
CSE332, Spring 2021L17: Multithreading; Fork/Join

Multithreading; Fork/Join
Parallelism
CSE 332 Spring 2021

Instructor: Hannah C. Tang

Teaching Assistants:

Aayushi Modi Khushi Chaudhari Patrick Murphy

Aashna Sheth Kris Wong Richard Jiang

Frederick Huyan Logan Milandin Winston Jodjana

Hamsa Shankar Nachiket Karmarkar

CSE332, Spring 2021

gradescope.com/courses/256241

L17: Multithreading; Fork/Join

❖ Consider the problem of summing an array of integers:

❖ You have been so entranced by the divide-and-conquer technique that
you’ve decided to rewrite sum() using recursion

▪ Hint: MergeSort’s pseudocode:

2

void sum(int[] arr) {
int ans = 0;
for (int i = 0; i < arr.length; i++)

ans += arr[i];
}
return ans;

}

void mergeSort(int[] arr, int start, int end) {
if (start == end || start+1 == end) return;

int mid = (end – start)/2 + start;
mergeSort(arr, start, mid);
mergeSort(arr, mid, end);

merge(arr, start, mid, end);
}

CSE332, Spring 2021L17: Multithreading; Fork/Join

Announcements

❖ P2 CP2 due tomorrow night

❖ Parallelism “mini projects” released soon, due Tue May 18

▪ You can use the late days to overlap with quiz 3 … but we don’t
advise it

3

CSE332, Spring 2021L17: Multithreading; Fork/Join

Lecture Outline

❖ Shared Memory with Threads

❖ Concurrency Frameworks in Java

▪ Introducing java.lang.Thread

▪ Writing good parallel code

▪ Improving java.lang.Thread

• Asymptotically

• Constants

▪ ForkJoin Library

4

CSE332, Spring 2021L17: Multithreading; Fork/Join

Sequential vs Parallel vs. Concurrent

❖ Sequential: A cook (an executor) making dinner

❖ Parallelism: “Extra executors gets the job done faster!”

▪ Multiple cooks: One cook in charge of the gravy (and its onions),
another in charge of the stuffing (and its onions)

❖ Concurrency: “We need to manage a shared resource”

▪ Multiple cooks: One cook per dish, but only one cutting board

5

Parallelism: Use extra executors
to solve a problem faster

executors

work

Concurrency: Manage access to
shared resources

executors

resource

CSE332, Spring 2021L17: Multithreading; Fork/Join

Sequential: One Call Stack and One PC (1 of 2)

❖ We will assume shared memory with explicit threads

❖ Sequential: A running program has

▪ One program counter (“PC”): currently executing statement

▪ One call stack, with each stack frame holding its local variables

▪ Objects in the heap created by memory allocation (i.e., new)

▪ Static fields that are “global” to the entire program

6

CSE332, Spring 2021L17: Multithreading; Fork/Join

Sequential: One Call Stack and One PC (2 of 2)

7

Heap for allocated objects

pc=0x…

…

• Call stack with local variables
• Eg, numbers, null, references to

statics and heap
• PC determines current statement

Static objects

CSE332, Spring 2021L17: Multithreading; Fork/Join

Our Model: Shared Memory with Threads

❖ We will assume shared memory with explicit threads

❖ Sequential: A running program has

▪ One program counter (“PC”): currently executing statement

▪ One call stack, with each stack frame holding its local variables

▪ Objects in the heap created by memory allocation (i.e., new)

▪ Static fields that are “global” to the entire program

❖ Shared Memory with Threads: A running program has

▪ A set of threads, each with its own program counter and call stack

• But each thread cannot access to another thread’s local variables

▪ Threads implicitly share static fields and the heap (ie, objects)

• Communication via writing values to some shared location
8

CSE332, Spring 2021L17: Multithreading; Fork/Join

Sequential: One Call Stack and One PC

9

Heap for allocated objects

pc=0x…

…

• Call stack with local variables
• Eg, numbers, null, references to

statics and heap
• PC determines current statement

Static objects

CSE332, Spring 2021L17: Multithreading; Fork/Join

Shared Memory with Threads

10

pc=0x…

…

Multiple threads, each with its own
independent call stack and program
counter

pc=0x…

…

pc=0x…

…

Heap for allocated objects ,
shared by all threads

Static objects , shared by
all threads

CSE332, Spring 2021L17: Multithreading; Fork/Join

Shared Memory with Threads (if you’ve taken 351)

11

OS kernel [protected]

Stack1

Heap (malloc/free)

Read/Write Segments
.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

SP

PC

OS kernel [protected]

Stack1

Heap (malloc/free)

Read/Write Segments
.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

Stack2

SP1

SP2

PC1

PC2

CSE332, Spring 2021L17: Multithreading; Fork/Join

Other Parallelism and Concurrency Models

❖ We focus on shared memory, but other models exist and have
their own advantages

▪ Message-passing: Each thread has its own collection of objects.
Communication happens via explicit messages

• E.g.: cooks work in separate kitchens and mail around ingredients

▪ Dataflow: Programmers write programs in terms of a DAG. A node
executes after all of its predecessors in the graph

• E.g.: cooks wait to be handed results of previous steps

▪ Data parallelism: Primitives for things like “apply this function to
every element of an array in parallel”

• E.g.: cooks wait in their own kitchen for instructions and ingredients

12

CSE332, Spring 2021L17: Multithreading; Fork/Join

Our Requirements

❖ To write a shared-memory parallel program, we need new
primitives from our programming language or a library

▪ Ways to create and execute multiple things at once

• i.e. the parallel threads themselves!

▪ Ways for threads to share memory or retain sole ownership

• Often: just have threads contain references to the same objects

• How will we pass thread-specific arguments to it? Does the thread have its
own “private” (i.e., local) memory?

▪ Ways for threads to coordinate (a.k.a. synchronize)

• For now, all we need is a way for one thread to wait for another to finish

• (we’ll study other primitives when we get to concurrency)

13

CSE332, Spring 2021L17: Multithreading; Fork/Join

Lecture Outline

❖ Shared Memory with Threads

❖ Concurrency Frameworks in Java

▪ Introducing java.lang.Thread

▪ Writing good parallel code

▪ Improving java.lang.Thread

• Asymptotically

• Constants

▪ ForkJoin Library

14

CSE332, Spring 2021L17: Multithreading; Fork/Join

Introducing java.lang.Thread

❖ First, we’ll learn basic multithreading with java.lang.Thread

▪ Then we’ll discuss a different library (used in p3): ForkJoin

❖ To get a new thread to start executing something:

1. Define a subclass C of java.lang.Thread, and override its
run() method

2. Create an instance of class C

3. Call that object’s start() method

• start() creates a new thread and executes run() as its “main”

❖ What if we called C’s run() method instead?

▪ Normal method call executed in the current thread

15

CSE332, Spring 2021L17: Multithreading; Fork/Join

Our Running Example: Summing a Large Array

❖ Example: Sum all the elements of a very large array

❖ Idea: Have n threads simultaneously sum a portion of the array

a) Create n thread objects, each given a portion of the work

b) Call start() on each object to actually execute it in parallel

c) Wait for each thread to finish

d) Combine their answers (via addition) to obtain the final result

16

ans0 ans1 ans3

…

+
ans

CSE332, Spring 2021L17: Multithreading; Fork/Join

Attempt #1: Summing a Large Array

❖ (Warning: this is an inferior first approach)

❖ Have 4 threads simultaneously sum a portion of the array

a) Create 4 thread objects, each given a 1/4 of the work

b) Call start() on each object to actually execute it in parallel

c) Wait for each thread to finish

d) Combine their answers (via addition) to obtain the final result

17

ans0 ans1 ans3ans2

+
ans

CSE332, Spring 2021L17: Multithreading; Fork/Join

Attempt #1: Code (1 of 3)

❖ Because we override a no-arguments/no-result run, we use
member fields to communicate across threads

18

class SumThread extends java.lang.Thread {
// We pass arguments to the SumThread instance via
// member fields that are initialized in the constructor
int lo; // input; start index
int hi; // input; end index, exclusive
int[] arr; // input; the (shared) array

int ans = 0; // output; the final sum

SumThread(int[] a, int l, int h) { lo=l; hi=h; arr=a; }

@Override
public void run() { // must have this exact signature
int i;
for (i=lo; i < hi; i++)
ans += arr[i];

}
}

Step 1

Step 1

CSE332, Spring 2021L17: Multithreading; Fork/Join

Attempt #1: Code (2 of 3)

19

class SumThread extends java.lang.Thread {
int lo, int hi, int[] arr; // input: arguments
int ans = 0; // output: result
SumThread(int[] a, int l, int h) { … }
public void run(){ … } // override: implement “main”

}

int sum(int[] arr){ // can be a static method

int len = arr.length;

int ans = 0;

SumThread[] ts = new SumThread[4];

for (int i=0; i < 4; i++) { // do parallel computations

ts[i] = new SumThread(arr,i*len/4,(i+1)*len/4);

}

for (int i=0; i < 4; i++) { // combine partial results

ans += ts[i].ans;

}

return ans;

}

Step 2

CSE332, Spring 2021L17: Multithreading; Fork/Join

Attempt #1: Code (3 of 3)

20

class SumThread extends java.lang.Thread {
int lo, int hi, int[] arr; // input: arguments
int ans = 0; // output: result
SumThread(int[] a, int l, int h) { … }
public void run(){ … } // override: implement “main”

}

int sum(int[] arr){ // can be a static method

int len = arr.length;

int ans = 0;

SumThread[] ts = new SumThread[4];

for (int i=0; i < 4; i++) { // do parallel computations

ts[i] = new SumThread(arr,i*len/4,(i+1)*len/4);

ts[i].start(); // call start(), not run!!!

}

for (int i=0; i < 4; i++) { // combine partial results

ans += ts[i].ans;

}

return ans;

}

Step 3

CSE332, Spring 2021L17: Multithreading; Fork/Join

Introducing java.lang.Thread … part 2

❖ To get a new thread to start executing something:

1. Define a subclass C of java.lang.Thread, and override its
run() method

2. Create an instance of class C

3. Call that object’s start() method

1. start() creates a new thread and executes run() as its “main”

❖ To finish the threads’ computation:

4. Wait for each thread to finish using join()

5. Optionally: combine their answers to obtain the final result

21

CSE332, Spring 2021L17: Multithreading; Fork/Join

Attempt #2: Code

22

class SumThread extends java.lang.Thread {
int lo, int hi, int[] arr; // input: arguments
int ans = 0; // output: result
SumThread(int[] a, int l, int h) { … }
public void run(){ … } // override: implement “main”

}

int sum(int[] arr){ // can be a static method

int len = arr.length;

int ans = 0;

SumThread[] ts = new SumThread[4];

for (int i=0; i < 4; i++) { // do parallel computations

ts[i] = new SumThread(arr,i*len/4,(i+1)*len/4);

ts[i].start(); // call start(), not run!!!

}

for (int i=0; i < 4; i++) { // combine partial results

ts[i].join(); // wait for thread to finish

ans += ts[i].ans;

}

return ans;

}

Step 1

Step 1

Step 2

Step 3

Step 4

Step 5

CSE332, Spring 2021L17: Multithreading; Fork/Join

join(): Our “wait” method for Threads

❖ Framework implements functionality you couldn’t on your own

▪ E.g.: start, which creates a new thread

❖ You “fill in the blanks” for the framework

▪ E.g.: we implement run(), telling Java what to do in the thread

❖ Something else you can’t implement: thread coordination

▪ So it also provides the join() method!

▪ join() blocks the caller until/unless the thread instance is done
executing (i.e.: the call to run() finishes)

23

CSE332, Spring 2021L17: Multithreading; Fork/Join

Incidentally …

❖ This code has a compile error because join may throw
java.lang.InterruptedException

▪ In basic parallel code, should be fine to catch-and-exit

24

int sum(int[] arr){ // can be a static method

int len = arr.length;

int ans = 0;

SumThread[] ts = new SumThread[4];

for (int i=0; i < 4; i++) { // do parallel computations

ts[i] = new SumThread(arr,i*len/4,(i+1)*len/4);

ts[i].start(); // call start(), not run!!!

}

for (int i=0; i < 4; i++) { // combine partial results

ts[i].join(); // wait for thread to finish

ans += ts[i].ans;

return ans;

}

CSE332, Spring 2021L17: Multithreading; Fork/Join

Where is the Shared Memory? Local Memory?

❖ Our program (implicitly!) shares memory

▪ lo & hi are inputs: written by “main” thread, read by helper thread

▪ arr reference also an input, but its referred array was shared

▪ ans is an output: written by helper thread, read by “main” thread

❖ Our program also has thread-local memory

▪ Each SumThread has a counter it doesn’t share with other threads

25

CSE332, Spring 2021L17: Multithreading; Fork/Join

Summing a Large Array: Shared Memory

26

Heap for allocated objects,
shared by all threads

pc=0x…

…

Multiple threads, each with its own
independent call stack and program
counter

Static objects, shared by
all threads

lo

hi

arr

ans

pc=0x…

…

lo

hi

arr

ans

pc=0x…

…

lo

hi

arr

ans

arr

CSE332, Spring 2021L17: Multithreading; Fork/Join

join()ing Forces Against Race Conditions

❖ Our program (implicitly!) shares memory

▪ ans is an output: written by helper thread, read by “main” thread

❖ When using shared memory, you must avoid race conditions

▪ If “main” thread didn’t join() before using ts[i].ans, result is
undefined!

▪ While studying parallelism (now), we’ll stick with join

▪ With concurrency (later), we will learn other ways to synchronize

27

CSE332, Spring 2021L17: Multithreading; Fork/Join

Lecture Outline

❖ Shared Memory with Threads

❖ Concurrency Frameworks in Java

▪ Introducing java.lang.Thread

▪ Writing good parallel code

▪ Improving java.lang.Thread

• Asymptotically

• Constants

▪ ForkJoin Library

28

CSE332, Spring 2021L17: Multithreading; Fork/Join

Issues with Our Earlier Approach (1 of 3)

1. Want code to be portable and efficient across platforms

▪ So at the very very least, parameterize by the number of threads

29

int sum(int[] arr, int numTs){

int len = arr.length;

int chunkLen = arr.length/numTs;

int ans = 0;

SumThread[] ts = new SumThread[numTs];

for(int i=0; i < numTs; i++) {

ts[i] = new SumThread(arr, i*chunkLen,(i+1)*chunkLen);

ts[i].start();

}

for(int i=0; i < numTs; i++) {

ts[i].join();

ans += ts[i].ans;

}

return ans;

}

CSE332, Spring 2021L17: Multithreading; Fork/Join

Issues with Our Earlier Approach (2 of 3)

2. Want to use only executors “available to you now”

▪ Executors used by other programs or threads aren’t available!

• Maybe caller is also using parallelism?

• Number of available cores changes even while your threads run

▪ E.g.: if you have 3 available executors and using 3 threads would
take time X, then creating 4 threads would take time 1.5X

• Example: 12 units of work, 3 executors

– Dividing work into 3 chunks will take 4 units of time

– Dividing work into 4 chunks will take 3*2 units of time

30

// numThreads == numExecutors is bad
// if some are needed for other things
int sum(int[] arr, int numTs){
…

}

CSE332, Spring 2021L17: Multithreading; Fork/Join

Issues with Our Earlier Approach (3 of 3)

3. In general, subproblems take different amounts of time

▪ Sometimes drastically different!

▪ If we create 100 threads but one chunk takes much much longer,
we won’t get a ~100x speedup

• This is called a load imbalance

▪ E.g.: apply f() to array elements, but f() is slower for some elts

• f() checks if the element is prime?

31

CSE332, Spring 2021L17: Multithreading; Fork/Join

A Better Approach: Smaller Chunks

❖ The solution: cut up our problem into many small chunks

▪ We want far more chunks than the number of executors!

▪ … but this will require changing our algorithm

1. Portable? Yes! (Substantially) more chunks than executors

2. Adapts to Available executors? Yes! Hand out chunks as you go

3. Load Balanced? Yes(ish)! Variation is smaller if chunks are small

32

ans0 ans1 ansn
…

+
ans

CSE332, Spring 2021L17: Multithreading; Fork/Join

Lecture Outline

❖ Shared Memory with Threads

❖ Concurrency Frameworks in Java

▪ Introducing java.lang.Thread

▪ Writing good parallel code

▪ Improving java.lang.Thread

• Asymptotically

• Constants

▪ ForkJoin Library

33

CSE332, Spring 2021L17: Multithreading; Fork/Join

A Better Approach: Abandoning java.lang.Thread

❖ For this specific problem (and for p3), the constants for Java’s
built-in thread framework are not great

❖ Plus, there’s complexity in Java’s Thread framework that
confuse rather than illuminate

34

CSE332, Spring 2021L17: Multithreading; Fork/Join

Naïve Thread Creation/Joining (1 of 2)

❖ Suppose we create 1 thread to process 1000-element chunks

❖ “Combine results” step has arr.length/1000 additions

• Ө(N) to combine!

• Previously, we had only 4 pieces (Ө(1) to combine)

• Will a Ө(N) algorithm to create threads/combine results be a
bottleneck?

35

int sum(int[] arr){
…
int numThreads = arr.length / 1000;
SumThread[] ts = new SumThread[numThreads];
…

}

CSE332, Spring 2021L17: Multithreading; Fork/Join

Naïve Thread Creation/Joining (2 of 2)

❖ Yes! The combining has now become a bottleneck

❖ The calls to run() can execute in parallel, but combining
intermediate results is still sequential!

36

+

+

+
+

+

+

+

CSE332, Spring 2021L17: Multithreading; Fork/Join

Smarter Thread Creation/Joining: Divide and Conquer!

❖ Divide and Conquer:

▪ “Grows” the number of threads to fit the problem

▪ Uses parallelism for the recursive calls and combining

❖ This style of parallel programming is called “fork/join”

37

+
+

+

+ + +
+

CSE332, Spring 2021L17: Multithreading; Fork/Join

Smarter Thread Creation/Joining with Fork/Join

❖ Fork/Join Phases:

1. Divide the problem

• Start with full problem at root

• Make two new threads, halving the problem, until size is at cutoff

2. Combine answers as we return from recursion

38

+
+

+

+ + +
+

+ + +

Make new thread Make new thread Make new thread Make new thread

Make new thread Make new thread

Make new thread

CSE332, Spring 2021L17: Multithreading; Fork/Join

class SumThread extends java.lang.Thread {

// … member fields and constructors elided …

public void run() { // override: implement “main”

if(hi – lo < SEQUENTIAL_CUTOFF) {

// Just do the calculation in this thread

for (int i=lo; i < hi; i++)

ans += arr[i];

}

else {

// Create two new threads to calculate the left and right sums

SumThread left = new SumThread(arr, lo, (hi+lo)/2);

SumThread right= new SumThread(arr, (hi+lo)/2, hi);

left.start();

right.start();

// Combine their results

left.join(); // don’t move this up a line (why?)

right.join();

ans = left.ans + right.ans;

}

}

}

Fork/Join-style Parallelism (1 of 3)

39

CSE332, Spring 2021L17: Multithreading; Fork/Join

Fork/Join-style Parallelism (2 of 3)

❖ The computation and the result-combining are both in parallel

▪ Using recursive divide-and-conquer makes this natural

▪ Easier to write and more efficient asymptotically!

40

int sum(int[] arr) {

SumThread t = new SumThread(arr, 0, arr.length);// just 1 obj since

t.run(); // we don’t need

return t.ans; // parallelism to

} // start recursion

class SumThread extends java.lang.Thread {

int lo, int hi, int[] arr; // input: arguments

int ans = 0; // output: result

SumThread(int[] a, int l, int h) { … }

public void run(){ … } // override: implement “main”

}

CSE332, Spring 2021L17: Multithreading; Fork/Join

Fork/Join-style Parallelism (3 of 3)

❖ What’s up with the sequential cutoff?

▪ QuickSort and MergeSort switch to InsertionSort because “the
constants are better”

▪ Similarly, Fork/Join-style parallelism switches to sequential execution
because “the constants are better”

▪ In sorting, we said that the recursive call was “expensive”; in
parallelism, it’s the thread creation/destruction

• In both cases, it’s the setup/teardown overhead!

41

CSE332, Spring 2021L17: Multithreading; Fork/Join

Fork/Join-style Parallelism Really Works!

❖ Key idea is parallelizing thread-creation and result-combining

▪ If enough executors, runtime is height of the tree: O(log n)

• Optimal, and exponentially faster than sequential O(n)

▪ Relies on operations being associative (like +)

❖ We’ll write all our parallel algorithms in this style

▪ But using a special library engineered for this style

42

+
+

+

+ +
+

+ + +

Make new thread Make new thread Make new thread Make new thread

Make new thread Make new thread

Make new thread

