creating a pipeline (think assembly line) with a queue for handing
work from one thread to next thread in sequence

« What if enqueuer and dequeuer adjust a circular array queue at the same
time?

15

YA UNIVERSITY of WASHINGTON L21: Concurrency; Mutual Exclusion CSE332, Spring 2021

Sharing a Queue

+ Imagine 2 threads
® Running at the same time
= Accessing a shared linked-list-based queue, initially empty

enqueue (x) {

if (back == null) {
back = new Node (x);
front = back;

}

else {
back.next = new Node (x) ;
back = back.next;

16

YA UNIVERSITY of WASHINGTON L21: Concurrency; Mutual Exclusion CSE332, Spring 2021

Overlapped Sharing Needs Concurrency

« Concurrency: Correctly and efficiently managing access to
shared resources from multiple possibly-simultaneous clients
= Requires coordination, particularly synchronization, to avoid

incorrect simultaneous access
- Make thread block (wait) until the resource is free
« join is not what we want

- Want other thread to be “done using what we need”, not “completely done
executing”

« Correct concurrent applications are usually highly non-
deterministic

" How threads are scheduled affects order of operations
" Non-repeatability complicates testing and debugging

17

YA UNIVERSITY of WASHINGTON L21: Concurrency; Mutual Exclusion CSE332, Spring 2021

Attributes of Concurrent Programs

+ In concurrent programs, it is common that:
® Threads access the same resources in an unpredictable order
® Threads access the same resources at (approx.) the same time
= Correctness requires that simultaneous access be prevented

= Simultaneous access is rare
- Makes testing and debugging difficult
- Rare !=Impossible; need to be disciplined when designing / implementing

+ In other words: concurrent programs are non-deterministic

18

YA UNIVERSITY of WASHINGTON L21: Concurrency; Mutual Exclusion CSE332, Spring 2021

Lecture Outline

« Farewell to Parallelism

+ Sharing Resources

+ Concurrency: Managing Correct Access to Shared Resources

«» Mutual Exclusion and Critical Sections

19

YA UNIVERSITY of WASHINGTON

L21: Concurrency; Mutual Exclusion

Concurrency: Canonical Example

+ In a single-threaded world, this code is correct!

CSE332, Spring 2021

class BankAccount {

public void withdraw (int amount) {
int b = getBalance():;
if (amount > Db)
throw new WithdrawToolLargeException ()
setBalance (b — amount) ;

// .. other operations like deposit (), etc.

private int balance = 0;
protected int getBalance () { return balance; }
protected void setBalance (int x) { balance = x; }

20

YA UNIVERSITY of WASHINGTON L21: Concurrency; Mutual Exclusion CSE332, Spring 2021

Interleaving

+ Suppose:
" Thread T1 calls x.withdraw (100)
" Thread T2 calls y .withdraw (100)

+ If second call starts before first finishes, we say they interleave
= e.g. T1 runs for 50 ms, pauses somewhere, T2 picks up for 50ms
® Can happen with one processor; if pre-empted due to time-slicing

+ If x and y refer to different accounts, no problem

= “You cook in your kitchen while | cook in mine”
= But if x and y alias, possible trouble...

21

YA UNIVERSITY of WASHINGTON

L21: Concurrency; Mutual Exclusion

Activity: What is the Balance at the End?

<« Two threads both withdraw() from the same account:
® Assume initial balance == 150

CSE332, Spring 2021

class BankAccount {
private int balance = 0;

protected void setBalance (int x) { balance = x;

public void withdraw (int amount) {
int b = getBalance();
if (amount > Db)
throw new WithdrawTooLapAgeException ()
setBalance

}

// .. other ope etc.

}

protected int getBalance () { return balance; }

Thread A Thread B

% .withdraw (100) ; x.withdraw (75) ;

22

YA UNIVERSITY of WASHINGTON L21: Concurrency; Mutual Exclusion CSE332, Spring 2021

A Bad Interleaving

+ Interleaved withdraw() calls on the same account
= Assume initial balance == 150
® This should cause a WithdrawToolLarge exception (but doesn’t)

Thread A: withdraw (100) Thread B: withdraw (75)
int b = getBalance();

int b = getBalance()
if (amount > Db)

throw new ..;
setBalance (b - amount) ;

Time

if (amount > b)
throw new ..;
setBalance (b — amount) ;

23

YA UNIVERSITY of WASHINGTON L21: Concurrency; Mutual Exclusion CSE332, Spring 2021

llII g.r ad e S Cop e gradescope.com/courses/256241

+ Find two more bad interleavings for withdraw ()

Thread A: withdraw (100) Thread B: withdraw (75)
int b = getBalance();

int b = getBalance()
if (amount > Db)

throw new ..;
setBalance (b - amount) ;

Time

if (amount > Db)
throw new ..;
setBalance (b — amount) ;

24

YA UNIVERSITY of WASHINGTON L21: Concurrency; Mutual Exclusion CSE332, Spring 2021

A Good Interleaving is Also Possible

+ Interleaved withdraw() calls on the same account
= Assume initial balance == 150
® This does cause a WithdrawToolLarge exception

Thread A: withdraw (100) Thread B: withdraw (75)
int b = getBalance();
if (amount > b)

throw new ..;
setBalance (b - amount) ;

int b = getBalance();
if (amount > b)

throw new ..;
setBalance (b — amount) ;

Time

25

YA UNIVERSITY of WASHINGTON L21: Concurrency; Mutual Exclusion CSE332, Spring 2021

A Bad Fix: Another Bad Interleaving

+ Interleaved withdraw() calls on the same account
= Assume initial balance == 150
® This should cause a WithdrawToolLarge exception (but doesn’t)

Thread A: withdraw (100) Thread B: withdraw (75)
int b = getBalance();

int b = getBalance();
if (amount > getBalance())
throw new ..;

Time

if (amount > getBalance())
throw new ..;

setBalance (b — amount) ;

setBalance (b - amount) ;

26

YA UNIVERSITY of WASHINGTON L21: Concurrency; Mutual Exclusion CSE332, Spring 2021

ANOTHER Bad Fix: Another Bad Interleaving

+ Interleaved withdraw() calls on the same account
= Assume initial balance == 150
® This should cause a WithdrawToolLarge exception (but doesn’t)

Thread A: withdraw (100) Thread B: withdraw (75)
int b = getBalance();

int b = getBalance();
if (amount > getBalance())
throw new ..;

g if (amount > getBalance())
= throw new ..;
setBalance (getBalance ()
— amount) ;
setBalance (getBalance ()
\ 4 SIUORIRIE) & In all 3 of these “bad” examples, instead of |

an exception we had a “lost withdrawl”

27

YA UNIVERSITY of WASHINGTON L21: Concurrency; Mutual Exclusion CSE332, Spring 2021

Incorrect “Fixes”

+ It is tempting and almost always wrong to try fixing a bad
interleaving by rearranging or repeating operations, such as:

public void withdraw (int amount) {
if (amount > getBalance())
throw new WithdrawTooLargeException () ;

// Maybe the balance was changed
setBalance (getBalance () — amount) ;

}

+ This fixes nothing!
* Potentially narrows the problem by one statement

= And that’s not even guaranteed!

- The compiler could optimize it into the old version, because you didn’t
indicate a need to synchronize

28

YA UNIVERSITY of WASHINGTON L21: Concurrency; Mutual Exclusion CSE332, Spring 2021

Lecture Outline

« Farewell to Parallelism

+ Sharing Resources

« Concurrency: Managing Correct Access to Shared Resources

« Mutual Exclusion and Critical Sections

29

YA UNIVERSITY of WASHINGTON L21: Concurrency; Mutual Exclusion CSE332, Spring 2021

The Correct Fix: Mutual Exclusion

«» Want at most one thread at a time to withdraw from account A

= Exclude other simultaneous operations on A (e.g., deposit)

« More generally, we want mutual exclusion:
® One thread using a resource means another thread must wait

« The area of code needing mutual exclusion is a critical section

« Programmer (you!) must identify and protect critical sections:
= Compiler doesn’t know which interleavings are allowed/disallowed
® But you still need system-level primitives to do it!

30

YA UNIVERSITY of WASHINGTON L21: Concurrency; Mutual Exclusion CSE332, Spring 2021

Why Do We Need System-level Primitives?

«» Why can’t we implement our own mutual-exclusion protocol?
= Can we coordinate it ourselves using a boolean variable “busy”?
® Possible under certain assumptions, but won’t work in real languages

class BankAccount {

private int balance = 0;
private boolean busy = false;

public void withdraw (int amount) {
while (busy) { /* “spin-wait” */ }
busy = true;
int b = getBalance() ;
if (amount > D)
throw new WithdrawTooLargeException() ;
setBalance (b - amount) ;
busy = false;
}

// deposit () would spin on same boolean

31

YA UNIVERSITY of WASHINGTON L21: Concurrency; Mutual Exclusion CSE332, Spring 2021

Because We Just Moved the Problem!

<« Initially, busy = false

Thread A: withdraw (100) Thread B: withdraw (75)
while (busy) { }

while (busy) { }
busy = true;
busy = true;
int b = getBalance();
int b = getBalance();
if (amount > b)

throw new ..;
setBalance (b — amount) ;

Time

if (amount > Db)
throw new ..;
v setBalance (b — amount) ;

Unhappy bank; we have a “lost withdrawal”

+ Problem: time elapses between checking and setting busy

= System can interrupt a thread then, letting another thread “sneak in”

32

YA UNIVERSITY of WASHINGTON L21: Concurrency; Mutual Exclusion CSE332, Spring 2021

What We Actually Need: Lock ADT

« All ways out of this conundrum require system-level support

« One solution: Mutual-Exclusion Locks (aka Mutex, or just Lock)
® For now, still discussing concepts; Lock is not a Java class

< We will define Lock as an ADT with operations:

" new: make a new lock, initially “not held”

= acquire: blocks current thread if this lock is “held”
« Once “not held”, makes lock “held”
- Checking & setting the “held” boolean is a single uninterruptible operation
+ Fixes problem we saw before!!

= release: makes this lock “not held”
« If >= 1 threads are blocked on it, another thread — but only one! — can now

acquire

33

YA UNIVERSITY of WASHINGTON L21: Concurrency; Mutual Exclusion CSE332, Spring 2021

Why a System-level Lock Works

+ Lock must ensure that, given simultaneous acquires/releases,
“the correct thing” will happen

= E.g.: if we have two acquires: one will “win” and one will block

« How can this be implemented?

" The key is that the “check if held; if not, make held” operation must
happen “all-at-once”. It cannot be interrupted!

® Thus, requires and uses hardware and O/S support
- See computer-architecture or operating-systems course

® In CSE 332, we’ll assume a lock is a primitive and just use it

34

YA UNIVERSITY of WASHINGTON L21: Concurrency; Mutual Exclusion CSE332, Spring 2021

Locks Must Be Accessible By Multiple Threads!

Multiple threads, each with its own Heap for allocated objects,
independent call stack and program shared by all threads
counter '

Static objects, shared by
all threads

35

YA UNIVERSITY of WASHINGTON L21: Concurrency; Mutual Exclusion CSE332, Spring 2021

Almost-Correct Pseudocode

class BankAccount ({
private int balance = 0;
private Lock 1k = new Lock();

public void withdraw (int amount) ({
lk.acquire(); // may block
int b = getBalance();
if (amount > b)
throw new WithdrawToolLargeException() ;
setBalance (b - amount) ;
lk.release();

}

// deposit () would also acquire/release lk

Note: ‘Lock’ is not an actual Java class

36

W UNIVERSITY of WASHINGTON L21: Concurrency; Mutual Exclusion CSE332, Spring 2021

llII grad e S Cop e gradescope.com/courses/256241

1. Where is the critical section?

2. How many locks do we need?
a) One lock per BankAccount object?
b) Two locks per BankAccount object?
i.e., one for withdraw() and one for deposit()
c) One lock for the entire Bank

Bank contains multiple BankAccount instances

3. Thereis a bugin withdraw(), can you find it?

4. Do we need locks for:
a) getBalance?
b) setBalance?

37

YA UNIVERSITY of WASHINGTON L21: Concurrency; Mutual Exclusion CSE332, Spring 2021

Some Common Locking Mistakes (1 of 2)

/7
0.0

A lock is very primitive; up to you to use correctly

/7
0.0

Incorrect: different locks for withdraw and deposit

® Mutual exclusion works only when sharing same lock
" balance field is the shared resource being protected

K/
0‘0

Poor performance: same lock for entire Bank

= No simultaneous operations on different accounts

38

YA UNIVERSITY of WASHINGTON

L21: Concurrency; Mutual Exclusion

CSE332, Spring 2021

Some Common Locking Mistakes (2 of 2)

+ Bug: forgot to release a lock when exiting early

® Can block other threads forever if there’s an exception

if (amount > b) {

lk.release(); // hard to remember!

throw new WithdrawToolLargeException() ;

}

Remembering to release() before every exit is challenging!

+ What about getBalance and setBalance?

= Assume now that they are public (which may be reasonable)

= |f they do not acquire the same lock, then setBalance and
withdraw could interleave badly and produce a wrong result

= |If they do acquire the same lock, then withdraw would block
forever because it tries to acquire a lock it already has!

39

YA UNIVERSITY of WASHINGTON L21: Concurrency; Mutual Exclusion CSE332, Spring 2021

Summary

« Threads are useful beyond just fork-join-style parallelism

= But general use-cases require concurrency to ensure correctness
when dealing with overlapped sharing

« Overlapped sharing introduces non-determinism because the
system controls the scheduling of threads

= Therefore, the system must also provide locks to ensure mutual
exclusion in critical sections of code

® Mutual exclusion is the technique we employ to prevent bad
interleavings

40

