
CSE332, Spring 2021L20: Parallel Pack and Sort

Parallel Pack and Parallel Sort
CSE 332 Spring 2021

Instructor: Hannah C. Tang

Teaching Assistants:

Aayushi Modi Khushi Chaudhari Patrick Murphy

Aashna Sheth Kris Wong Richard Jiang

Frederick Huyan Logan Milandin Winston Jodjana

Hamsa Shankar Nachiket Karmarkar

CSE332, Spring 2021

gradescope.com/courses/256241

L20: Parallel Pack and Sort

❖ Describe a parallelized reduction to count the values greater than 10

▪ Constraint: you must store your intermediate results in an array; we want the
result of the “is greater than 10?” boolean

2

output 5

input 17 4 6 8 11 5 13 19 0 24

bits 1 0 0 0 1 0 1 1 0 1

f: “is element > 10”

CSE332, Spring 2021L20: Parallel Pack and Sort

Announcements

❖ P2 due tomorrow night!

❖ P3 partner moving to Google Spreadsheets

▪ Need to fill out even if you’re keeping the same partner; worth one
participation point (see Gradescope assignment, coming soon)

▪ Can fill it out multiple times; we will take most recent response

▪ DO NOT TYPO UWNetIDs!

3

CSE332, Spring 2021L20: Parallel Pack and Sort

Lecture Outline

❖ Review: Designing new parallel algorithms

❖ Parallel Pack

❖ Parallel Sort

▪ QuickSort

▪ MergeSort

4

CSE332, Spring 2021L20: Parallel Pack and Sort

Amdahl’s Law

❖ Let the work (T1) be 1 unit of time and S be
the unparallelizable portion of execution time:

T1 = 1 = S + (1-S)

❖ Suppose perfect linear speed-up on the parallelizable portion. Then:

TP = S + (1-S)/P

❖ Amdahl’s Law states the speed-up with P processors is:

T1 / TP = 1 / (S + (1-S)/P)

❖ and the parallelism (maximum possible speed-up) is:

T1 / T = 1 / S

5

Span = T = sum of runtime of all nodes in the
DAG’s most-expensive path
Work = T1 = sum of runtime of all nodes in the DAG
Speed-up = T1 / TP

Perfect linear speedup when T1 / TP = P
Parallelism = T1 / T

CSE332, Spring 2021L20: Parallel Pack and Sort

The Challenge Posed by Amdahl’s Law 🥛

❖ Amdahl’s Law tells us unparallelized parts become a bottleneck
very quickly

▪ But it doesn’t tell us additional processors are worthless

❖ … because we can find new parallel algorithms

▪ Some things that seem sequential turn out to be parallelizable

▪ We parallelized a ‘running sum’ array!

6

input 6 4 16 10 16 15 2 8

output 6 10 26 36 52 67 69 77

CSE332, Spring 2021L20: Parallel Pack and Sort

Parallel Prefix-Sum is Partial Sums!

❖ If we saved the intermediate results from parallel-sum, we could
generate the prefix-sum from those results in a second pass

❖ Internal node takes its fromLeft value and

▪ Passes its left child the same fromLeft

▪ Passes its right child its fromLeft plus its left child’s sum
7

range: [0, n)

range: [x, n)

range: [x, lo) range: [lo, n)

range: [0, x)

range: [0, x/2) range: [x/2, x)

range: (x, lo]
sum: s
fromLeft: s’

range: (0, x]
sum: s’
fromLeft: 0

output[lo] = s + s’ + input[lo]

CSE332, Spring 2021L20: Parallel Pack and Sort

Parallel Prefix-Sum: The “Up” Pass

❖ This first pass builds a binary tree from the
bottom: the “up” pass

8

input 6 4 16 10 16 15 2 8

range: [0, 8)
sum:
fromleft:

r: [7, 8)
s:
f:

range: [4, 8)
sum:
fromleft:

range: [4, 6)
sum:
fromleft:

range: [6, 8)
sum:
fromleft:

range: [0, 4)
sum:
fromleft:

range: [0, 2)
sum:
fromleft:

range: [2, 4)
sum:
fromleft:

r: [6, 7)
s:
f:

r: [5, 6)
s:
f:

r: [4, 5)
s:
f:

r: [3, 4)
s:
f:

r: [2, 3)
s:
f:

r: [1, 2)
s:
f:

r: [0, 1)
s:
f:

CSE332, Spring 2021L20: Parallel Pack and Sort

Parallel Prefix-Sum: The “Down” Pass

❖ The second pass uses the binary tree to
populate the fromLeft fields

9

input 6 4 16 10 16 15 2 8

range: [0, 8)
sum: 77
fromleft:

r: [7, 8)
s: 8
f:

range: [4, 8)
sum: 41
fromleft:

range: [4, 6)
sum: 31
fromleft:

range: [6, 8)
sum: 10
fromleft:

range: [0, 4)
sum: 36
fromleft:

range: [0, 2)
sum: 10
fromleft:

range: [2, 4)
sum: 26
fromleft:

r: [6, 7)
s: 2
f:

r: [5, 6)
s: 15
f:

r: [4, 5)
s: 16
f:

r: [3, 4)
s: 10
f:

r: [2, 3)
s: 16
f:

r: [1, 2)
s: 4
f:

r: [0, 1)
s: 6
f:

Internal nodes:
- Left: parent’s
- Right: parent’s + sibling’s sum
Leaves:
- Same as internal node, then

output[i] = fromLeft + input[i]

CSE332, Spring 2021L20: Parallel Pack and Sort

Parallel Prefix-Sum Runtime

❖ Up pass:

▪ Work: ________, Span: ________

❖ Down pass:

▪ Work: ________, Span: ________

❖ Total:

▪ Work: ________, Span: ________

10

CSE332, Spring 2021L20: Parallel Pack and Sort

Lecture Outline

❖ Review: Designing new parallel algorithms

❖ Parallel Pack

❖ Parallel Sort

▪ QuickSort

▪ MergeSort

11

CSE332, Spring 2021L20: Parallel Pack and Sort

Pack (aka “Filter”)

❖ Given an array input, produce an array output containing
only elements such that f(element) is true

❖ Parallelizable? Sort of …

▪ Yes: determining whether an element belongs in the output is easy

▪ No: determining where an element belongs in the output is hard;
seems to depend on previous results….

12

input 17 4 6 8 11 5 13 19 0 24

output 17 11 13 19 24

f: “is element > 10”

CSE332, Spring 2021L20: Parallel Pack and Sort

We Already Know Parallel-Pack!

❖ Parallel-Pack = Parallel-Map + Parallel-Prefix + Parallel-Map!

1. Parallel map to compute a bit-vector for filtered elements:

2. Parallel-prefix sum on the bit-vector:

3. Parallel map to produce output:

13

input 17 4 6 8 11 5 13 19 0 24

bits 1 0 0 0 1 0 1 1 0 1

bitsum 1 1 1 1 2 2 3 4 4 5

output 17 11 13 19 24

f: “is element > 10”

CSE332, Spring 2021

gradescope.com/courses/256241

L20: Parallel Pack and Sort

❖ Write the final parallel-map’s pseudocode, generating the output

▪ Hint: your code will need to take three inputs: input, bits, and bitsum

14

input 17 4 6 8 11 5 13 19 0 24

bits 1 0 0 0 1 0 1 1 0 1

bitsum 1 1 1 1 2 2 3 4 4 5

f: “is element > 10”

output = new array of size bitsum[n-1]

FORALL (i=0; i < input.length; i++){

}

CSE332, Spring 2021L20: Parallel Pack and Sort

Parallel-Pack Analysis

❖ Parallel-Pack:

1. Parallel-map: compute bit-vector

2. Parallel-prefix: compute bit-sum

3. Parallel-map: produce output

❖ Each step is O(n) work, O(log n) span

▪ So parallel-pack still O(n) work, O(log n) span

15

Parallel-prefix:

Parallel-map:

Parallel-map:

CSE332, Spring 2021L20: Parallel Pack and Sort

Parallel-Pack Comments

❖ First two steps can be combined into a prefix-sum

▪ Different base case for the prefix sum

▪ No effect on asymptotic complexity

❖ Combine third step into the down pass of
the prefix-sum

▪ Again, no effect on asymptotic complexity

❖ Still O(n) work, O(log n) span

▪ … but better constants ☺

❖ Parallelized packs will help us parallelize QuickSort…
16

Parallel-Pack:
1. Parallel-map: compute bit-vector
2. Parallel-prefix: compute bit-sum
3. Parallel-map: produce output

Parallel-prefix:

Parallel-map:

Parallel-map:

CSE332, Spring 2021L20: Parallel Pack and Sort

Lecture Outline

❖ Review: Designing new parallel algorithms

❖ Parallel Pack

❖ Parallel Sort

▪ QuickSort

▪ MergeSort

17

CSE332, Spring 2021L20: Parallel Pack and Sort

Sequential QuickSort Review

❖ Recurrence (assuming a good-enough pivot):

▪ T(0) = T(1) = c1

▪ T(n) = ____________________

▪ Closed-form T(n) ∈ O(____________)
18

Step Runtime Expression

Pick the pivot value(s)
• Hopefully these value(s) approximate

the median

Partition all the values into:
A. The values less than the pivot(s)
B. The pivot(s)
C. The values greater than the pivot(s)

Recursively QuickSort(A), then QuickSort(C)

CSE332, Spring 2021L20: Parallel Pack and Sort

Really Common Recurrences

19

Recurrence
Relation

Closed
Form

Name Example

T(n) = O(1) + T(n/2) O(log n) Logarithmic Binary Search

T(n) = O(1) + T(n-1) O(n) Linear
Sum

(v1: “Recursive Sum”)

T(n) = O(1) + 2T(n/2) O(n) Linear
Sum

(v2: “Recursive Binary
Sum”)

T(n) = O(n) + T(n/2) O(n) Linear

T(n) = O(n) + 2T(n/2) O(n log n) Loglinear MergeSort

T(n) = O(n) + T(n-1) O(n2) Quadratic

T(n) = O(1) + 2T(n-1) O(2n) Exponential Fibonacci

Copied from L5: Algorithm Analysis III

CSE332, Spring 2021L20: Parallel Pack and Sort

Parallelizing QuickSort: Attempt #1

❖ Recurrence (assuming a good-enough pivot):

▪ Work T1(n) = ____________________ ∈ O(________)

▪ Span T(n) = ____________________ ∈ O(________)

▪ Parallelism = Work/Span ∈ O(________)
20

Step Runtime Expression

Pick the pivot value(s)
• Hopefully these value(s) approximate

the median
c1

Partition all the values into:
A. The values less than the pivot(s)
B. The pivot(s)
C. The values greater than the pivot(s)

c2n

Recursively QuickSort(A) and QuickSort(C) in
parallel

Speedup: T1 / TP

Max Parallelism: T1 / T

CSE332, Spring 2021L20: Parallel Pack and Sort

Parallel QuickSort: Doing Better

❖ O(log n) parallelism with an infinite number of processors is
okay, but a bit underwhelming

▪ Sort 109 elements 30 times faster

❖ Google searches strongly suggest QuickSort cannot do better
because the partition cannot be parallelized

▪ The Internet has been known to be wrong ☺

▪ But we need auxiliary storage (no longer in place)

▪ In practice, constant factors may make it not worth it, but remember
Amdahl’s Law…(exposing parallelism is important!)

❖ Already have everything we need to parallelize the partition…

21

CSE332, Spring 2021L20: Parallel Pack and Sort

Parallel Partition (not in place)
❖ Parallel partition is just two packs!

1. Pack elements less than pivot into left side of aux array

2. Then, pack elements greater than pivot into right side of aux array

❖ We know a pack is O(n) work, O(log n) span

❖ Parallel Partition (does not include parallel sorting):

▪ Work T1 ∈ O(________), Span T ∈ O(________)

❖ Can do both packs at once, but no effect on asymptotic
complexity 22

Step Work (T1) Span (T)

In parallel, partition all the values into:
A. The values less than the pivot(s)
B. The pivot(s)
C. The values greater than the pivot(s)

CSE332, Spring 2021L20: Parallel Pack and Sort

Parallelizing QuickSort: Attempt #2

❖ Recurrence (assuming a good-enough pivot):

▪ Work T1(n) = ____________________ ∈ O(________)

▪ Span T(n) = ____________________ ∈ O(________)

▪ Parallelism = Work/Span ∈ O(________)

23

Step Work (T1) Span (T)

Pick the pivot value(s) c1 c1

In parallel, partition all the values

In parallel, recursively QuickSort(A) and
QuickSort(C)

CSE332, Spring 2021L20: Parallel Pack and Sort

Parallel QuickSort, Attempt #2: Example

1. Pick pivot (we’ll use median-of-3)

2. Pack less-than, then pack greater-than

▪ Packs must be sequential, since second pack needs a starting index

3. Recursively sort, in parallel

▪ Can sort back into original array (like in MergeSort)

24

8 1 4 9 0 3 5 2 7 6

1 4 0 3 5 2

1 4 0 3 5 2 6 8 9 7

0 1 2 3 4 5 6 7 8 9

CSE332, Spring 2021L20: Parallel Pack and Sort

Lecture Outline

❖ Review: Designing new parallel algorithms

❖ Parallel Pack

❖ Parallel Sort

▪ QuickSort

▪ MergeSort

25

CSE332, Spring 2021L20: Parallel Pack and Sort

Parallelizing MergeSort

❖ Start like we did with QuickSort: do recursive sorts in parallel

▪ Work T1(n) = c2n + 2T(n/2) ∈ O(n log n)

▪ Span T(n) = c2n + 1T(n/2) ∈ O(n)

▪ Parallelism = Work/Span ∈ O(log n)

❖ To do better, need to parallelize the merge

▪ The trick won’t use parallel prefix this time…

26

Step Work (T1) Span (T)

In parallel, recursively MergeSort(A) and
MergeSort(B)

2T(n/2) T(n/2)

Merge(A, B) c2n c2n

CSE332, Spring 2021L20: Parallel Pack and Sort

Parallelizing the Merge (1 of 2)

❖ Problem statement:

▪ Merge two sorted subarrays, not necessarily of the same size

❖ Intuition:

▪ Want each parallel executor to merge half of the elements

▪ Choose a value that is approximately the median of the final array

• Suppose the longer subarray has m elements. Then choose m/2-th element

▪ In parallel:

• Merge first m/2 elements of longer half with “appropriate” elements of
shorter half

• Merge second m/2 elements of longer half with rest of the shorter half

27

2 3 5 71 4 6 8 9

1 2 3 4 5 6 7 8 9

CSE332, Spring 2021L20: Parallel Pack and Sort

Parallelizing the Merge (2 of 2)

❖ Problem statement:

▪ Merge two sorted subarrays, not necessarily of the same size

❖ Step #1:

• Pick the median of the longer array in constant time

• Binary search the shorter array to find the first element >median

❖ Step #2 (in parallel):

• Merge the lower part of the longer array (<=median) with the
lower part of the shorter array

• Merge upper part of the longer array (>median onward) with the
upper part of the shorter array

28

longer array shorter array

2 3 5 71 4 6 8 9

CSE332, Spring 2021L20: Parallel Pack and Sort

Parallelizing the Merge: Example (1 of 7)

29

2 3 5 71 4 6 8 9

longer array shorter array

CSE332, Spring 2021L20: Parallel Pack and Sort

❖ Pick the median of the longer array: O(1) to compute index

Parallelizing the Merge: Example (2 of 7)

30

2 3 5 71 4 6 8 9

longer array shorter array

CSE332, Spring 2021L20: Parallel Pack and Sort

❖ Pick the median of the longer array: O(1) to compute index

❖ Split the shorter array at the same value: O(log n) for binary
search

Parallelizing the Merge: Example (3 of 7)

31

2 3 5 71 4 6 8 9

longer array shorter array

CSE332, Spring 2021L20: Parallel Pack and Sort

❖ Pick the median of the longer array: O(1) to compute index

❖ Split the shorter array at the same value: O(log n) for binary
search

❖ Calculate where to split the output array: O(1)

Parallelizing the Merge: Example (4 of 7)

32

2 3 5 71 4 6 8 9

longer array shorter array

output array

CSE332, Spring 2021L20: Parallel Pack and Sort

❖ Pick the median of the longer array: O(1) to compute index

❖ Split the shorter array at the same value: O(log n) for binary
search

❖ Calculate where to split the output array: O(1)

❖ Do the sub-merges in parallel

Parallelizing the Merge: Example (5 of 7)

33

2 3 5 71 4 6 8 9

longer array shorter array

output array

1 4 6 2 3 5 8 9 7+ +

merge merge

🤔 how do we sub-merge? 🤔

CSE332, Spring 2021L20: Parallel Pack and Sort

Parallelizing the Merge: Example (6 of 7)

34

2 3 5 71 4 6 8 9

1 4 6 2 3 5 8 9 7+ +
1 4 6 2 3 5 8 9 7

1 4 2 3+ 6 5+ 98 7+
1 4 2 3

1 2 3+
4 2 3

4

merge merge

merge merge merge base

mergebase

2 4

base

3+
merge

output 1 2 3 4 5 6 7 8 9

CSE332, Spring 2021L20: Parallel Pack and Sort

Parallelizing the Merge: Example (7 of 7)

35

2 3 5 71 4 6 8 9

1 4 6 2 3 5 8 9 7+ +
1 4 6 2 3 5 8 9 7

1 4 2 3+ 6 5+ 98 7+
1 4 2 3

1 2 3+
4 2 3

4

merge merge

merge merge merge base

mergebase

2 4

base

3+
merge

output 1 2 3 4 5 6 7 8 9

Each parallel merge:
• Split the longer array in half
• Use binary search to split the shorter array
• Recursively merge
• Copy into output array in the base cases

CSE332, Spring 2021L20: Parallel Pack and Sort

Parallel Merge: Pseudocode

Merge(arr[], left1, left2, right1, right2, out[], out1, out2)

int leftSize = left2 – left1

int rightSize = right2 – right1

// Assert: out2 – out1 = leftSize + rightSize

// We will assume leftSize > rightSize without loss of generality

if (leftSize + rightSize < CUTOFF)

sequential merge and copy into out[out1..out2]

int mid = (left2 – left1)/2

binarySearch arr[right1..right2] to find j such that

arr[j] ≤ arr[mid] ≤ arr[j+1]

Merge(arr[], left1, mid, right1, j, out[], out1, out1+mid+j)

Merge(arr[], mid+1, left2, j+1, right2, out[], out1+mid+j+1, out2)

36

CSE332, Spring 2021L20: Parallel Pack and Sort

Parallel-MergeSort: Analysis (1 of 3)

❖ Sequential MergeSort:

T(n) = 2T(n/2) + c2 ∈ O(n log n)

❖ Parallel MergeSort with sequential merge:

▪ Work: O(n log n)

▪ Span: T(n) = 1T(n/2) + c2 ∈ O(n)

37

2 3 6 7 81 4 5 9 10

longer array shorter array

CSE332, Spring 2021L20: Parallel Pack and Sort

Parallel-MergeSort: Analysis (2 of 3)

❖ What about just the parallel merge of two subarrays?

▪ Let the total length of the two subarrays be n

▪ O(log n) binary search to split the shorter subarray

▪ Worst-case split is (3/4)n and (1/4)n

• Happens when the two subarrays are of the same length (n/2) and the
shorter subarray splits into two pieces of the most uneven sizes possible:
one of size n/2, one of size 0

❖ Work is T(n) = T(3n/4) + T(n/4) + c1 log n ∈ O(n)

❖ Span is T(n) = T(3n/4) + c2 log n ∈ O(log2 n)

▪ (neither bound is immediately obvious, but “trust me”)

38

2 3 5 6 71 4 8 9 10

longer array shorter array

CSE332, Spring 2021L20: Parallel Pack and Sort

Parallel-MergeSort: Analysis (3 of 3)

❖ Parallel MergeSort with a parallel merge:

▪ Work is T(n) = 2T(n/2) + c1n ∈ O(n log n)

▪ Span is T(n) = 1T(n/2) + c2log
2 n ∈ O (log3 n)

❖ So, parallelism (work / span) is O (n / log2 n)

▪ Not quite as good as QuickSort’s O(n / log n) parallelism

▪ But, unlike Quicksort, this is a worst-case guarantee

▪ And, as always, this is just the asymptotic result

39

