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L18: ForkJoin

❖ Assume a perfect tree with n leaves

▪ What is the height of the tree (as a function of n)?

▪ How many internal nodes does this tree have (as a function of n)?
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Announcements

❖ “Para” mini-projects released!
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Lecture Outline

❖ Concurrency Frameworks in Java

▪ Improving java.lang.Thread’s constants

▪ ForkJoin Library

❖ More examples of parallel programs

▪ Common patterns: reduce and map

▪ Non-array inputs

❖ Asymptotic Analysis for Fork/Join-style Parallelism

❖ Amdahl’s Law: Is the 🥛 half-empty or half-full?
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Why Fork/Join-style parallelism model?  (1 of 2)

❖ Solve the result-combining bottleneck

▪ The calls to run() can execute in parallel, but combining 
intermediate results is still sequential!
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Why Fork/Join-style parallelism?  (2 of 2)

❖ Fork/Join Phases:

1. Divide the problem

• Start with full problem at root

• Make two new threads, halving the problem, until size is at cutoff

2. Combine answers as we return from recursion
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class SumThread extends java.lang.Thread {

// … member fields and constructors elided …

public void run() {  // override: implement “main”

if(hi – lo < SEQUENTIAL_CUTOFF) {

// Just do the calculation in this thread

for (int i=lo; i < hi; i++)

ans += arr[i];

}

else {

// Create two new threads to calculate the left and right sums

SumThread left = new SumThread(arr, lo, (hi+lo)/2);

SumThread right= new SumThread(arr, (hi+lo)/2, hi);

left.start();

right.start();

// Combine their results

left.join();

right.join();

ans = left.ans + right.ans;

}

}

}

Fork/Join-style Parallelism: Code (1 of 2)
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Fork/Join-style Parallelism: Code (2 of 2)

❖ What’s up with the sequential cutoff?

▪ QuickSort and MergeSort switch to InsertionSort because “the 
constants are better”

▪ Similarly, Fork/Join-style parallelism switches to sequential execution 
because “the constants are better”
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int sum(int[] arr) {

SumThread t = new SumThread(arr, 0, arr.length);// just 1 obj since

t.run();                                        // we don’t need

return t.ans;                                   // parallelism to

}                                                 // start recursion

class SumThread extends java.lang.Thread {

int lo, int hi, int[] arr; // input: arguments

int ans = 0;               // output: result

SumThread(int[] a, int l, int h) { … }

public void run(){ … }     // override: implement “main”

}
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Performance Tuning Our Constants

❖ Expensive “constant time” operations include:

▪ Accessing “lower tiers” of the memory hierarchy

• Won’t focus on this, but crucial for parallel performance

▪ Thread-creation and thread-joining

❖ In theory, can divide down to single elements, do all the result-
combining in parallel, and get optimal speedup

▪ Total time: O(n / numExecutors + log n)

❖ In practice, thread creation/joins eat into the savings 

❖ Remember: computers are getting more parallel, not faster

▪ attu6 has 4 CPUs with 14 cores each = 56 “processors”
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L18: ForkJoin

❖ Assume that thread creation and joining are expensive.  Which of the 
following optimizations might improve our constants?

1. Use a cutoff, after which computation proceeds sequentially

2. Somehow create fewer threads during the recursion

3. Somehow reuse threads when they’re done

4. Use “hardware-backed threads” instead of “software threads”
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Being Pragmatic #1: Sequential Cutoff

❖ If thread-creation and thread-joining are expensive, what can 
we do?

1. Use a cutoff, after which computation proceeds sequentially

• Cutoff value depends on type of computation; 1000-5000 machine 
instructions is a good start

• Eliminates almost all the recursive thread creation (bottom levels of tree)

• Exactly like MergeSort switching to InsertionSort, but more important 
here
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Being Pragmatic #2: Fewer “Intermediate” 
Threads

❖ If thread-creation and thread-joining are expensive, what can 
we do?

2. Do not create two recursive threads; create one thread and do the 
other piece of work “yourself”

• Halves the number of threads created (?!?!)
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Halving the Created Threads: Code

❖ If the language had built-in support for fork/join-style 
parallelism, this hand-optimization would be unnecessary

❖ But the library we’re using expects you to do it yourself

▪ … and the difference is surprisingly substantial

❖ Again: no difference in theory, “only” the constants
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// Don’t do this:
SumThread left = …
SumThread right = …

left.start();
right.start();

left.join(); 
right.join();
ans = left.ans + right.ans;

// Do this instead:
SumThread left = …
SumThread right = …

left.start();
right.run();

left.join();
// no right.join() needed
ans = left.ans + right.ans;

run() is a nomal function call!  Execution 
won’t proceed until it completes
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Halving the Created Threads: Pictorially
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• 2 new threads at each step
• Only leaf threads do much work

Total = 7 threads
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• 1 new thread at each step
Total = 4 threads
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Lecture Outline

❖ Concurrency Frameworks in Java

▪ Improving java.lang.Thread’s constants

▪ ForkJoin Library

❖ More examples of parallel programs

▪ Common patterns: reduce and map

▪ Non-array inputs

❖ Asymptotic Analysis for Fork/Join-style Parallelism

❖ Amdahl’s Law: Is the 🥛 half-empty or half-full?
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Finally!  The ForkJoin Library

❖ Even using fork/join-style code, java.lang.Thread is still too 
“heavyweight”

▪ Constant factors, especially space overhead

▪ Creating 20,000 Java threads just a bad idea 

❖ So use the ForkJoin Library instead

▪ Introduced in Java 8 (2014)

▪ Similar libraries available for other languages 

• C/C++: Cilk (inventors), Intel’s Thread Building Blocks

• C#: Task Parallel Library

• …

▪ Its implementation is a fascinating but advanced topic
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Thread -> ForkJoin: Terminology
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Java Built-in Threads ForkJoin Library

Subclass Thread Subclass RecursiveTask<V>

Override run() Override compute()

Call start() to begin parallel 
computation

Call fork() to begin parallel 
computation

Return results via member fields (eg, 
ans)

Return results via return value (ie, 
an instance of V)

Call join(), then check its 
“returned” member field

Call join(), then check its
return value

Halve created threads by calling 
run() directly

Halve created threads by calling 
compute() directly

Begin recursion with top-level call to 
run() (instead of start())

Begin recursion by creating a 
ForkJoinPool and calling its 

invoke()
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class SumTask extends RecursiveTask<Integer> {

int lo; int hi; int[] arr; // just the “input” arguments!

protected Integer compute() {  // override: implement “main”

if(hi – lo < SEQUENTIAL_CUTOFF) {

// Just do the calculation in this thread

int ans = 0;   // local variable instead of a member field

for (int i=lo; i < hi; i++)

ans += arr[i];

return ans;    // direct return of answer

} else {

// Create ONE new thread to calculate the left sum

SumTask left = new SumTask(arr, lo, (hi+lo)/2);

SumTask right = new SumTask(arr, (hi+lo)/2, hi);

left.fork();   // create a thread and call its compute()

int rightAns = right.compute(); // call compute() directly

// Combine results

int leftAns = left.join();

return leftAns + rightAns;

}

}

}

Fork/Join-style Parallelism with ForkJoin (1 of 2)
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class SumTask extends RecursiveTask<Integer> {

int lo; int hi; int[] arr; // input: arguments

SumTask(int[] a, int l, int h) { … }

protected Integer compute() { … } // override: implement “main”

}

Fork/Join-style Parallelism with ForkJoin (2 of 2)

static final ForkJoinPool POOL = new ForkJoinPool();

int sum(int[] arr) {

SumTask task = new SumTask(arr, 0, arr.length);

// invoke() returns the value which is returned by the

// top-level compute()

return POOL.invoke(task);

}
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ForkJoin Library: Tips

❖ Sequential threshold

▪ Library documentation recommends doing approximately 1000-5000 
basic operations in each “piece” of your algorithm

❖ ForkJoin library needs to “warm up”

▪ May see slow results before JVM re-optimizes the library internals 

▪ Put computations in a loop to see the “long-term benefit”
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Lecture Outline

❖ Concurrency Frameworks in Java

▪ Improving java.lang.Thread’s constants

▪ ForkJoin Library

❖ More examples of parallel programs

▪ Common patterns: reduce and map

▪ Non-array inputs

❖ Asymptotic Analysis for Fork/Join-style Parallelism

❖ Amdahl’s Law: Is the 🥛 half-empty or half-full?

23



CSE332, Spring 2021L18: ForkJoin

A Common Pattern

❖ Summing went from O(n) sequential to O(log n) parallel

▪ Assuming a lot of processors and very large n

▪ Exponential speed-up in theory: n / log n grows exponentially

❖ Any solution which can merge two subsolutions in O(1) time 
has this property!

❖ Just need to “plug in” 2 parts:

▪ How to compute the result at the cut-off
(Parallel-Sum: Iterate through sequentially and add up)

▪ How to merge results 
(Parallel-Sum: Just add ‘left’ and ‘right’ results) 24
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Examples of our Common Pattern

❖ Assume the input is an array; how would we do the following?

1. Maximum or minimum element

2. Is there an element satisfying some property (e.g., is there a 17)?

3. Left-most element satisfying some property (e.g., first 17)

4. Smallest rectangle encompassing a number of points

5. Counts; for example, number of strings that start with a vowel

6. Are these elements in sorted order?

25
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A Common Pattern: Reductions

❖ This class of computations are called reductions

▪ We ‘reduce’ or summarize a large array of data to a single final result

▪ Intermediate results must be combined with an associative operator

▪ Examples: max, count, leftmost, rightmost, sum, product, …

❖ Intermediate and final results can be “aggregates”: arrays or 
multi-field objects

▪ Example: histogram from a much larger array of test results

❖ Some things are inherently sequential

▪ Example: arr[i]’s is the sum of arr[1]...arr[i-1]

26
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Another Common Pattern: Maps

❖ A map transforms each element of a collection independently, 
creating a new-but-same-sized collection of modified elements

▪ No combining results

❖ Example: Vector addition

❖ Just need to “plug in” one part:

▪ How to map element E to transformed E’

▪ (Vector-add: generate result[i] from arr1[i])
27

int[] vectorAdd(int[] arr1, int[] arr2) {

assert(arr1.length == arr2.length);

result = new int[arr1.length];

FORALL (i=0; i < arr1.length; i++) {

result[i] = arr1[i] + arr2[i];

}

return result;

}
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Maps in the ForkJoin Library (1 of 2)
❖ Many small tasks still helps with load balancing

▪ Maybe not for vector-add, but definitely for compute-intensive maps

▪ The forking is O(log n); theoretically other approaches are O(1)

28

class VectorAdd extends RecursiveAction {

// input: arguments

int lo; int hi; int[] res; int[] v1; int[] v2;   

protected void compute(){

if(hi – lo < SEQUENTIAL_CUTOFF) {

for(int i=lo; i < hi; i++)

res[i] = v1[i] + v2[i];

} else {

int mid = (hi+lo)/2;

VectorAdd left = new VectorAdd(lo, mid, res, v1, v2);

VectorAdd right= new VectorAdd(mid, hi, res, v1, v2);   

left.fork();

right.compute();

left.join();

}

}

}
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Maps in the ForkJoin Library (2 of 2)

29

static final ForkJoinPool POOL = new ForkJoinPool();

int[] add(int[] arr1, int[] arr2){

assert (arr1.length == arr2.length);

// Use ans as an “output argument” instead of looking at the

// top-level compute()’s return value (which is void).

int[] ans = new int[arr1.length];

POOL.invoke(new VectorAdd(0, arr.length, ans, arr1, arr2);

return ans;

}

class VectorAdd extends RecursiveAction {

// input: arguments

int lo; int hi; int[] res; int[] v1; int[] v2;

protected void compute() { … } // override: implement “main”

}
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Map and Reduce in the ForkJoin Library

❖ Map (vector-add)
▪ VectorAdd extended RecursiveAction

▪ Result was an output parameter; nothing returned from 
compute()

❖ Reduce (parallel-sum):
▪ SumTask extended RecursiveTask

▪ Result directly returned from compute()

❖ … but it doesn’t have to be this way
▪ Map could’ve used RecursiveTask to return an array

▪ Reduce could’ve used RecursiveAction and returned result as 
an output parameter
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Maps and Reductions, Generally

❖ Maps and reductions are the “workhorses” of parallel 
programming

▪ By far, the two most important and common patterns

• Two more-advanced patterns in next lecture

❖ Goal:

▪ Recognize when an algorithm can use maps and reductions

▪ Use maps and reductions to describe (parallel) algorithms

❖ Result: programming them becomes “trivial”

▪ Exactly like sequential for-loops seem second-nature nowadays

31
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Digression: MapReduce on clusters

❖ You may have heard of Google’s “map/reduce”

▪ Or the open-source version, Hadoop

❖ Performs maps and reduces using many machines

▪ System takes distributes input data and manages fault tolerance

▪ You just write code to map one element and reduce elements to a 
combined result

❖ Separates how the recursive divide-and-conquer “frame” from 
the computation to perform

▪ An old idea in higher-order functional programming, transferred to 
large-scale distributed computing

▪ Complementary approach to declarative queries for databases

32
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Lecture Outline

❖ Concurrency Frameworks in Java

▪ Improving java.lang.Thread’s constants

▪ ForkJoin Library

❖ More examples of parallel programs

▪ Common patterns: reduce and map

▪ Non-array inputs 🏃‍♀️💨

❖ Asymptotic Analysis for Fork/Join-style Parallelism

❖ Amdahl’s Law: Is the 🥛 half-empty or half-full?
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Parallelized Computation on Trees

❖ Maps and reductions work on trees

▪ Divide-and-conquer each child rather than array sub-ranges

▪ Correct for unbalanced trees, but won’t get much speed-up unless 
tree is balanced

❖ Example: minimum in an unsorted-but-balanced binary tree

▪ O(log n) time given enough processors

❖ How to do the sequential cut-off?

▪ Store number-of-descendants at each node (easy to maintain)

▪ Or could approximate it with, e.g., AVL-tree height

34
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Parallelized Computation on Linked Lists

❖ Can you parallelize maps or reduces over linked lists?

▪ Example: Increment all elements of a linked list

▪ Example: Sum all elements of a linked list

❖ Parallelism still helps with expensive per-element operations

❖ Once again, data structures matter!

▪ Balanced trees allow faster access to all the data: O(log n) vs. O(n)

▪ Trees and lists have the same flexibility compared to arrays (eg, 
inserting an item in the middle of the list)

35
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Lecture Outline

❖ Concurrency Frameworks in Java

▪ Improving java.lang.Thread’s constants

▪ ForkJoin Library

❖ More examples of parallel programs

▪ Common patterns: reduce and map

▪ Non-array inputs 🏃‍♀️💨

❖ Asymptotic Analysis for Fork/Join-style Parallelism

❖ Amdahl’s Law: Is the 🥛 half-empty or half-full?
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Analyzing Parallel Algorithms

❖ How to measure efficiency?

▪ Want asymptotic bounds

▪ Want an analysis that’s independent of a specific number of 
processors

❖ Fork/Join parallelism gets asymptotically optimal runtime for 
the available number of processors

▪ So we can analyze algorithms assuming this guarantee
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Modelling Fork/Join Parallelism with DAGs

❖ A program execution using can be modeled as a DAG

▪ Nodes: Pieces of work 

▪ Edges: Source must finish before
destination can start

▪ Costs are in the nodes, not the
edges!

❖ A fork makes two outgoing edges:

▪ New thread

▪ Continuation of current thread

❖ A join takes two incoming edges

▪ The final node of the joined thread

▪ The computation that just finished in the current thread

38

A directed acyclic graph (DAG) is:
• A graph that is directed (edges have 

direction/arrows)
• And whose edges do not create a cycle 

(ability to trace a path that starts and ends 
at the same node)
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Our Simple Examples

❖ Maps and reductions use fork and join in a very basic way: 
as a (perfect) tree on top of an upside-down (perfect) tree

▪ Constant amount of processing at each node: O(1)

39

base cases

divide

combine
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Aside: More Interesting DAGs?

❖ The execution DAGs are not always this simple

▪ Example: combining results might so expensive that we parallelize it.  
Then each node in the inverted tree would expand into another set 
of nodes for that parallel computation

40
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Definitions: Work and Span

❖ Let TP be the running time if there are P processors available

❖ Two important definitions:

▪ Work: How long it would take with 1 processor (ie, T1)

• Just “sequentialize” the recursive forking

• Cumulative work that all processors must complete

▪ Span: How long it would take with infinitely many processors (ie, T)

• The hypothetical ideal; aka “critical path length” or “computational depth”

• This is the longest “dependence chain” in the computation

• Example: O(log n) for summing an array 

– Notice how having >n/2 processors doesn’t reduce the span
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Definitions Applied to Maps/Reductions (1 of 2)

❖ In this context, the span (T) is:

▪ The longest dependence-chain; i.e., longest ‘branch’ in parallel ‘tree’

▪ T ∈ O(          ) for simple maps and reductions

42
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Definitions Applied to Maps/Reductions (2 of 2)

❖ And the work (T1) is:

▪ The sum of runtime of all nodes in the DAG 

▪ T1 ∈ O(          ) for simple maps and reductions

43

base cases
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More Definitions: Speed-up

❖ Speed-up using P processors: T1 / TP 

▪ Example: T1 = 100 and T4 = 50

❖ If speed-up = P as we vary P, we call it perfect linear speed-up

▪ Example: T1 = 100 and T4 = 25

❖ Perfect linear speed-up means doubling P halves running time

▪ Usually our goal, but hard to get in practice

44

Span = T = sum of runtime of all nodes in the 
DAG’s most-expensive path

Work = T1 = sum of runtime of all nodes in the DAG



CSE332, Spring 2021L18: ForkJoin

Last Definition: Parallelism

❖ Parallelism: T1 / T  is the maximum possible speed-up; the 
point at which adding executors doesn’t help

• Depends on the span!

Parallel algorithms attempt to decrease span without 

increasing work too much
45

Span = T = sum of runtime of all nodes in the 
DAG’s most-expensive path

Work = T1 = sum of runtime of all nodes in the DAG

Speed-up = T1 / TP 

P TP Speedup

1 T1=100 -

2 T2=50 2

10 T10=25 4

50 T50=22 4.54

100 T100=20.5 4.87

 T=20 5
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Obtaining Optimality for TP

❖ What is the asymptotically optimal TP, for any value of P?

▪ (as usual, we ignore memory-hierarchy issues; i.e. caching)

❖ We know TP is greater than or equal to:

▪ T1 / P (why?)

▪ T (why?)

❖ So an asymptotically optimal execution must be:

O( (T1/P) + T )

▪ First term dominates for small P, second for large P

46
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Optimal TP: Thanks, ForkJoin library!

❖ The ForkJoin library gives an expected-time guarantee of 
asymptotically optimal! 

▪ “Expected time” because it flips coins when scheduling

❖ To obtain this guarantee, our job as ForkJoin library users is to 
make all the nodes in our execution DAG small-ish and
approximately equal

❖ In exchange, the library-writers:

▪ Assign work to avoid idling; we can ignore scheduling issues

▪ Keep constant factors low

▪ Honor the expected-time optimal guarantee of TP  = O((T1/P) + T)

for your hardware
48


