YA UNIVERSITY of WASHINGTON L15: Beyond Comparison Sorts CSE332, Spring 2021

Beyond Comparison Sorts; Intro

to Multithreading
CSE 332 Spring 2021

Instructor: Hannah C. Tang

Teaching Assistants:

Aayushi Modi Khushi Chaudhari Patrick Murphy
Aashna Sheth Kris Wong Richard Jiang
Frederick Huyan Logan Milandin Winston Jodjana
Hamsa Shankar Nachiket Karmarkar

W UNIVERSITY of WASHINGTON L16: Beyond Comparison Sorts CSE332, Spring 2021

llII grad e S Cop e gradescope.com/courses/256241

« A binary tree of height h has at most how many leaves?
L <

« A binary tree with L leaves has height at least:
h 2

« A decision tree has how many leaves:

YA UNIVERSITY of WASHINGTON L15: Beyond Comparison Sorts CSE332, Spring 2021

Announcements

« B f B No quiz this week! B f S

+ Just one checkpoint ©

YA UNIVERSITY of WASHINGTON L15: Beyond Comparison Sorts CSE332, Spring 2021

Lecture Outline

« Comparison-based Sorting
® Theoretical lower bound

+ Beyond Comparison Sorts
= BucketSort

= RadixSort

<« Sorting Conclusion

« Changing Another Major Assumption
® Definitions: Parallelism vs Concurrency

YA UNIVERSITY of WASHINGTON L15: Beyond Comparison Sorts CSE332, Spring 2021

A Different View of Sorting

« Assume we have n elements, none are equal (ie, no duplicates)
= n! permutations (possible orderings) of the elements. For n=3

a<b<c a<c<b b<a<c b<c<a c<a<b c<b<a

« Assume an “OptimalSort”

" Instead of describing how it works, we’ll describe what it knows and
when it knows it

= Starts “knowing nothing”; “anything is possible”

" Each binary:a < borb < acomparison gains information,
eliminating some possibilities
« Each comparison eliminates (at most) half of remaining possibilities

" |In the end, narrows down to a single possibility

YA UNIVERSITY of WASHINGTON L15: Beyond Comparison Sorts CSE332, Spring 2021

Representing Comparison Sorts sl
a<b<c I b<a<c
a<c<b b<c<a
EX L 4 1 c<a<b c<b<a
et’s represent the§e binary e .
comparisons as a binary tree! acbec| [Eea%h beacc| [eebes
a<c<b b<c<a
biﬁ/\gfc c</\>a

a<b<c a<c<b b<c<a b<ac<c

+ Called a Decision Tree
= Nodes contain “set of remaining possible orderings”
® The root contains all possible orderings; anything is possible
" The leaves contain exactly one specific ordering
= Edges are “answers from a comparison”

We are not actually building the tree; it’s what our proof uses to
represent “the most the algorithm could know so far”

YA UNIVERSITY of WASHINGTON

One Decision Tree for n=3

L15: Beyond Comparison Sorts

a<b<c b<cx<ay,
a<c<b, c<a<hb,

CSE332, Spring 2021

a<b a>b
b<a<c c<bx<a
a<b<c b<a<c
a<c<b b<c<a
c<a<b c<b<a

ai/\n

a<b<c
a<c<b

c<a<b

biQ//A\\ch

a<b<c a<c<b

b<c<a

big///A\\\\g>c

b<a<c
b<c<a

Ci}///\\\ﬁfa

b<a<c

c<b<a

* The leaves contain all the possible orderings of a, b, ¢
« Adifferent algorithm would lead to a different tree

YA UNIVERSITY of WASHINGTON L15: Beyond Comparison Sorts CSE332, Spring 2021

Another Decision Tree for n=3

a<b<c b<cx<ay,
a<c<b, c<a<hb,

<b a>b
@ b<a<c c<bx<a
a<b<c (b<a<c
a<c<b b<c<a
c<a<b c<b<a
ai9///\\\<:c bi}///m\\\Q:c
a<b<c §c<a<b§ w b<a<c c<b<a
a<c<b Lssssmn@EnEEnE = b<c<a
bi9//m\\ch b>c ca?//A\\ifa
a<b<c a<c<b c<a<b §b<c<a§ b<a<c
a>b{
U\(W‘@C€3SO«
LompatsoN psesa 8

YA UNIVERSITY of WASHINGTON L15: Beyond Comparison Sorts CSE332, Spring 2021

What the Decision Tree Tells Us

« Because any order is possible, any algorithm needs to ask
enough questions to produce all n! leaves (ie, orderings)

= Each answer/ordering may lead to a different leaf
= So the binary tree must be big enough to have n! leaves

« Running any algorithm on any input will at best correspond to
a root-to-leaf path in some decision tree with n! leaves
® Path length is the number of comparison operations needed

® So no algorithm can have worst-case running time better than the
height of a tree with n! leaves

- Because the worst-case number-of-comparisons for an algorithm is an input
that yields to a longest path in algorithm’s decision tree

YA UNIVERSITY of WASHINGTON L15: Beyond Comparison Sorts CSE332, Spring 2021

Lower Bound on Height (1 of 2)

« A binary tre%\of height h has at most how many leaves?

L < A

« A binary tree with L leaves has height at least:

hz_]p_ﬁzL

[

+ The decision tree has how many leaves: /Lo

+ So the decision tree has height:
h > kg, N
J"

10

YA UNIVERSITY of WASHINGTON L15: Beyond Comparison Sorts CSE332, Spring 2021

Lower Bound on Height (2 of 2)

+ The height of a binary tree with L leaves is at least log, L

« So the height of our decision tree, h:

h >log, (n!) property of binary trees
=log, (n*(n-1)*(n-2)...(2)(1)) definition of factorial
=log, n +log, (n-1) + ... +log, 1 property of logarithms
> log, n +log, (n-1) + ... + log, (n/2) keep first n/2 terms
> (n/2) log, (n/2) each of the n/2 terms

left is > log2 (n/2)
=(n/2)(log, n - log, 2) property of logarithms
=(1/2)n log, n—(1/2)n arithmetic

“=“ Q) (nlog n)

12

YA UNIVERSITY of WASHINGTON L15: Beyond Comparison Sorts CSE332, Spring 2021

Lecture Outline

« Comparison-based Sorting
® Theoretical lower bound

+ Beyond Comparison Sorts
= BucketSort
= RadixSort

<« Sorting Conclusion

« Changing Another Major Assumption
® Definitions: Parallelism vs Concurrency

13

YA UNIVERSITY of WASHINGTON L15: Beyond Comparison Sorts CSE332, Spring 2021

BucketSort (a.k.a. BinSort)

« If all values to be sorted are known to be integers between 1
and K (or any small range),

= Create an array of size K, put each element in its bucket (a.ka. bin)

= |f data is only integers, can store count of how many times that
bucket has been used

« Output result via linear pass through array of buckets

count array e Example:

1 K=5

Input: (5,1,3,4,3,2,1,1,5,4,5)
Output: 1,1,1,2,3,3,4,4,5,5,5

What is the running time?
How did the model change?

nun|ipp|lwW|N

14

YA UNIVERSITY of WASHINGTON L15: Beyond Comparison Sorts CSE332, Spring 2021

Analyzing BucketSort

« Overall: O(n+K)
® Linear in n, but also linear in K

= O(n 1og n) doesn’ t apply because this is not a comparison sort

+ Good when range, K, is smaller (or not much larger) than n
= We don’t spend time doing lots of comparisons of duplicates!

« Bad when K is much larger than n
= Wasted space; wasted time during final linear O(K) pass

15

YA UNIVERSITY of WASHINGTON L15: Beyond Comparison Sorts CSE332, Spring 2021

BucketSort with Data

« Most real lists aren’t just #'s; we have data too
= Make each bucket is a list (say, linked list)

" To add to a bucket, place at end O(1) (keep pointer to last element)
e Example: movie ratings (1=bad, ... 5=excellent)
e Input=
5: Citizen Kane
3: Harry Potter movies
1: Star Wars |

count array 5: Star Wars IV
e Qutput= Star Wars I, Harry Potter movies, Citizen Kane, Star Wars IV
1 —>Star Wars IV
2
3 —1> Harry Potter
4
5 —1}> Citizen Kane—>Star Wars IV

YA UNIVERSITY of WASHINGTON L15: Beyond Comparison Sorts CSE332, Spring 2021

Lecture Outline

« Comparison-based Sorting
® Theoretical lower bound

+ Beyond Comparison Sorts
= BucketSort
= RadixSort

<« Sorting Conclusion

+ Changing Another Major Assumption
® Definitions: Parallelism vs Concurrency

17

YA UNIVERSITY of WASHINGTON L15: Beyond Comparison Sorts

RadixSort

+ Radix = “the base of a number system”
= Examples will use 10 because we are used to that

" Implementations may use larger numbers
« For example, for ASCII strings, might use 128

+ |ldea:

= Bucket sort on one digit at a time
« Number of buckets = radix

- Starting with /east significant digit, sort with Bucket Sort
- Keeping sort stable

® Do one pass per digit

<« Invariant: After k passes, the last k digits are sorted

+ Aside: Origins go back to the 1890 U.S. census

CSE332, Spring 2021

18

CSE332, Spring 2021

W UNIVERSITY of WASHINGTON

L15: Beyond Comparison Sorts

RadixSort: Example (1 of 6)

R

Input:

333
143
591
65

332
491

First pass:

1.
2.

BucketSort by ones digit
Iterate thru and collect into a list
List is sorted by first digit

19

W UNIVERSITY of WASHINGTON

L15: Beyond Comparison Sorts

RadixSort: Example (2 of 6)

Input:

491

333
143
591
65

332
491

143

First pass:

1.
2.

BucketSort by ones digit
Iterate thru and collect into a list
List is sorted by first digit

CSE332, Spring 2021

Order is now:

591
491
332
333
143
65

501 332 333 65

20

W UNIVERSITY of WASHINGTON L16: Beyond Comparison Sorts CSE332, Spring 2021

llII gr ad e S Cop e gradescope.com/courses/256241

— ~
/
501 332 333 65

491 143
Input: 333 Second pass: Order is now:
143 1. BucketSort @git, stably
591
65
332

491

21

W UNIVERSITY of WASHINGTON L15: Beyond Comparison Sorts CSE332, Spring 2021

0 |12l e s e 7 s]9
501 332 333 65
491 143
o123l s el 7]s]o
332 143 65 591

333 491
Input: 333 Second pass: Order is now:
143 1. BucketSort by tens digit, stably 332
333
591 Notice: if we chop off the 100’s place, 143
65 these are now sorted 65
332 591

491 491

22

CSE332, Spring 2021

W UNIVERSITY of WASHINGTON

0 |12 03 e s 6 7 s]9
332 143 O65 591

Input:

333
143
591
65

332
491

L15: Beyond Comparison Sorts

Third pass:

1.

BucketSort by hundreds digit, stably

Order is now:

333 491

23

W UNIVERSITY of WASHINGTON L15: Beyond Comparison Sorts CSE332, Spring 2021

65 143 491

333 591

Input: 333 Third pass: Order is now:
143 1. BucketSort by hundreds digit, stably 65

591 143

B only 3 digits; we’re done! & 332

65 333

332 491

591

491

24

YA UNIVERSITY of WASHINGTON L15: Beyond Comparison Sorts CSE332, Spring 2021

Analysis of Radix Sort

+ Performance depends on:
" |[nput size: n
= Number of buckets = Radix: K
- e.g. Base 10 #: 10; binary #: 2; Alpha-numeric char: 62
= Number of passes = “Digits”: P
- e.g. Ages of people: 3; Phone #: 10; Person’s name: ?

+ Work per pass is 1 BucketSort: D(l(Jr(\\/

« Total work is ©< P- CK+(\>>

25

YA UNIVERSITY of WASHINGTON L15: Beyond Comparison Sorts CSE332, Spring 2021

Comparison to Comparison Sorts

+ Compared to comparison sorts, radix sorts are sometimes a
win, but often not

« Example: Strings of English letters up to length 15
= Approximate run-time: 15*(52 + n)
® This is less than n log n only if n > 33,000

= Of course, cross-over point depends on constant factors of the
implementations plus P and B

« And radix sort can have poor locality properties

« Not really practical for many classes of keys
= Strings: Lots of buckets

26

YA UNIVERSITY of WASHINGTON L15: Beyond Comparison Sorts CSE332, Spring 2021

Lecture Outline

« Comparison-based Sorting
® Theoretical lower bound

+ Beyond Comparison Sorts
= BucketSort
= RadixSort

+ Sorting Conclusion

+ Changing Another Major Assumption
® Definitions: Parallelism vs Concurrency

27

YA UNIVERSITY of WASHINGTON L15: Beyond Comparison Sorts CSE332, Spring 2021

Features of Sorting Algorithms

+ In-place

= Sorted items occupy the same space as the original items. (No
copying required, only O(1) extra space if any.)

« Stable

® Jtems in input with the same value end up in the same order as when
they began.

28

YA UNIVERSITY of WASHINGTON L15: Beyond Comparison Sorts CSE332, Spring 2021

Sorting: Summary (1 of 3)

+ Simple O(n?) sorts can be fastest for small n
= SelectionSort, InsertionSort:

« The latter is linear for mostly-sorted!
« Good for “below a cut-off” to help divide-and-conquer sorts

+ “Fancy” O(n 1log n) sorts
= HeapSort: not parallelizable
= MergeSort: works as external sort

= QuickSort: O(n?) in worst-case; cost of comparisons/copies often
makes it fastest

29

YA UNIVERSITY of WASHINGTON

L15: Beyond Comparison Sorts

CSE332, Spring 2021

Sorting : Summary (2 of 3)

+ Q (n 1log n) is worst-case and average lower-bound for sorting
by comparisons

+ Non-comparison sorts

= Bucket sort good for small number of key values
= Radix sort uses fewer buckets and more phases

<+ Best way to sort? It depends!

30

W UNIVERSITY of WASHINGTON

L15: Beyond Comparison Sorts

Sorting: Summary (3 of 3)

Best- Worst- Randomized In- Stable?
Case Case Case Place? :

InsertionSort

SelectionSort

In-Place
HeapSort

MergeSort

QuickSort

(1st-element pivot +
3-pass partition)

QuickSort
(Median-of-three
pivot + Hoare
partition + cutoffs)

BucketSort

RadixSort

O(N)

O(N?)

O(N)

O(N log N)

O(N log N)

Q(N)

O(N+K)

O(P(B+N))

O(N?)

O(N?)

O(N log N)

O(N log N)

O(N2?)

O(N?)

O(N+K)

O(P(B+N))

O(N?)

O(N?)

O(N log N)

O(N log N)

O(N log N)

O(N log N)

O(N+K)

O(P(B+N))

Yes

Yes

Yes

No

No

Yes

No

No

Yes

No

No

Yes

Yes

No

Yes

Yes

CSE332, Spring 2021

Fastest for small
or partially-
sorted input

Slow in practice

Fastest stable
sort

>=2x slower than
MergeSort

Fastest
comparison sort

31

YA UNIVERSITY of WASHINGTON L15: Beyond Comparison Sorts CSE332, Spring 2021

Lecture Outline

« Comparison-based Sorting
® Theoretical lower bound

+ Beyond Comparison Sorts
= BucketSort
= RadixSort

<« Sorting Conclusion

« Changing Another Major Assumption
® Definitions: Parallelism vs Concurrency

32

YA UNIVERSITY of WASHINGTON L15: Beyond Comparison Sorts CSE332, Spring 2021

Sequential Programming: A Major Assumption
+ So far, most / all of your study has assumed:

One thing happened at a time
+ This is sequential programming: everything in one sequence

« Removing this assumption creates major challenges &
opportunities

® Programming: How to divide work among threads of execution and
coordinate (synchronize) among them

= Algorithms: How to utilize parallel activity to gain speed
« More throughput: work done per unit time

= Data structures: May need to support concurrent access

- ie, multiple threads operating on data at the same time

33

YA UNIVERSITY of WASHINGTON L15: Beyond Comparison Sorts CSE332, Spring 2021

A Simplified View of Computing History

*
0.0

7
0.0

7
0.0

Writing correct and efficient multithreaded code is much more
difficult than for sequential code

= Especially in common languages like Java and C

Roughly 1980-2005, computers got exponentially faster

= Sequentially-written programs doubled in speed every couple years
= So there was little motivation to write non-sequential code

But nobody knows how to continue making computers faster
® Increasing clock rate generates too much heat
= Relative cost of memory access is too high

But we can continue “making wires exponentially smaller”
(“Moore’s ‘Law’”)

= Result: multiple processors on the same chip (“multicore”)

34

YA UNIVERSITY of WASHINGTON L15: Beyond Comparison Sorts CSE332, Spring 2021

What to do with Multiple Processors/Cores?

« Next computer you buy will likely have 4 cores C{}
= Wait a few years and it will be 8, 16, 32, ... &

® The chip companies have decided to do this (not a “law”) Spec‘re,

< What can you do with these processors?

= Run multiple, totally different, programs at the same time
- Already do that? It certainly appears that way, thanks to time-slicing

= Run multiple, possibly different, tasks at the same time in one single
program

« Our focus for the next few lectures; it’s more difficult!

 Requires rethinking everything from asymptotic complexity to how to
implement data-structure operations

35

YA UNIVERSITY of WASHINGTON L15: Beyond Comparison Sorts

Lecture Outline

« Comparison-based Sorting
® Theoretical lower bound

+ Beyond Comparison Sorts
= BucketSort
= RadixSort

« Changing Another Major Assumption
= Definitions: Parallelism vs Concurrency

« Shared Memory with Threads

CSE332, Spring 2021

36

YA UNIVERSITY of WASHINGTON L15: Beyond Comparison Sorts CSE332, Spring 2021

Parallelism vs. Concurrency

+ Note: Terms not yet standard but precision here is essential
® (many programmers confuse these concepts)

Parallelism: Use extra executors Concurrency: Manage access to
to solve a problem faster shared resources
work _.7 executors
executors <~ resource

« There is some connection (confusion!) between them:
= We commonly use threads for both parallelism and concurrency

= |f parallel computations access shared resources, the concurrency
needs to be managed

37

YA UNIVERSITY of WASHINGTON L15: Beyond Comparison Sorts CSE332, Spring 2021

Parallelism vs Concurrency: An Analogy

+ Sequential: A program is like a cook making dinner
® One cook: Makes gravy and stuffing one at a time!

>l (@)
V%Ci‘ melism: “Extra executors gets the job done faster!”
= Multiple cooks: One cook in charge of the gravy (and its onions),
another in charge of the stuffing (and its onions)
+ Increase throughput via simultaneous execution!
- Too many cooks means you spend all your time coordinating

« Concurrency: “We need to manage a shared resource”

® Multiple cooks: One cook per dish, but only one cutting board
- Correctness: Don’t want spills or ingredient mixing
- Efficiency: Who should use the boards and in what order?

38

Y UNIVERSITY of WASHINGTON L15: Beyond Comparison Sorts CSE332, Spring 2021

Parallelism Example

+ Parallelism: Using extra executors to solve a problem faster
+ Pseudocode for summing an array:

® No such ‘FORALL’ construct, but we’ll see something similar

= Bad style, but with 4 processors may get roughly 4x speedup

int sum(int[] arr) {
int[] res = new int[4];
int len = arr.length;
FORALL (i=0; i < 4; i++) { // parallel iterations
res[i1] = sumRange (arr, i*len/4, (i+1)*len/4);
}

return res[0] + res[l] + res[2] + res[3]:;

}
int sumRange (int[] arr, int lo, int hi) {
int result = 0;
for (int j=lo; j < hi; Jj++)
result += arr[Jj];
return result;

39

