Parallel Pack and Parallel Sort CSE 332 Spring 2021

Instructor: Hannah C. Tang

Teaching Assistants:

Aayushi Modi Khushi Chaudhari Aashna Sheth Kris Wong Frederick Huyan Logan Milandin Hamsa Shankar Nachiket Karmarkar Patrick Murphy Richard Jiang Winston Jodjana

...Il gradescope

gradescope.com/courses/256241

- Describe a parallelized reduction to count the values greater than 10
 - Constraint: you <u>must</u> store your intermediate results in an array; we want the result of the "is greater than 10?" boolean

Announcements

- P2 due tomorrow night!
- P3 partner moving to Google Spreadsheets
 - Need to fill out even if you're keeping the same partner; worth one participation point (see Gradescope assignment, coming soon)
 - Can fill it out multiple times; we will take most recent response
 - DO NOT TYPO UWNetIDs!

Lecture Outline

* Review: Designing new parallel algorithms

- Parallel Pack
- Parallel Sort
 - QuickSort
 - MergeSort

Amdahl's Law

Span =
$$T_{\infty}$$
 = sum of runtime of all nodes in the
DAG's most-expensive path
Work = T_1 = sum of runtime of all nodes in the DAG
Speed-up = T_1 / T_p
Perfect linear speedup when T_1 / T_p = P
Parallelism = T_1 / T_{∞}

 Let the work (T₁) be 1 unit of time and S be the unparallelizable portion of execution time:

$$T_1 = 1 = S + (1-S)$$

- * Suppose *perfect linear speed-up* on the parallelizable portion. Then: $T_P = S + (1-S)/P$
- Amdahl's Law states the speed-up with P processors is:

$$T_1 / T_P = 1 / (S + (1-S)/P)$$
 as $P \rightarrow \infty$

and the parallelism (maximum possible speed-up) is:

$$T_1 / T_{\infty} = 1 / S$$

The Challenge Posed by Amdahl's Law 🐬

- Amdahl's Law tells us unparallelized parts become a bottleneck very quickly
 - But it *doesn't* tell us additional processors are worthless
- … because we can find new parallel algorithms
 - Some things that seem sequential turn out to be parallelizable
 - We parallelized a 'running sum' array!

input	6	4	16	10	16	15	2	8
output	6	10	26	36	52	67	69	77

Parallel Prefix-Sum is Partial Sums!

 If we saved the intermediate results from parallel-sum, we could generate the prefix-sum from those results in a second pass

- Internal node takes its fromLeft value and
 - Passes its left child the same fromLeft
 - Passes its right child its fromLeft plus its left child's sum

W UNIVERSITY of WASHINGTON

Parallel Prefix-Sum: The "Up" Pass

 This first pass builds a *binary tree* from the bottom: the "up" pass

Parallel Prefix-Sum: The "Down" Pass

Internal nodes:

- Left: parent's
- Right: parent's + sibling's sum Leaves:
 - Same as internal node, then output[i] = fromLeft + input[i]

 The second pass uses the *binary tree* to populate the fromLeft fields

Parallel Prefix-Sum Runtime

- ✤ Up pass: • Work: O(n), Span: O(log n)
- Down pass:
 - Work: O(n), Span: O(log n)
- Total: • Work: O(n), Span: $O(\log n)$

Lecture Outline

- Review: Designing new parallel algorithms
- * Parallel Pack
- Parallel Sort
 - QuickSort
 - MergeSort

(

Pack (aka "Filter")

* Given an array input, produce an array output containing
 only elements such that f (element) is true

- Parallelizable? Sort of ...
 - Yes: determining whether an element belongs in the output is easy
 - No: determining *where* an element belongs in the output is hard; seems to depend on previous results....

We Already Know Parallel-Pack!

f: "is element > 10"

- Parallel-Pack = Parallel-Map + Parallel-Prefix + Parallel-Map!
 - **1.** Parallel map to compute a bit-vector for filtered elements:bits100101101

2. Parallel-prefix sum on the bit-vector:

bitsum 1	1 1	1 1	2	2	3	4	4	5
----------	-----	-----	---	---	---	---	---	---

3. Parallel map to produce output:

output 17 11 13 19 24

ill gradescope

gradescope.com/courses/256241

f: "is element > 10"

bits	1	0	0	0	1	0	1	1	0	1
bitsum	1	1	1	1	2	2	3	4	4	5

- Write the final parallel-map's pseudocode, generating the output
 - Hint: your code will need to take three inputs: input, bits, and bitsum

```
output = new array of size bitsum[n-1]
FORALL (i=0; i < input.length; i++) {
}</pre>
```

Parallel-Pack Analysis

- Parallel-Pack:
 - 1. Parallel-map: compute bit-vector
 - 2. Parallel-prefix: compute bit-sum
 - 3. Parallel-map: produce output

- * Each step is O(n) work, O(log n) span
 - So parallel-pack still O(n) work, O(log n) span

Parallel-Pack Comments

Parallel-Pack:

- 1. Parallel-map: compute bit-vector
- 2. Parallel-prefix: compute bit-sum
- 3. Parallel-map: produce output
- First two steps can be combined into a prefix-sum Parallel map:
 - Different base case for the prefix sum
 - No effect on asymptotic complexity
- Combine third step into the down pass of the prefix-sum
 - Again, no effect on asymptotic complexity
- Still O(n) work, O(log n) span
 - ... but better constants ©

Parallelized packs will help us parallelize QuickSort...

Lecture Outline

- Review: Designing new parallel algorithms
- Parallel Pack
- Parallel Sort
 - QuickSort
 - MergeSort

Sequential QuickSort Review

Step	Runtime Expression
Pick the pivot value(s)Hopefully these value(s) approximate the median	C
Partition all the values into:A. The values less than the pivot(s)B. The pivot(s)C. The values greater than the pivot(s)	$C_2 n$
Recursively QuickSort(A), then QuickSort(C)	T(2)+T(2)

Recurrence (assuming a good-enough pivot):

- $T(n) = 2T(\frac{n}{2}) + C_1 + C_2 n$
- Closed-form T(n) $\in O(\underline{1 \cup 0 \cap 1})$

Really Common Recurrences

Copied from L5: Algorithm Analysis III

Recurrence Relation	Closed Form	Name	Example
T(n) = O(1) + T(n/2)	O(log n)	Logarithmic	Binary Search
T(n) = O(1) + T(n-1)	O(n)	Linear	Sum (v1: "Recursive Sum")
T(n) = O(1) + 2T(n/2)	O(n)	Linear	Sum (v2: "Recursive Binary Sum")
T(n) = O(n) + T(n/2)	O(n)	Linear	
→(n) = O(n) + 2T(n/2)	O(n log n)	Loglinear	MergeSort
T(n) = O(n) + T(n-1)	<i>O</i> (n²)	Quadratic	
T(n) = O(1) + 2T(n-1)	<i>O</i> (2 ⁿ)	Exponential	Fibonacci

Speedup: T_1 / T_P Parallelizing QuickSort: Attempt #1 Max Parallelism: T_1 / T_{∞} **Runtime Expression** Step Pick the pivot value(s) Hopefully these value(s) approximate C₁ the median Partition all the values into: The values less than the pivot(s) Α. $c_2 n$ The pivot(s) Β. C. The values greater than the pivot(s) Somewhere ween Recursively QuickSort(A) and QuickSort(C) in parallel a (depending) Recurrence (assuming a good-enough pivot): num • Work $T_1(n) = 2$ Span $T_{\infty}(n) =$ ∈ O(**^** ■ Parallelism = Work/Span ∈ O(_

Parallel QuickSort: Doing Better

- O(log n) parallelism with an infinite number of processors is okay, but a bit underwhelming
 - Sort 10⁹ elements 30 times faster
- Google searches strongly suggest QuickSort cannot do better because the partition cannot be parallelized
 - The Internet has been known to be wrong \bigcirc
 - But we need auxiliary storage (no longer in place)
 - In practice, constant factors may make it not worth it, but remember Amdahl's Law...(exposing parallelism is important!)
- Already have everything we need to parallelize the partition...

Parallel Partition (not in place)

- Parallel partition is just two packs!
 - 1. Pack elements less than pivot into left side of **aux** array
 - 2. Then, pack elements greater than pivot into right side of **aux** array
- We know a pack is O(n) work, O(log n) span

Step	Work (T ₁)	Span (T_{∞})
In parallel, partition all the values into:A. The values less than the pivot(s)B. The pivot(s)C. The values greater than the pivot(s)	O(n) O(n) O(n)	O(log n) O(log n) O(log n)

- Parallel Partition (does not include parallel sorting):
 - Work $T_1 \in O(\underline{\ \ })$, Span $T_{\infty} \in O(\underline{\ \ })$
- Can do both packs at once, but no effect on asymptotic complexity

Parallelizing QuickSort: Attempt #2

Step	Work (T ₁)	Span (T_{∞})
Pick the pivot value(s)	c ₁	C ₁
In parallel, partition all the values	$C_{z}n$	Czlogn
In parallel, recursively QuickSort(A) and QuickSort(C)	2T(2)	T(2)

- Recurrence (assuming a good-enough pivot):
 - Work $T_1(n) = 2T(\frac{n}{2}) + C_1 + C_2 \cap C \in O(n \log n)$
 - Span $T_{\infty}(n) = \overline{\prod_{n=1}^{\infty} +C_1 + C_2 \log n} \in O(\log^2 n)$

• Parallelism = Work/Span $\in O(\frac{\sqrt{\log n}}{\sqrt{\log n}})$

Parallel QuickSort, Attempt #2: Example

1. Pick pivot (we'll use median-of-3)

- 2. Pack less-than, then pack greater-than
 - Packs must be sequential, since second pack needs a starting index

- 3. Recursively sort, in parallel
 - Can sort back into original array (like in MergeSort)

Lecture Outline

- Review: Designing new parallel algorithms
- Parallel Pack
- Parallel Sort
 - QuickSort
 - MergeSort

Parallelizing MergeSort

Step	Work (T ₁)	Span (T_{∞})
In parallel, recursively MergeSort(A) and MergeSort(B)	2T(n/2)	T(n/2)
Merge(A, B)	c ₂ n	c ₂ n

- Start like we did with QuickSort: do recursive sorts in parallel
 - Work $T_1(n) = c_2 n + 2T(n/2) \in O(n \log n)$
 - Span $T_{\infty}(n) = c_2 n + \mathbf{1}T(n/2) \in O(n)$
 - Parallelism = Work/Span \in O(log n)
- To do better, need to parallelize the merge
 - The trick won't use parallel prefix this time...

Parallelizing the Merge (1 of 2)

- Problem statement:
 - Merge two sorted subarrays, not necessarily of the same size

- Intuition:
 - Want each parallel executor to merge half of the elements
 - Choose a value that is approximately the median of the <u>final</u> array
 - Suppose the longer subarray has m elements. Then choose m/2-th element
 - In parallel:
 - Merge first m/2 elements of longer half with "appropriate" elements of shorter half
 - Merge second *m*/2 elements of longer half with rest of the shorter half

Parallelizing the Merge (2 of 2)

- Problem statement:
 - Merge two sorted subarrays, not necessarily of the same size

longer array

- Step #1:
 - Pick the median of the *longer array* in constant time
 - Binary search the *shorter array* to find the first element >median
- Step #2 (in parallel):
 - Merge the lower part of the *longer array* (<=median) with the lower part of the *shorter array*
 - Merge upper part of the *longer array* (>median onward) with the upper part of the *shorter array*

Parallelizing the Merge: Example (1 of 7)

longer array

shorter array

2

3

5

7

Parallelizing the Merge: Example (2 of 7)

Pick the median of the *longer array*: O(1) to compute index

Parallelizing the Merge: Example (3 of 7)

- Pick the median of the *longer array*: O(1) to compute index
- Split the *shorter array* at the same value: O(log n) for binary search

Parallelizing the Merge: Example (4 of 7)

- Pick the median of the *longer array*: O(1) to compute index
- Split the *shorter array* at the same value: O(log n) for binary search
- Calculate where to split the output array: O(1)

- Pick the median of the *longer array*: O(1) to compute index
- Split the *shorter array* at the same value: O(log n) for binary search
- Calculate where to split the output array: O(1)
- Do the sub-merges in parallel

🚱 how do we sub-merge? 🚱

Parallelizing the Merge: Example (6 of 7)

Parallelizing the Merge: Example (7 of 7)

Parallel Merge: Pseudocode

```
Merge(arr[], left<sub>1</sub>, left<sub>2</sub>, right<sub>1</sub>, right<sub>2</sub>, out[], out<sub>1</sub>, out<sub>2</sub>)
   int leftSize = left_2 - left_1
   int rightSize = right<sub>2</sub> - right<sub>1</sub>
   // Assert: out_2 - out_1 = leftSize + rightSize
   // We will assume leftSize > rightSize without loss of generality
   if (leftSize + rightSize < CUTOFF)
       sequential merge and copy into out[out1..out2]
   int mid = (left_2 - left_1)/2
   binarySearch arr[right1..right2] to find j such that
       arr[j] \leq arr[mid] \leq arr[j+1]
   Merge(arr[], left<sub>1</sub>, mid, right<sub>1</sub>, j, out[], out<sub>1</sub>, out<sub>1</sub>+mid+j)
   Merge(arr[], mid+1, left<sub>2</sub>, j+1, right<sub>2</sub>, out[], out<sub>1</sub>+mid+j+1, out<sub>2</sub>)
```

Parallel-MergeSort: Analysis (1 of 3)

* <u>Sequential</u> MergeSort:

 $T(n) = 2T(n/2) + c_2 \qquad \in O(n \log n)$

- * Parallel MergeSort with <u>sequential merge</u>:
 - Work: O(n log n)
 - Span: $T(n) = \mathbf{1}T(n/2) + c_2 \in O(n)$

2 3 6 7 8

Parallel-MergeSort: Analysis (2 of 3)

- What about just the parallel merge of two subarrays?
 - Let the total length of the two subarrays be n
 - O(log n) binary search to split the shorter subarray
 - Worst-case split is (3/4)n and (1/4)n
 - Happens when the two subarrays are of the same length (n/2) and the shorter subarray splits into two pieces of the most uneven sizes possible: one of size n/2, one of size 0
- * Work is $T(n) = T(3n/4) + T(n/4) + c_1 \log n \in O(n)$
- * Span is $T(n) = T(3n/4) + c_2 \log n \in O(\log^2 n)$
 - (neither bound is immediately obvious, but "trust me")

Parallel-MergeSort: Analysis (3 of 3)

- * Parallel MergeSort with a <u>parallel merge</u>:
 - Work is $T(n) = 2T(n/2) + c_1 n \in O(n \log n)$
 - Span is $T(n) = 1T(n/2) + c_2 \log^2 n \in O(\log^3 n)$
- So, parallelism (work / span) is O(n / log² n)
 - Not quite as good as QuickSort's O(n / log n) parallelism
 - But, unlike Quicksort, this is a worst-case guarantee
 - And, as always, this is just the asymptotic result