
CSE332, Spring 2021L19: Parallel Prefix

Parallel Prefix
CSE 332 Spring 2021

Instructor: Hannah C. Tang

Teaching Assistants:

Aayushi Modi Khushi Chaudhari Patrick Murphy

Aashna Sheth Kris Wong Richard Jiang

Frederick Huyan Logan Milandin Winston Jodjana

Hamsa Shankar Nachiket Karmarkar

CSE332, Spring 2021

gradescope.com/courses/256241

L19: Parallel Prefix

❖ Define work and span

❖ How do we calculate work and span?

❖ What, if any, effect does adding more processors have on work? On
span?

2

base cases

divide

combine

vs

CSE332, Spring 2021L19: Parallel Prefix

Announcements

❖ P2 due this week

❖ Keep up with the readings if you have any questions

3

CSE332, Spring 2021L19: Parallel Prefix

Lecture Outline

❖ Amdahl’s Law: Is the 🥛 half-empty or half-full?

❖ Parallel Prefix-Sum

4

CSE332, Spring 2021L19: Parallel Prefix

And Now for the Good / Bad News …

❖ In practice, it’s common that a program has:

a) Parts that parallelize well:

• E.g. maps/reduces over arrays and trees

b) … and parts that don’t parallelize at all:

• E.g. reading a linked list

• E.g. waiting on input

• E.g. computations where each step needs the results of previous step

❖ These unparallelizable parts turn out to be a big bottleneck,
which brings us to Amdahl’s Law …

5

CSE332, Spring 2021L19: Parallel Prefix

Amdahl’s Law

❖ Let the work (T1) be 1 unit of time and S be
the unparallelizable portion of execution time:

T1 = 1 = S + (1-S)

❖ Suppose perfect linear speed-up on the parallelizable portion. Then:

TP = S + (1-S)/P

❖ Amdahl’s Law states the speed-up with P processors is:

T1 / TP = 1 / (S + (1-S)/P)

❖ and the parallelism (maximum possible speed-up) is:

T1 / T = 1 / S

6

Span = T = sum of runtime of all nodes in the
DAG’s most-expensive path
Work = T1 = sum of runtime of all nodes in the DAG
Speed-up = T1 / TP

Perfect linear speedup when T1 / TP = P
Parallelism = T1 / T

CSE332, Spring 2021L19: Parallel Prefix

Amdahl’s Law Example

❖ Recall: T1 = 1 = S + (1-S) and TP = S + (1-S)/P

❖ Suppose: T1 = 1/3 + 2/3 = 1 (eg, T1 = 100s = 33s + 67s)

❖ Then: TP = 33 sec + (67 sec)/P
T3 = 33 sec + (67 sec)/3 =

T6 = 33 sec + (67 sec)/6 =

T67 = 33 sec + (67 sec)/67 =

❖ If 33% of a program is sequential, a billion processors won’t
give a speedup over 3!!!

❖ No matter how many processors you use, your speedup is
bounded by the sequential portion of the program

7

CSE332, Spring 2021L19: Parallel Prefix

Implications of Amdahl’s Law

❖ In “the good old days” (1980-2005), ~12 years = 100x speedup

❖ Now suppose in 12 years, clock speed is the same but you
get 256 processors instead of 1. What portion of the program
must be parallelizable to get 100x speedup?

▪ For 256 processors to get at least 100x speedup, we need

100 1 / (S + (1-S)/256)

▪ Which means S .0061 (i.e., 99.4% must be parallelizable)

8

Speedup: T1 / TP = 1 / (S + (1-S)/P)
Max Parallelism: T1 / T = 1 / S

CSE332, Spring 2021L19: Parallel Prefix

Moore and Amdahl

❖ Moore’s “Law” is an observation about the progress of the
semiconductor industry

▪ Transistor density doubles roughly every 18 months

❖ Amdahl’s Law is a mathematical theorem

▪ Diminishing returns of adding more processors

❖ Both are incredibly important in designing computer systems

10

CSE332, Spring 2021L19: Parallel Prefix

The Challenge Posed by Amdahl’s Law 🥛

❖ Amdahl’s Law tells us unparallelized parts become a bottleneck
very quickly
▪ But it doesn’t tell us additional processors are worthless

❖ … because we can find new parallel algorithms
▪ Some things that seem sequential turn out to be parallelizable
▪ Eg: How can we parallelize a ‘running sum’ array?

❖ We can also change the problem we’re solving
▪ Eg: Video games use tons of parallel processors; they are not rendering

10-year-old graphics faster

11

input 6 4 16 10 16 15 2 8

output 6 10 26 36 52 67 69 77

CSE332, Spring 2021L19: Parallel Prefix

Lecture Outline

❖ Amdahl’s Law: Is the 🥛 half-empty or half-full?

❖ Parallel Prefix-Sum

12

CSE332, Spring 2021L19: Parallel Prefix

The Prefix-Sum Problem (1 of 2)

❖ Given int[] input, produce int[] output where:

output[i] = input[0]+input[1]+…+input[i]

❖ Problem is “inherently sequential” because each value
depends on the values before it

13

input 6 4 16 10 16 15 2 8

output 6 10 26 36 52 67 69 77

CSE332, Spring 2021L19: Parallel Prefix

The Prefix-Sum Problem (2 of 2)

❖ Sequential solution feels like a CSE142 exam problem:

❖ Doesn’t seem parallelizable!

– Work: O(n), Span: O(n)

– There’s a different algorithm with Work: O(n), Span: O(log n) 😮
14

int[] prefix_sum(int[] input) {
int[] output = new int[input.length];
output[0] = input[0];
for (int i=1; i < input.length; i++)

output[i] = output[i-1]+input[i];
return output;

}

input 6 4 16 10 16 15 2 8

output 6 10 26 36 52 67 69 77

CSE332, Spring 2021L19: Parallel Prefix

Parallel Prefix-Sum: Overview (1 of 2)

❖ Local bragging:

▪ Algorithm due to R. Ladner and M. Fischer at UW in 1977

▪ Richard Ladner joined the UW faculty in 1971 and hasn’t left

❖ Parallel-prefix sum algorithm has two passes:

▪ Each pass is O(n) work and O(log n) span

▪ So – as with array summing – parallelism is n/log n: exponential!

15

1968? 1973? Recent

CSE332, Spring 2021L19: Parallel Prefix

Parallel Prefix-Sum: Overview (2 of 2)

❖ First pass builds a binary tree from
the bottom: the “up” pass

❖ Second pass processes the binary
tree: the “down” pass

❖ Sequential algorithm is linear, but this
algorithm uses two logarithmic passes

16

range: [0, 8)

r: [7, 8)

range: [4, 8)

range: [4, 6) range: [6, 8)

range: [0, 4)

range: [0, 2) range: [2, 4)

r: [6, 7)r: [5, 6)r: [4, 5)r: [3, 4)r: [2, 3)r: [1, 2)r: [0, 1)

input 6 4 16 10 16 15 2 8

CSE332, Spring 2021L19: Parallel Prefix

Parallel Prefix-Sum: The “Up” Pass: Overview

❖ This first pass builds a binary tree from the
bottom: the “up” pass

❖ Parallel Prefix-Sum’s binary tree:
▪ Internal nodes have a range and sum of [lo, hi)

• … and the root has [0, n+1)

▪ Left child has range and sum of [lo, middle)

▪ Right child has range and sum of [middle, hi)

▪ A leaf has range and sum of [i,i+1); the sum
is simply input[i]

❖ Unlike parallel-sum, we actually create the tree; we need it for the
next pass (the “down” pass)
▪ Doesn’t have to be an actual tree; could use an array (eg, binary heap)

17

CSE332, Spring 2021L19: Parallel Prefix

Parallel Prefix-Sum: The “Up” Pass: Details

❖ Parent has range and sum of [lo, hi)

▪ left has [lo, middle), and right has [middle, hi)

❖ Build sum from the bottom of the tree:

▪ A leaf’s sum is just its value: input[i]

❖ Easy fork-join computation!

▪ Save partial sums from parallel-sum algorithm

▪ Tree is built from bottom-up, in parallel

❖ Analysis of the up pass:

▪ Work:

▪ Span:
18

CSE332, Spring 2021L19: Parallel Prefix

Parallel Prefix-Sum’s Tree

19

input 6 4 16 10 16 15 2 8

output

range: [0, 8)
sum:
fromleft:

r: [7, 8)
s:
f:

range: [4, 8)
sum:
fromleft:

range: [4, 6)
sum:
fromleft:

range: [6, 8)
sum:
fromleft:

range: [0, 4)
sum:
fromleft:

range: [0, 2)
sum:
fromleft:

range: [2, 4)
sum:
fromleft:

r: [6, 7)
s:
f:

r: [5, 6)
s:
f:

r: [4, 5)
s:
f:

r: [3, 4)
s:
f:

r: [2, 3)
s:
f:

r: [1, 2)
s:
f:

r: [0, 1)
s:
f:

CSE332, Spring 2021L19: Parallel Prefix

Parallel Prefix-Sum: The “Down” Pass: Overview

❖ This second pass processes the binary tree: the “down” pass

❖ All nodes have a range and sum of [lo, hi); now populate fromLeft

▪ Invariant: fromLeft is sum of elements left of the node’s range: [0, lo)

21

range: [0, n)

range: [x, n)

range: [x, lo) range: [lo, n)

range: [0, x)

range: [0, x/2) range: [x/2, x)

range: (x, lo]
sum: s
fromLeft: s’

range: (0, x]
sum: s’
fromLeft: 0

output[lo] = s + s’ + input[lo]

CSE332, Spring 2021L19: Parallel Prefix

Parallel Prefix-Sum: The “Down” Pass: Details

❖ Propagate fromLeft down:

▪ Root starts with a fromLeft of 0 (why?)

▪ Internal node takes its fromLeft value and

• Passes its left child the same fromLeft

• Passes its right child its fromLeft plus its left child’s sum

▪ At the leaf, must also output[i]
= fromLeft + input[i]

❖ Also an easy fork-join computation!

▪ Traverse the tree built in step 1

▪ Don’t produce an explicit result; the leaves will assign to output

❖ Analysis of down pass: Work: ________, Span: ________

❖ Total for algorithm: Work: ________, Span: ________
22

CSE332, Spring 2021L19: Parallel Prefix

Internal nodes:
• Left child: parent’s
• Right child: parent’s + sibling’s sum
Leaves:
• Same as internal node, then

output[i] = fromLeft + input[i]

Parallel Prefix-Sum’s Example: The “Down” Pass

23

output

range: [0, 8)
sum: 77
fromleft: 0

r: [7, 8)
s: 8
f: 69

range: [4, 8)
sum: 41
fromleft: 36

range: [4, 6)
sum: 31
fromleft: 36

range: [6, 8)
sum: 10
fromleft: 67

range: [0, 4)
sum: 36
fromleft: 0

range: [0, 2)
sum: 10
fromleft: 0

range: [2, 4)
sum: 26
fromleft: 10

r: [6, 7)
s: 2
f: 67

r: [5, 6)
s: 15
f: 52

r: [4, 5)
s: 16
f: 36

r: [3, 4)
s: 10
f: 26

r: [2, 3)
s: 16
f: 10

r: [1, 2)
s: 4
f: 6

r: [0, 1)
s: 6
f: 0

input 6 4 16 10 16 15 2 8

CSE332, Spring 2021L19: Parallel Prefix

Sequential Cutoff for Prefix-Sum

❖ Adding a sequential cut-off isn’t too bad:

1. Propagating up the sums:

• Leaf node just holds the sum of a range of values (i.e., sequentially compute
sum for that range)

• The tree itself will be shallower

2. Propagating down the fromLefts:

• Have leaf compute prefix sum sequentially over its [lo,hi), then:

24

output[lo] = fromLeft + input[lo];

for(i=lo+1; i < hi; i++)

output[i] = output[i-1] + input[i]

CSE332, Spring 2021L19: Parallel Prefix

Generalized Parallel-Prefix-Sum = Parallel-Prefix

❖ Sum-array was an example of a common pattern

❖ Prefix-sum is also a pattern that arises in many problems:

▪ Minimum, maximum of all elements to the left of i

▪ Is there an element to the left of i satisfying some property?

▪ Count of elements to the left of i satisfying some property

25

You now know the
“one weird trick”:

parallel-prefix!

