ForkJoin CSE 332 Spring 2021

Instructor: Hannah C. Tang

Teaching Assistants:

Aayushi Modi Khushi Chaudhari Aashna Sheth Kris Wong Frederick Huyan Logan Milandin Hamsa Shankar Nachiket Karmarkar Patrick Murphy Richard Jiang Winston Jodjana L18: ForkJoin

Image gradescope

gradescope.com/courses/256241

- Assume a perfect tree with n leaves
 - What is the height of the tree (as a function of n)?
 - How many internal nodes does this tree have (as a function of n)? n 1

Announcements

"Para" mini-projects released!

Lecture Outline

- Concurrency Frameworks in Java
 - Improving java.lang.Thread's constants
 - ForkJoin Library
- More examples of parallel programs
 - Common patterns: reduce and map
 - Non-array inputs
- Asymptotic Analysis for Fork/Join-style Parallelism

Why Fork/Join-style parallelism model? (1 of 2)

- Solve the result-combining bottleneck
 - The calls to run () can execute in parallel, but combining intermediate results is still sequential!

Why Fork/Join-style parallelism? (2 of 2)

- Fork/Join Phases:
 - 1. Divide the problem
 - Start with full problem at root
 - Make two new threads, halving the problem, until size is at cutoff
 - 2. Combine answers as we return from recursion

Fork/Join-style Parallelism: Code (1 of 2)

Fork/Join-style Parallelism: Code (2 of 2)

```
class SumThread extends java.lang.Thread {
  int lo, int hi, int[] arr; // input: arguments
  int ans = 0; // output: result
  SumThread(int[] a, int l, int h) { ... }
  public void run() { ... } // override: implement "main"
}
```

- What's up with the sequential cutoff?
 - QuickSort and MergeSort switch to InsertionSort because "the constants are better"
 - Similarly, Fork/Join-style parallelism switches to sequential execution because "the constants are better"

Performance Tuning Our Constants

- Substant Section Se
 - Accessing "lower tiers" of the memory hierarchy
 - Won't focus on this, but crucial for parallel performance
 - Thread-creation and thread-joining
- In theory, can divide down to single elements, do all the resultcombining in parallel, and get optimal speedup
 - Total time: O(n / numExecutors + log n)
- ✤ In practice, thread creation/joins eat into the savings ☺
- Remember: computers are getting more parallel, not faster
 - attu6 has 4 CPUs with 14 cores each = 56 "processors"

Ill gradescope

gradescope.com/courses/256241

- Assume that thread creation and joining are expensive. Which of the following optimizations might improve our constants?
 - 1. Use a cutoff, after which computation proceeds sequentially
 - 2. Somehow create fewer threads during the recursion
 - 3. Somehow reuse threads when they're done
 - 4. Use "hardware-backed threads" instead of "software threads"

Being Pragmatic #1: Sequential Cutoff

- If thread-creation and thread-joining are expensive, what can we do?
 - 1. Use a cutoff, after which computation proceeds sequentially
 - Cutoff value depends on type of computation; 1000-5000 machine instructions is a good start
 - Eliminates *almost all* the recursive thread creation (bottom levels of tree)
 - *Exactly* like MergeSort switching to InsertionSort, but more important here

Being Pragmatic #2: Fewer "Intermediate" Threads

- If thread-creation and thread-joining are expensive, what can we do?
 - 2. Do not create *two* recursive threads; create one thread and do the other piece of work "yourself"
 - Halves the number of threads created (?!?!)

Halving the Created Threads: Code

- If the *language* had built-in support for fork/join-style parallelism, this hand-optimization would be unnecessary
- * But the library we're using expects you to do it yourself
 - ... and the difference is surprisingly substantial
- Again: no difference in theory, "only" the constants

run() is a nomal function call! Execution won't proceed until it completes

<pre>// Don't do this: SumThread left = SumThread right =</pre>	<pre>// Do this instead: SumThread left = SumThread right =</pre>
<pre>left.start(); right.start();</pre>	<pre>left.start(); right.run();</pre>
<pre>left.join(); right.join(); ans = left.ans + right.ans;</pre>	<pre>left.join(); // no right.join() needed ans = left.ans + right.ans;</pre>

Halving the Created Threads: Pictorially

Lecture Outline

- Concurrency Frameworks in Java
 - Improving java.lang.Thread's constants
 - ForkJoin Library
- More examples of parallel programs
 - Common patterns: reduce and map
 - Non-array inputs
- Asymptotic Analysis for Fork/Join-style Parallelism

Finally! The ForkJoin Library

- Even using fork/join-style code, java.lang.Thread is still too "heavyweight"
 - Constant factors, especially space overhead
 - Creating 20,000 Java threads just a bad idea
- * So use the ForkJoin Library instead
 - Introduced in Java 8 (2014)
 - Similar libraries available for other languages
 - C/C++: Cilk (inventors), Intel's Thread Building Blocks
 - C#: Task Parallel Library

• ...

Its implementation is a fascinating but advanced topic

Thread -> ForkJoin: Terminology

Java Built-in Threads	ForkJoin Library
Subclass Thread	Subclass RecursiveTask <v></v>
Override run()	Override compute()
Call start() to begin parallel computation	Call fork() to begin parallel computation
Return results via member fields (eg, ans)	Return results via return value (ie, an instance of V)
Call join (), then check its "returned" member field	Call join (), then check its return value
Halve created threads by calling run () directly	Halve created threads by calling compute () directly
Begin recursion with top-level call to run() (instead of start())	Begin recursion by creating a ForkJoinPool and calling its invoke()

Fork/Join-style Parallelism with ForkJoin (1 of 2)

```
class SumTask extends RecursiveTask<Integer> {
 int lo; int hi; int[] arr; // just the "input" arguments!
 protected Integer compute() { // override: implement "main"
   if (hi - lo < SEQUENTIAL CUTOFF)
      // Just do the calculation in this thread
     int ans = 0; // local variable instead of a member field
     for (int i=lo; i < hi; i++)</pre>
     ans += arr[i];
     return ans; // direct return of answer
    } else {
     // Create ONE new thread to calculate the left sum
     SumTask left = new SumTask(arr, lo, (hi+lo)/2);
     SumTask right = new SumTask(arr, (hi+lo)/2, hi);
     left.fork(); // create a thread and call its compute()
      int rightAns = right.compute(); // call compute() directly
     // Combine results
      int leftAns = left.join();
      return leftAns (+) rightAns;
                                            else is "
```

Fork/Join-style Parallelism with ForkJoin (2 of 2)

```
static final ForkJoinPool POOL = new ForkJoinPool();
```

```
int sum(int[] arr) {
   SumTask task = new SumTask(arr, 0, arr.length);
   // invoke() returns the value which is returned by the
   // top-level compute()
   return POOL.invoke(task);
}
```

ForkJoin Library: Tips

- Sequential threshold
 - Library documentation recommends doing approximately 1000-5000 basic operations in each "piece" of your algorithm
- ForkJoin library needs to "warm up"
 - May see slow results before JVM re-optimizes the library internals
 - Put computations in a loop to see the "long-term benefit"

Lecture Outline

- Concurrency Frameworks in Java
 - Improving java.lang.Thread's constants
 - ForkJoin Library
- More examples of parallel programs
 - Common patterns: reduce and map
 - Non-array inputs
- Asymptotic Analysis for Fork/Join-style Parallelism

A Common Pattern

- * Summing went from O(n) sequential to $O(\log n)$ parallel
 - Assuming a lot of processors and very large n
 - Exponential speed-up in theory: n / log n grows exponentially

- Any solution which can merge two subsolutions in O(1) time has this property!
- Just need to "plug in" 2 parts:
 - How to compute the result at the cut-off (Parallel-Sum: Iterate through sequentially and add up)
 - How to merge results (Parallel-Sum: Just <u>add</u> 'left' and 'right' results)

Examples of our Common Pattern

- * Assume the input is an array; how would we do the following?
 - 1. Maximum or minimum element
 - 2. Is there an element satisfying some property (e.g., is there a 17)?
 - 3. Left-most element satisfying some property (e.g., first 17)
 - 4. Smallest rectangle encompassing a number of points
 - 5. Counts; for example, number of strings that start with a vowel
 - 6. Are these elements in sorted order?

A Common Pattern: Reductions

- This class of computations are called reductions
 - We 'reduce' or summarize a large array of data to a single final result
 - Intermediate results must be combined with an associative operator
 - Examples: max, count, leftmost, rightmost, sum, product, ...
- Intermediate and final results can be "aggregates": arrays or multi-field objects
 - *Example*: histogram from a much larger array of test results
- Some things are inherently sequential
 - Example: arr[i]'s is the sum of arr[1]...arr[i-1]

Another Common Pattern: Maps

- A map transforms each element of a collection independently, creating a new-but-same-sized collection of modified elements
 - No combining results
- * Example: Vector addition

```
int[] vectorAdd(int[] arr1, int[] arr2) {
   assert(arr1.length == arr2.length);
   result = new int[arr1.length];
   FORALL (i=0; i < arr1.length; i++) {
      result[i] = arr1[i] + arr2[i];
   }
   return result;
}</pre>
```

- Just need to "plug in" one part:
 - How to map element E to transformed E'
 - (Vector-add: generate result[i] from arr1[i])

Maps in the ForkJoin Library (1 of 2)

- Many small tasks still helps with load balancing
 - Maybe not for vector-add, but definitely for compute-intensive maps
 - The forking is O(log n); theoretically other approaches are O(1)

```
class VectorAdd extends RecursiveAction {
  // input: arguments
  int lo; int hi; int[] res; int[] v1; int[] v2;
  protected void compute() {
    if(hi - lo < SEQUENTIAL CUTOFF) {</pre>
      for(int i=lo; i < hi; i++)</pre>
        res[i] = v1[i] + v2[i];
    } else {
      int mid = (hi+lo)/2;
      VectorAdd left = new VectorAdd(lo, mid, res, v1, v2);
      VectorAdd right= new VectorAdd (mid, hi, res, v1, v2);
      left.fork();
      right.compute();
      left.join();
```

Maps in the ForkJoin Library (2 of 2)

```
class VectorAdd extends RecursiveAction {
    // input: arguments
    int lo; int hi; int[] res; int[] v1; int[] v2;
    protected void compute() { ... } // override: implement "main"
}
```

```
static final ForkJoinPool POOL = new ForkJoinPool();
int[] add(int[] arr1, int[] arr2){
  assert (arr1.length == arr2.length);
  // Use ans as an "output argument" instead of looking at the
  // top-level compute()'s return value (which is void).
  int[] ans = new int[arr1.length];
  POOL.invoke(new VectorAdd(0, arr.length, ans, arr1, arr2);
  return ans;
```

Map and Reduce in the ForkJoin Library

- Map (vector-add)
 - VectorAdd extended RecursiveAction
 - Result was an output parameter; nothing returned from compute()
- Reduce (parallel-sum):
 - SumTask extended RecursiveTask
 - Result directly returned from compute()
- ... but it doesn't have to be this way
 - Map could've used RecursiveTask to return an array
 - Reduce could've used RecursiveAction and returned result as an output parameter

Maps and Reductions, Generally

- Maps and reductions are the "workhorses" of parallel programming
 - By far, the two most important and common patterns
 - Two more-advanced patterns in next lecture
- Goal:
 - Recognize when an algorithm can use maps and reductions
 - Use maps and reductions to describe (parallel) algorithms
- Result: programming them becomes "trivial"
 - Exactly like sequential for-loops seem second-nature nowadays

Digression: MapReduce on clusters

- You may have heard of Google's "map/reduce"
 - Or the open-source version, Hadoop
- Performs maps and reduces using many machines
 - System takes distributes input data and manages fault tolerance
 - You just write code to map one element and reduce elements to a combined result
- Separates how the recursive divide-and-conquer "frame" from the computation to perform
 - An old idea in higher-order functional programming, transferred to large-scale distributed computing
 - Complementary approach to declarative queries for databases

Lecture Outline

- Concurrency Frameworks in Java
 - Improving java.lang.Thread's constants
 - ForkJoin Library
- More examples of parallel programs
 - Common patterns: reduce and map
 - Non-array inputs **[®]** [©]
- Asymptotic Analysis for Fork/Join-style Parallelism
- ☆ Amdahl's Law: Is the half-empty or half-full?

Parallelized Computation on Trees

- Maps and reductions work on trees
 - Divide-and-conquer each child rather than array sub-ranges
 - Correct for unbalanced trees, but won't get much speed-up unless tree is balanced
- *Example*: minimum in an <u>unsorted</u>-but-balanced binary tree
 - O(log n) time given enough processors
- How to do the sequential cut-off?
 - Store number-of-descendants at each node (easy to maintain)
 - Or could approximate it with, e.g., AVL-tree height

Parallelized Computation on Linked Lists

- Can you parallelize maps or reduces over linked lists?
 - Example: Increment all elements of a linked list
 - *Example*: Sum all elements of a linked list

- Parallelism still helps with expensive per-element operations
- Once again, data structures matter!
 - Balanced trees allow faster access to all the data: O(log n) vs. O(n)
 - Trees and lists have the same flexibility compared to arrays (eg, inserting an item in the middle of the list)

Lecture Outline

- Concurrency Frameworks in Java
 - Improving java.lang.Thread's constants
 - ForkJoin Library
- More examples of parallel programs
 - Common patterns: reduce and map
 - Non-array inputs **[®]** [©]
- * Asymptotic Analysis for Fork/Join-style Parallelism

Analyzing Parallel Algorithms

- How to measure efficiency?
 - Want asymptotic bounds
 - Want an analysis that's independent of a specific number of processors
- Fork/Join parallelism gets *asymptotically optimal* runtime for the available number of processors
 - So we can analyze algorithms assuming this guarantee

Modelling Fork/Join Parallelism with DAGs

- * A program execution using can be modeled as a DAG
 - Nodes: Pieces of work
 - Edges: Source must finish before destination can start
 - Costs are in the nodes, not the edges!

A directed acyclic graph (DAG) is:

- A graph that is directed (edges have direction/arrows)
- And whose edges do not create a cycle (ability to trace a path that starts and ends at the same node)

- A fork makes two outgoing edges:
 - New thread
 - Continuation of current thread
- A join takes two incoming edges
 - The final node of the joined thread
 - The computation that just finished in the current thread

Our Simple Examples

- Maps and reductions use fork and join in a very basic way: as a (perfect) tree on top of an upside-down (perfect) tree
 - Constant amount of processing at each node: O(1)

Aside: More Interesting DAGs?

- The execution DAGs are not always this simple
 - Example: combining results might so expensive that we parallelize it. Then each node in the *inverted* tree would expand into another set of nodes for that parallel computation

Definitions: Work and Span

- * Let $\mathbf{T}_{\mathbf{P}}$ be the *running time* if there are **P** *rocessors* available
- Two important definitions:
 - Work: How long it would take with 1 processor (ie, T₁)
 - · Just "sequentialize" the recursive forking
 - Cumulative work that all processors must complete
 - Span: How long it would take with infinitely many processors (ie, T_{∞})
 - The hypothetical ideal; aka "critical path length" or "computational depth"
 - This is the longest "dependence chain" in the computation
 - Example: O(log n) for summing an array
 - Notice how having >n/2 processors doesn't reduce the span

Definitions Applied to Maps/Reductions (1 of 2)

- In this context, the span (T_{∞}) is:
 - The longest dependence-chain; i.e., longest 'branch' in parallel 'tree'
 - $T_{\infty} \in O(100)$) for simple maps and reductions

Definitions Applied to Maps/Reductions (2 of 2)

- * And the **work** (T_1) is:
 - The sum of runtime of all nodes in the DAG
 - $T_1 \in O($ () for simple maps and reductions

More Definitions: Speed-up

Span = T_{∞} = sum of runtime of all nodes in the DAG's *most-expensive path*

Work = T₁ = sum of runtime of all nodes in the DAG

- Speed-up using P processors: T₁ / T_P
 - Example: T₁ = 100 and T₄ = 50

- If speed-up = P as we vary P, we call it perfect linear speed-up
 - Example: T₁ = 100 and T₄ = 25

- Perfect linear speed-up means doubling P halves running time
 - Usually our goal, but hard to get in practice

Last Definition: Parallelism

Span = T_{∞} = sum of runtime of all nodes in the DAG's *most-expensive path*

Work = T₁ = sum of runtime of all nodes in the DAG

Speed-up = T_1 / T_p

- Parallelism: T₁ / T_∞ is the maximum possible speed-up; the point at which adding executors doesn't help
 - Depends on the span!

Р	Τ _Ρ	Speedup
1	T ₁ =100	-
2	T ₂ =50	2
10	T ₁₀ =25	4
50	T ₅₀ =22	4.54
100	T ₁₀₀ =20.5	4.87
œ	T _∞ =20	5

Parallel algorithms attempt to decrease span without increasing work too much

Obtaining Optimality for T_p

- \ast What is the asymptotically optimal $\mathbf{T}_{\mathbf{P}}$, for any value of **P**?
 - (as usual, we ignore memory-hierarchy issues; i.e. caching)
- * We know T_P is greater than or equal to: $T_1 / P (why?)$ Perfect linear speedup! $T_{\infty} (why?)$ span!

So an asymptotically optimal execution must be:

$O((T_1/P) + T_{\infty})$

First term dominates for small P, second for large P

Optimal T_P: Thanks, ForkJoin library!

- The ForkJoin library gives an *expected-time guarantee* of asymptotically optimal!
 - "Expected time" because it flips coins when scheduling
- To obtain this guarantee, our job as ForkJoin library users is to make all the nodes in our execution DAG *small-ish* and *approximately equal*
- In exchange, the library-writers:
 - Assign work to avoid idling; we can ignore scheduling issues
 - Keep constant factors low
 - Honor the expected-time optimal guarantee of $T_P = O((T_1/P) + T_{\infty})$ for your hardware