
CSE332, Spring 2021L21: Concurrency; Mutual Exclusion

Concurrency and Mutual Exclusion
CSE 332 Spring 2021

Instructor: Hannah C. Tang

Teaching Assistants:

Aayushi Modi Khushi Chaudhari Patrick Murphy

Aashna Sheth Kris Wong Richard Jiang

Frederick Huyan Logan Milandin Winston Jodjana

Hamsa Shankar Nachiket Karmarkar

CSE332, Spring 2021

gradescope.com/courses/256241

L21: Concurrency; Mutual Exclusion

❖ Define “non-determinism”

❖ Consider this sequential code from L5: Recursive Algorithm Analysis,
which sums the elements of an array (!!)

▪ Where in memory is ARRLEN? mid? arr’s contents?

2

int sum(int[] arr) {
return help(arr, 0, arr.length);

}
int help(int[] arr, int lo, int hi) {
if(lo == hi) return 0;
if(lo == hi-1) return arr[lo];
int mid = (hi+lo)/2;
return help(arr, lo, mid) + help(arr, mid, hi);

}

static final int ARRLEN = 4;
int main(int[] arr) {
int[] arr = new int[ARRLEN];
sum(arr);
return 0;

}

CSE332, Spring 2021L21: Concurrency; Mutual Exclusion

Announcements

3

CSE332, Spring 2021L21: Concurrency; Mutual Exclusion

Lecture Outline

❖ Farewell to Parallelism

❖ Sharing Resources

❖ Concurrency: Managing Correct Access to Shared Resources

❖ Mutual Exclusion and Critical Sections

4

CSE332, Spring 2021L21: Concurrency; Mutual Exclusion

Parallelism Recap (1 of 3)

❖ We studied two parallelism primitives

▪ Map

▪ Reduce

❖ We combined these primitives into complex parallel algorithms

▪ sum: reduction

▪ prefix: reduction + map

▪ pack: map + prefix + map (or just prefix)

▪ quicksort: parallelized recursive calls; partition using pack + pack

▪ mergesort: parallelized recursive calls; merge using parallelized
recursive calls

5

CSE332, Spring 2021L21: Concurrency; Mutual Exclusion

Parallelism Recap (2 of 3)

❖ We studied one parallelism model in detail: ForkJoin

▪ … and noted where we “plugged in” our logic

6

class SumThread extends java.lang.Thread {
// … member fields and constructors elided …
public void run() { // override: implement “main”

if(hi – lo < SEQUENTIAL_CUTOFF) {
// Just do the calculation in this thread
for (int i=lo; i < hi; i++)

ans += arr[i];
}
else {

// Create two new threads to calculate the left and right sums
SumThread left = new SumThread(arr, lo, (hi+lo)/2);
SumThread right= new SumThread(arr, (hi+lo)/2, hi);
left.start();
right.start();

// Combine their results
left.join();
right.join();
ans = left.ans + right.ans;

}
}

}

CSE332, Spring 2021L21: Concurrency; Mutual Exclusion

Parallelism Recap (3 of 3)

❖ … which will also help us understand other parallelism models
and where we need to “plug in” our code

7

class SumMapper extends org.apache.Hadoop.mapreduce.Mapper {
// … member fields and constructors elided …
public void map(Object mapkey, Integer mapval, Context context) {

context.write(mapkey, new IntWritable(mapval));
}

class SumReducer extends org.apache.Hadoop.mapreduce.Reducer {
public void reduce(Object redkey, Iterable<IntWritable> redvals,

Context context) {
int sum = 0;
for (IntWritable v : redvals) {

sum += v.get();
}
context.write(“result”, new IntWritable(sum));

}

output = new array of size bitsum[n-1]
FORALL (i=0; i < input.length; i++){

output[] =
}

CSE332, Spring 2021L21: Concurrency; Mutual Exclusion

Lecture Outline

❖ Farewell to Parallelism

❖ Sharing Resources

❖ Concurrency: Managing Correct Access to Shared Resources

❖ Mutual Exclusion and Critical Sections

8

CSE332, Spring 2021L21: Concurrency; Mutual Exclusion

Review: Parallelism and Sharing Resources

❖ We’ve studied parallel algorithms using the fork-join model
and focused on reducing span via parallel tasks

❖ This model has a simple structure to avoid race conditions

▪ Each thread had a part of memory the “only it accessed”

• Example: each array sub-range accessed by only one thread

▪ Result of forked executor not accessed until after join() called

▪ Structure (mostly) ensures bad simultaneous access wouldn’t occur

9

CSE332, Spring 2021L21: Concurrency; Mutual Exclusion

Parallelism’s Pitfall

❖ Fork-join model doesn’t work well when:

▪ Executors implementing the same algorithm access overlapping
memory

▪ Executors implementing different algorithms access the same
resources

• (rather than implementing the same algorithm)

10

CSE332, Spring 2021L21: Concurrency; Mutual Exclusion

Parallelism: Non-overlapping Sharing

11

class SumTask extends RecursiveTask<Integer> {

int lo; int hi; int[] arr; // just the “input” arguments!

protected Integer compute() { // override: implement “main”

if(hi – lo < SEQUENTIAL_CUTOFF) {

// Just do the calculation in this thread

int ans = 0; // local variable instead of a member field

for (int i=lo; i < hi; i++)

ans += arr[i];

return ans; // direct return of answer

} else {

// Create ONE new thread to calculate the left sum

SumTask left = new SumTask(arr, lo, (hi+lo)/2);

SumTask right = new SumTask(arr, (hi+lo)/2, hi);

left.fork(); // create a thread and call its compute()

int rightAns = right.compute(); // call compute() directly

// Combine results

int leftAns = left.join();

return leftAns + rightAns;

}

}

}

CSE332, Spring 2021L21: Concurrency; Mutual Exclusion

Can Overlapped Sharing Happen?

12

pc=0x…

…

Multiple threads, each with its own
independent call stack and program
counter

pc=0x…

…

Heap for allocated objects ,
shared by all threads

Static objects , shared by
all threads

CSE332, Spring 2021L21: Concurrency; Mutual Exclusion

Overlapped Sharing (1 of 2)

❖ Threads are not just useful for parallelism

▪ i.e., not always about implementing algorithms faster

❖ Threads are useful for:

▪ Responsiveness

• Respond to events in one thread while another is performing computation

▪ Processor utilization (hide I/O latency)

• If 1 thread “goes to disk,” process still has something else to do

▪ Failure isolation

• Prevent an exception in one task from stopping conceptually-parallel tasks

14

CSE332, Spring 2021L21: Concurrency; Mutual Exclusion

Overlapped Sharing (2 of 2)

❖ What if we have multiple threads:

▪ Processing different bank-account operations

• What if 2 threads modify the same account at the same time?

▪ Using a shared cache (e.g., hashtable) of recent files

• What if 2 threads insert the same file at the same time?

▪ Creating a pipeline (think assembly line) with a queue for handing
work from one thread to next thread in sequence

• What if enqueuer and dequeuer adjust a circular array queue at the same
time?

15

CSE332, Spring 2021L21: Concurrency; Mutual Exclusion

Sharing a Queue

❖ Imagine 2 threads

▪ Running at the same time

▪ Accessing a shared linked-list-based queue, initially empty

16

enqueue(x) {

if (back == null) {

back = new Node(x);

front = back;

}

else {

back.next = new Node(x);

back = back.next;

}

}

CSE332, Spring 2021L21: Concurrency; Mutual Exclusion

Overlapped Sharing Needs Concurrency

❖ Concurrency: Correctly and efficiently managing access to
shared resources from multiple possibly-simultaneous clients

▪ Requires coordination, particularly synchronization, to avoid
incorrect simultaneous access

• Make thread block (wait) until the resource is free

• join is not what we want

• Want other thread to be “done using what we need”, not “completely done
executing”

❖ Correct concurrent applications are usually highly non-
deterministic

▪ How threads are scheduled affects order of operations

▪ Non-repeatability complicates testing and debugging

17

CSE332, Spring 2021L21: Concurrency; Mutual Exclusion

Attributes of Concurrent Programs

❖ In concurrent programs, it is common that:

▪ Threads access the same resources in an unpredictable order

▪ Threads access the same resources at (approx.) the same time

▪ Correctness requires that simultaneous access be prevented

▪ Simultaneous access is rare

• Makes testing and debugging difficult

• Rare != Impossible; need to be disciplined when designing / implementing

❖ In other words: concurrent programs are non-deterministic

18

CSE332, Spring 2021L21: Concurrency; Mutual Exclusion

Lecture Outline

❖ Farewell to Parallelism

❖ Sharing Resources

❖ Concurrency: Managing Correct Access to Shared Resources

❖ Mutual Exclusion and Critical Sections

19

CSE332, Spring 2021L21: Concurrency; Mutual Exclusion

Concurrency: Canonical Example

❖ In a single-threaded world, this code is correct!

20

class BankAccount {

private int balance = 0;

protected int getBalance() { return balance; }

protected void setBalance(int x) { balance = x; }

public void withdraw(int amount) {

int b = getBalance();

if (amount > b)

throw new WithdrawTooLargeException();

setBalance(b – amount);

}

// … other operations like deposit(), etc.

}

CSE332, Spring 2021L21: Concurrency; Mutual Exclusion

Interleaving

❖ Suppose:

▪ Thread T1 calls x.withdraw(100)

▪ Thread T2 calls y.withdraw(100)

❖ If second call starts before first finishes, we say they interleave

▪ e.g. T1 runs for 50 ms, pauses somewhere, T2 picks up for 50ms

▪ Can happen with one processor; if pre-empted due to time-slicing

❖ If x and y refer to different accounts, no problem

▪ “You cook in your kitchen while I cook in mine”

▪ But if x and y alias, possible trouble…

21

CSE332, Spring 2021L21: Concurrency; Mutual Exclusion

Activity: What is the Balance at the End?
❖ Two threads both withdraw() from the same account:

▪ Assume initial balance == 150

22

x.withdraw(100);

Thread A

x.withdraw(75);

Thread B

class BankAccount {

private int balance = 0;

protected int getBalance() { return balance; }

protected void setBalance(int x) { balance = x; }

public void withdraw(int amount) {

int b = getBalance();

if (amount > b)

throw new WithdrawTooLargeException();

setBalance(b – amount);

}

// … other operations like deposit(), etc.

}

CSE332, Spring 2021L21: Concurrency; Mutual Exclusion

A Bad Interleaving

❖ Interleaved withdraw() calls on the same account

▪ Assume initial balance == 150

▪ This should cause a WithdrawTooLarge exception (but doesn’t)

23

int b = getBalance();

if (amount > b)

throw new …;

setBalance(b – amount);

int b = getBalance();

if (amount > b)

throw new …;

setBalance(b – amount);

Thread A: withdraw(100) Thread B: withdraw(75)

Ti
m

e

CSE332, Spring 2021

gradescope.com/courses/256241

L21: Concurrency; Mutual Exclusion

❖ Find two more bad interleavings for withdraw()

24

int b = getBalance();

if (amount > b)

throw new …;

setBalance(b – amount);

int b = getBalance();

if (amount > b)

throw new …;

setBalance(b – amount);

Thread A: withdraw(100) Thread B: withdraw(75)

Ti
m

e

CSE332, Spring 2021L21: Concurrency; Mutual Exclusion

A Good Interleaving is Also Possible

❖ Interleaved withdraw() calls on the same account

▪ Assume initial balance == 150

▪ This does cause a WithdrawTooLarge exception

25

int b = getBalance();

if (amount > b)

throw new …;

setBalance(b – amount);

int b = getBalance();

if (amount > b)

throw new …;

setBalance(b – amount);

Thread A: withdraw(100) Thread B: withdraw(75)

Ti
m

e

CSE332, Spring 2021L21: Concurrency; Mutual Exclusion

A Bad Fix: Another Bad Interleaving

❖ Interleaved withdraw() calls on the same account

▪ Assume initial balance == 150

▪ This should cause a WithdrawTooLarge exception (but doesn’t)

26

int b = getBalance();

if (amount > getBalance())

throw new …;

setBalance(b – amount);

int b = getBalance();

if (amount > getBalance())

throw new …;

setBalance(b – amount);

Thread A: withdraw(100) Thread B: withdraw(75)

Ti
m

e

CSE332, Spring 2021L21: Concurrency; Mutual Exclusion

ANOTHER Bad Fix: Another Bad Interleaving

❖ Interleaved withdraw() calls on the same account

▪ Assume initial balance == 150

▪ This should cause a WithdrawTooLarge exception (but doesn’t)

27

int b = getBalance();

if (amount > getBalance())

throw new …;

setBalance(getBalance()

– amount);

int b = getBalance();

if (amount > getBalance())

throw new …;

setBalance(getBalance()

– amount);

Thread A: withdraw(100) Thread B: withdraw(75)

Ti
m

e

In all 3 of these “bad” examples, instead of
an exception we had a “lost withdrawl”

CSE332, Spring 2021L21: Concurrency; Mutual Exclusion

Incorrect “Fixes”

❖ It is tempting and almost always wrong to try fixing a bad
interleaving by rearranging or repeating operations, such as:

❖ This fixes nothing!

• Potentially narrows the problem by one statement

▪ And that’s not even guaranteed!

• The compiler could optimize it into the old version, because you didn’t
indicate a need to synchronize

28

public void withdraw(int amount) {

if (amount > getBalance())

throw new WithdrawTooLargeException();

// Maybe the balance was changed

setBalance(getBalance() – amount);

}

CSE332, Spring 2021L21: Concurrency; Mutual Exclusion

Lecture Outline

❖ Farewell to Parallelism

❖ Sharing Resources

❖ Concurrency: Managing Correct Access to Shared Resources

❖ Mutual Exclusion and Critical Sections

29

CSE332, Spring 2021L21: Concurrency; Mutual Exclusion

The Correct Fix: Mutual Exclusion

❖ Want at most one thread at a time to withdraw from account A

▪ Exclude other simultaneous operations on A (e.g., deposit)

❖ More generally, we want mutual exclusion:

▪ One thread using a resource means another thread must wait

❖ The area of code needing mutual exclusion is a critical section

❖ Programmer (you!) must identify and protect critical sections:

▪ Compiler doesn’t know which interleavings are allowed/disallowed

▪ But you still need system-level primitives to do it!

30

CSE332, Spring 2021L21: Concurrency; Mutual Exclusion

Why Do We Need System-level Primitives?

❖ Why can’t we implement our own mutual-exclusion protocol?

▪ Can we coordinate it ourselves using a boolean variable “busy”?

▪ Possible under certain assumptions, but won’t work in real languages

31

class BankAccount {

private int balance = 0;

private boolean busy = false;

public void withdraw(int amount) {

while (busy) { /* “spin-wait” */ }

busy = true;

int b = getBalance();

if (amount > b)

throw new WithdrawTooLargeException();

setBalance(b – amount);

busy = false;

}

// deposit() would spin on same boolean

}

CSE332, Spring 2021L21: Concurrency; Mutual Exclusion

Because We Just Moved the Problem!

❖ Initially, busy = false

❖ Problem: time elapses between checking and setting busy

▪ System can interrupt a thread then, letting another thread “sneak in”
32

while (busy) { }

busy = true;

int b = getBalance();

if (amount > b)

throw new …;

setBalance(b – amount);

while (busy) { }

busy = true;

int b = getBalance();

if (amount > b)

throw new …;

setBalance(b – amount);

Thread A: withdraw(100) Thread B: withdraw(75)

Ti
m

e

Unhappy bank; we have a “lost withdrawal”

CSE332, Spring 2021L21: Concurrency; Mutual Exclusion

What We Actually Need: Lock ADT

❖ All ways out of this conundrum require system-level support

❖ One solution: Mutual-Exclusion Locks (aka Mutex, or just Lock)

▪ For now, still discussing concepts; Lock is not a Java class

❖ We will define Lock as an ADT with operations:

▪ new: make a new lock, initially “not held”

▪ acquire: blocks current thread if this lock is “held”

• Once “not held”, makes lock “held”

• Checking & setting the “held” boolean is a single uninterruptible operation

• Fixes problem we saw before!!

▪ release: makes this lock “not held”

• If >= 1 threads are blocked on it, another thread – but only one! – can now
acquire

33

CSE332, Spring 2021L21: Concurrency; Mutual Exclusion

Why a System-level Lock Works

❖ Lock must ensure that, given simultaneous acquires/releases,
“the correct thing” will happen

▪ E.g.: if we have two acquires: one will “win” and one will block

❖ How can this be implemented?

▪ The key is that the “check if held; if not, make held” operation must
happen “all-at-once”. It cannot be interrupted!

▪ Thus, requires and uses hardware and O/S support

• See computer-architecture or operating-systems course

▪ In CSE 332, we’ll assume a lock is a primitive and just use it

34

CSE332, Spring 2021L21: Concurrency; Mutual Exclusion

Locks Must Be Accessible By Multiple Threads!

35

pc=0x…

…

Multiple threads, each with its own
independent call stack and program
counter

pc=0x…

…

Lock

Heap for allocated objects,
shared by all threads

Static objects, shared by
all threads

Lock

Lock

Lock

CSE332, Spring 2021L21: Concurrency; Mutual Exclusion

Almost-Correct Pseudocode

36

class BankAccount {

private int balance = 0;

private Lock lk = new Lock();

public void withdraw(int amount) {

lk.acquire(); // may block

int b = getBalance();

if (amount > b)

throw new WithdrawTooLargeException();

setBalance(b – amount);

lk.release();

}

// deposit() would also acquire/release lk

}

Note: ‘Lock’ is not an actual Java class

CSE332, Spring 2021

gradescope.com/courses/256241

L21: Concurrency; Mutual Exclusion

1. Where is the critical section?

2. How many locks do we need?

a) One lock per BankAccount object?

b) Two locks per BankAccount object?

• i.e., one for withdraw() and one for deposit()

c) One lock for the entire Bank

• Bank contains multiple BankAccount instances

3. There is a bug in withdraw(), can you find it?

4. Do we need locks for:

a) getBalance?

b) setBalance?
37

CSE332, Spring 2021L21: Concurrency; Mutual Exclusion

Some Common Locking Mistakes (1 of 2)

❖ A lock is very primitive; up to you to use correctly

❖ Incorrect: different locks for withdraw and deposit

▪ Mutual exclusion works only when sharing same lock

▪ balance field is the shared resource being protected

❖ Poor performance: same lock for entire Bank

▪ No simultaneous operations on different accounts

38

CSE332, Spring 2021L21: Concurrency; Mutual Exclusion

Some Common Locking Mistakes (2 of 2)

❖ Bug: forgot to release a lock when exiting early

▪ Can block other threads forever if there’s an exception

❖ What about getBalance and setBalance?

▪ Assume now that they are public (which may be reasonable)

▪ If they do not acquire the same lock, then setBalance and
withdraw could interleave badly and produce a wrong result

▪ If they do acquire the same lock, then withdraw would block
forever because it tries to acquire a lock it already has!

39

if (amount > b) {

lk.release(); // hard to remember!

throw new WithdrawTooLargeException();

}
Remembering to release() before every exit is challenging!

CSE332, Spring 2021L21: Concurrency; Mutual Exclusion

Summary

❖ Threads are useful beyond just fork-join-style parallelism

▪ But general use-cases require concurrency to ensure correctness
when dealing with overlapped sharing

❖ Overlapped sharing introduces non-determinism because the
system controls the scheduling of threads

▪ Therefore, the system must also provide locks to ensure mutual
exclusion in critical sections of code

▪ Mutual exclusion is the technique we employ to prevent bad
interleavings

40

