Parallel Pack and Parallel Sort

 CSE 332 Spring 2021Instructor: Hannah C. Tang

Teaching Assistants:

Aayushi Modi Khushi Chaudhari
Aashna Sheth Kris Wong
Frederick Huyan Logan Milandin
Hamsa Shankar Nachiket Karmarkar

Patrick Murphy
Richard Jiang
Winston Jodjana

-ll gradescope

* Describe a parallelized reduction to count the values greater than 10
- Constraint: you must store your intermediate results in an array; we want the result of the "is greater than 10 ?" boolean

input | 17 | 4 | 6 | 8 | 11 | 5 | 13 | 19 | 0 | 24 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

```
f: "is element > 10"
```

bits | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

output 5

Announcements

* P2 due tomorrow night!
* P3 partner moving to Google Spreadsheets
- Need to fill out even if you're keeping the same partner; worth one participation point (see Gradescope assignment, coming soon)
- Can fill it out multiple times; we will take most recent response
- DO NOT TYPO UWNetIDs!

Lecture Outline

* Review: Designing new parallel algorithms
* Parallel Pack
* Parallel Sort
- QuickSort
- MergeSort

Amdahl's Law

* Let the work (\mathbf{T}_{1}) be 1 unit of time and \mathbf{S} be the unparallelizable portion of execution time:

$$
T_{1}=1=S+(1-S)
$$

* Suppose perfect linear speed-up on the parallelizable portion. Then:

$$
T_{P}=S+(1-S) / P
$$

* Amdahl's Law states the speed-up with P processors is:

$$
T_{1} / T_{P}=1 /(S+(1-s) / P) \text { as } P \rightarrow \infty
$$

$*$ and the parallelism (maximum possible speed-up) is:

$$
\mathrm{T}_{1} / \mathrm{T}_{\infty}=1 / \mathrm{S}
$$

The Challenge Posed by Amdahl's Law θ

* Amdahl's Law tells us unparallelized parts become a bottleneck very quickly
- But it doesn't tell us additional processors are worthless
* ... because we can find new parallel algorithms
- Some things that seem sequential turn out to be parallelizable
- We parallelized a 'running sum' array!

$\boldsymbol{*}$ input	6	4	16	10	16	15	2	8
output	6	10	26	36	52	67	69	77

Parallel Prefix-Sum is Partial Sums!

* If we saved the intermediate results from parallel-sum, we could generate the prefix-sum from those results in a second pass

$$
\begin{array}{ll|}
\begin{array}{l}
\text { range: }(0, x] \\
\text { sum: s' } \\
\text { fromLeft: } 0
\end{array} & \begin{array}{l}
\text { range: }(x, l o] \\
\text { sum: } s \\
\text { fromLeft: } s^{\prime}
\end{array} \\
& \text { output[lo } \left.=s+s^{\prime}+\text { input[lo }\right]
\end{array}
$$

* Internal node takes its fromLeft value and
- Passes its left child the same fromLeft
- Passes its right child its fromLeft plus its left child's sum

Parallel Prefix-Sum: The "Up" Pass

* This first pass builds a binary tree from the bottom: the "up" pass

Parallel Prefix-Sum: The "Down" Pass

* The second pass uses the binary tree to populate the fromLeft fields

Parallel Prefix-Sum Runtime

* Up pass:
- Work: \qquad Span: \qquad $O(\log n$
* Down pass:
\qquad Span: \qquad $O(\log n)$
* Total:
- Work: \qquad $O(n)$ Span: \qquad

Lecture Outline

* Review: Designing new parallel algorithms
* Parallel Pack
* Parallel Sort
- QuickSort
- MergeSort

Pack (aka "Filter")

* Given an array input, produce an array output containing only elements such that f (element) is true

input | 17 | 4 | 6 | 8 | 11 | 5 | 13 | 19 | 0 | 24 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

f: "is element > 10"

output | 17 | 11 | 13 | 19 | 24 |
| :--- | :--- | :--- | :--- | :--- |

* Parallelizable? Sort of ...
- Yes: determining whether an element belongs in the output is easy
- No: determining where an element belongs in the output is hard; seems to depend on previous results....

We Already Know Parallel-Pack!

input | 17 | 4 | 6 | 8 | 11 | 5 | 13 | 19 | 0 | 24 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

```
f: "is element > 10"
```

* Parallel-Pack $=$ Parallel-Map + Parallel-Prefix + Parallel-Map!

1. Parallel map to compute a bit-vector for filtered elements:

bits | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

2. Parallel-prefix sum on the bit-vector:

bitsum | 1 | 1 | 1 | 1 | 2 | 2 | 3 | 4 | 4 | 5 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

3. Parallel map to produce output:

output | 17 | 11 | 13 | 19 | 24 |
| :--- | :--- | :--- | :--- | :--- |

*ll gradescope

input | 17 | 4 | 6 | 8 | 11 | 5 | 13 | 19 | 0 | 24 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

f: "is element > 10"

bits | | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | bitsum | 1 | 1 | 1 | 2 | 2 | 3 | 4 | 4 | 5 |

* Write the final parallel-map's pseudocode, generating the output
- Hint: your code will need to take three inputs: input, bits, and bitsum

```
output = new array of size bitsum[n-1]
FORALL (i=0; i < input.length; i++){
}
```


Parallel-Pack Analysis

* Parallel-Pack:

1. Parallel-map: compute bit-vector
2. Parallel-prefix: compute bit-sum
3. Parallel-map: produce output

* Each step is $\mathrm{O}(\mathrm{n})$ work, $\mathrm{O}(\log \mathrm{n})$ span
- So parallel-pack still O(n) work, O(log n) span

Parallel-prefix:

Parallel-map:

Parallel-Pack Comments

Parallel-Pack:

1. Parallel-map: compute bit-vector
2. Parallel-prefix: compute bit-sum
3. Parallel-map: produce output

* First two steps can be combined into a prefix-sum Parallelemap:
- Different base case for the prefix sum
- No effect on asymptotic complexity
* Combine third step into the down pass of the prefix-sum
- Again, no effect on asymptotic complexity
* Still $O(n)$ work, $O(\log n)$ span
- ... but better constants ©
* Parallelized packs will help us parallelize QuickSort...

Lecture Outline

* Review: Designing new parallel algorithms
* Parallel Pack
* Parallel Sort
- QuickSort
- MergeSort

Sequential QuickSort Review

Step

Runtime Expression

Pick the pivot values)

- Hopefully these values) approximate the median

Partition all the values into:
A. The values less than the pivots)
B. The pivots)

C. The values greater than the pivots)

Recursively QuickSort(A), then QuickSort(C)

* Recurrence (assuming a good-enough pivot):
- $\mathrm{T}(0)=T(1)=\mathrm{c}_{1}$
- $T(n)=2 T\left(\frac{n}{2}\right)^{1}+c_{1}+C_{2} n$
- Closed-form $T(n) \in O(n \log n)$

Really Common Recurrences

Recurrence Relation	Closed Form	Name	Example
$T(n)=O(1)+T(n / 2)$	$\mathrm{O}(\log \mathrm{n})$	Logarithmic	Binary Search
$T(n)=O(1)+T(n-1)$	O(n)	Linear	Sum (v1: "Recursive Sum")
$\mathrm{T}(\mathrm{n})=\mathrm{O}(1)+2 \mathrm{~T}(\mathrm{n} / 2)$	O(n)	Linear	Sum (v2: "Recursive Binary Sum")
$T(n)=O(n)+T(n / 2)$	$\mathrm{O}(\mathrm{n})$	Linear	
$\nabla(n)=O(n)+2 T(n / 2)$	$\mathrm{O}(\mathrm{n} \log \mathrm{n})$	Loglinear	MergeSort
$T(n)=O(n)+T(n-1)$	$O\left(\mathrm{n}^{2}\right)$	Quadratic	
$T(n)=O(1)+2 T(n-1)$	$O\left(2^{\text {n }}\right.$)	Exponential	Fibonacci

Parallelizing QuickSort: Attempt \#1

Speedup: $\mathrm{T}_{1} / \mathrm{T}_{\mathrm{p}}$ Max Parallelism: T_{1} / T_{∞}

Step
Pick the pivot value (s)

- Hopefully these values) approximate the median

Partition all the values into:
A. The values less than the pivot(s)
B. The pivots)

Runtime Expression
C. The values greater than the pivots)

Recursively QuickSort(A) and QuickSort(C) in parallel

* Recurrence (assuming a good-enough pivot):
- Work $T_{1}(n)=$

- $\operatorname{Span} T_{\infty}(n)=I\left(\frac{n}{2}\right)+c_{1}+c_{2} n \in O(n \cup)$
- Parallelism $=$ Work/Span $\in O(\underline{\log n})$

Parallel QuickSort: Doing Better

$* O(\log n)$ parallelism with an infinite number of processors is okay, but a bit underwhelming

- Sort 10^{9} elements 30 times faster
* Google searches strongly suggest QuickSort cannot do better because the partition cannot be parallelized
- The Internet has been known to be wrong $-:$
- But we need auxiliary storage (no longer in place)
- In practice, constant factors may make it not worth it, but remember Amdahl's Law...(exposing parallelism is important!)
: Already have everything we need to parallelize the partition...

Parallel Partition (not in place)

* Parallel partition is just two packs!

1. Pack elements less than pivot into left side of aux array
2. Then, pack elements greater than pivot into right side of aux array * We know a pack is $O(n)$ work, $O(\log n)$ span

Step

Work (T_{1})
Span (T_{∞})
In parallel, partition all the values into:
A. The values less than the pivots)
B. The pivots)
C. The values greater than the pivots)

* Parallel Partition (does not include parallel sorting):
- Work $T_{1} \in O\left(__\right)$, Span $T_{\infty} \in O\left(\log _{\int} n\right)$
* Can do both packs at once, but no effect on asymptotic complexity

Parallelizing QuickSort: Attempt \#2

Step

Pick the pivot values)
In parallel, partition all the values
In parallel, recursively QuickSort(A) and QuickSort(C)

Work (T_{1})
Span (T_{∞})
c_{1}

$c_{2} \log n$

* Recurrence (assuming a good-enough pivot):
- Work $T_{1}(n)=2 T\left(\frac{n}{2}\right)+c_{1}+C_{n} \in O(n \log n)$
- Span $T_{\infty}(n)=\frac{T\left(\frac{n}{2}\right)+C_{1}+C_{2} \log n \in O\left(\log ^{2} n\right)}{n}$
- Parallelism $=$ Work/Span $\in O(\log n)$

Parallel QuickSort, Attempt \#2: Example

1. Pick pivot (we'll use median-of-3)

8	1	4	9	0	3	5	2	7	6

2. Pack less-than, then pack greater-than

- Packs must be sequential, since second pack needs a starting index

1	4	0	3	5	2					
1	4	0	3	5	2	6	8	9		

3. Recursively sort, in parallel

- Can sort back into original array (like in MergeSort)

0	1	2	3	4	5	6	7	8	9

Lecture Outline

* Review: Designing new parallel algorithms
* Parallel Pack
* Parallel Sort
- QuickSort
- MergeSort

Parallelizing MergeSort

Step
In parallel, recursively MergeSort(A) and MergeSort(B)

Work (T_{1})
Span (T_{∞})

Merge(A, B)
$2 \mathrm{~T}(\mathrm{n} / 2)$
$\mathrm{T}(\mathrm{n} / 2)$
$C_{2} n$
$C_{2} n$

* Start like we did with QuickSort: do recursive sorts in parallel
- Work $T_{1}(n)=c_{2} n+2 T(n / 2) \in O(n \log n)$
- Span $T_{\infty}(n)=c_{2} n+1 T(n / 2) \in O(n)$
- Parallelism = Work/Span $\in O(\log n)$
* To do better, need to parallelize the merge
- The trick won't use parallel prefix this time...

Parallelizing the Merge (1 of 2)

* Problem statement:
- Merge two sorted subarrays, not necessarily of the same size

* Intuition:
- Want each parallel executor to merge half of the elements
- Choose a value that is approximately the median of the final array
- Suppose the longer subarray has m elements. Then choose $m / 2$-th element
- In parallel:
- Merge first $m / 2$ elements of longer half with "appropriate" elements of shorter half
- Merge second $m / 2$ elements of longer half with rest of the shorter half

Parallelizing the Merge (2 of 2)

* Problem statement:
- Merge two sorted subarrays, not necessarily of the same size

1	4	6	8	9

2	3	5	7
shorter array			

* Step \#1:
- Pick the median of the longer array in constant time
- Binary search the shorter array to find the first element >median
* Step \#2 (in parallel):
- Merge the lower part of the longer array (<=median) with the lower part of the shorter array
- Merge upper part of the longer array (>median onward) with the upper part of the shorter array

Parallelizing the Merge: Example (1 of 7)

Parallelizing the Merge: Example (2 of 7)

* Pick the median of the longer array: $\mathrm{O}(1)$ to compute index

Parallelizing the Merge: Example (3 of 7)

* Pick the median of the longer array: $\mathrm{O}(1)$ to compute index
* Split the shorter array at the same value: O(log n) for binary search

Parallelizing the Merge: Example (4 of 7)

* Pick the median of the longer array: O(1) to compute index
* Split the shorter array at the same value: O(log n) for binary search
* Calculate where to split the output array: O(1)

Parallelizing the Merge: Example (5 of 7)

* Pick the median of the longer array: $\mathrm{O}(1)$ to compute index
* Split the shorter array at the same value: O(log n) for binary search
* Calculate where to split the output array: O(1)
* Do the sub-merges in parallel

Parallelizing the Merge: Example (6 of 7)

Parallelizing the Merge: Example (7 of 7)

Parallel Merge: Pseudocode

```
Merge(arr[], left 
    int leftSize = left 
    int rightSize = right 2 - right 
    // Assert: out 2 - out 
    // We will assume leftSize > rightSize without loss of generality
    if (leftSize + rightSize < CUTOFF)
        sequential merge and copy into out[out1..out2]
    int mid = (left }\mp@subsup{\mp@code{l}}{2}{- left }\mp@subsup{|}{1}{})/
    binarySearch arr[right1..right2] to find j such that
        arr[j] \leq arr[mid] \leq arr[j+1]
    Merge(arr[], left , mid, right }\mp@subsup{1}{1}{\prime},j, out[], out , out (1 +mid+j
    Merge(arr[], mid+1, left 2, j+1, right 2, out[], out 
```


Parallel-MergeSort: Analysis (1 of 3)

* Sequential MergeSort:

$$
T(n)=2 T(n / 2)+c_{2} \quad \in O(n \log n)
$$

* Parallel MergeSort with sequential merge:
- Work: $O(n \log n)$
- Span: $\mathrm{T}(n)=1 \mathrm{~T}(n / 2)+\mathrm{c}_{2} \quad \in O(n)$

1	4	5	9	10

Parallel-MergeSort: Analysis (2 of 3)

* What about just the parallel merge of two subarrays?
- Let the total length of the two subarrays be n
- $O(\log n)$ binary search to split the shorter subarray
- Worst-case split is (3/4)n and (1/4)n
- Happens when the two subarrays are of the same length ($n / 2$) and the shorter subarray splits into two pieces of the most uneven sizes possible: one of size $n / 2$, one of size 0
*Work is $\mathrm{T}(n)=\mathrm{T}(3 n / 4)+\mathrm{T}(n / 4)+\mathrm{c}_{1} \log n \in O(n)$
\because Span is $T(n)=T(3 n / 4)+c_{2} \log n \in O\left(\log ^{2} n\right)$
- (neither bound is immediately obvious, but "trust me")

1	4	8	9	10

2	3	5	6	7

Parallel-MergeSort: Analysis (3 of 3)

* Parallel MergeSort with a parallel merge:
- Work is $\mathrm{T}(n)=2 \mathrm{~T}(n / 2)+\mathrm{c}_{1} n \quad \in O(n \log n)$
- Span is $T(n)=1 T(n / 2)+c_{2} \log ^{2} n \quad \in \quad O\left(\log ^{3} n\right)$
* So, parallelism (work / span) is $O\left(n / \log ^{2} n\right)$
- Not quite as good as QuickSort's $O(n / \log n)$ parallelism
- But, unlike Quicksort, this is a worst-case guarantee
- And, as always, this is just the asymptotic result

