
CSE332, Spring 2021L15: Beyond Comparison Sorts

Beyond Comparison Sorts; Intro
to Multithreading
CSE 332 Spring 2021

Instructor: Hannah C. Tang

Teaching Assistants:

Aayushi Modi Khushi Chaudhari Patrick Murphy

Aashna Sheth Kris Wong Richard Jiang

Frederick Huyan Logan Milandin Winston Jodjana

Hamsa Shankar Nachiket Karmarkar

CSE332, Spring 2021

gradescope.com/courses/256241

L16: Beyond Comparison Sorts

❖ A binary tree of height h has at most how many leaves?
L ≤ ______________

❖ A binary tree with L leaves has height at least:
h ≥ ______________

❖ A decision tree has how many leaves: _______

2

CSE332, Spring 2021L15: Beyond Comparison Sorts

Announcements

❖🎉🎉🎉 No quiz this week! 🎉🎉🎉

❖ Just one checkpoint ☺

3

CSE332, Spring 2021L15: Beyond Comparison Sorts

Lecture Outline

❖ Comparison-based Sorting

▪ Theoretical lower bound

❖ Beyond Comparison Sorts

▪ BucketSort

▪ RadixSort

❖ Sorting Conclusion

❖ Changing Another Major Assumption

▪ Definitions: Parallelism vs Concurrency

4

CSE332, Spring 2021L15: Beyond Comparison Sorts

A Different View of Sorting

❖ Assume we have n elements, none are equal (ie, no duplicates)

▪ n! permutations (possible orderings) of the elements. For n=3

❖ Assume an “OptimalSort”

▪ Instead of describing how it works, we’ll describe what it knows and
when it knows it

▪ Starts “knowing nothing”; “anything is possible”

▪ Each binary: a < b or b < a comparison gains information,
eliminating some possibilities

• Each comparison eliminates (at most) half of remaining possibilities

▪ In the end, narrows down to a single possibility

5

a < b < c a < c < b b < a < c b < c < a c < a < b c < b < a

CSE332, Spring 2021L15: Beyond Comparison Sorts

Representing Comparison Sorts

❖ Let’s represent these binary
comparisons as a binary tree!

❖ Called a Decision Tree

▪ Nodes contain “set of remaining possible orderings”

▪ The root contains all possible orderings; anything is possible

▪ The leaves contain exactly one specific ordering

▪ Edges are “answers from a comparison”

We are not actually building the tree; it’s what our proof uses to
represent “the most the algorithm could know so far”

6

CSE332, Spring 2021L15: Beyond Comparison Sorts

One Decision Tree for n=3

7

a < b < c, b < c < a,
a < c < b, c < a < b,
b < a < c, c < b < a

a < b < c
a < c < b
c < a < b

b < a < c
b < c < a
c < b < a

a < b < c
a < c < b

c < a < b

a < b < c a < c < b

b < a < c
b < c < a

c < b < a

b < c < a b < a < c

a < b a > b

a > ca < c

b < c b > c

b < c b > c

c < a c > a

• The leaves contain all the possible orderings of a, b, c
• A different algorithm would lead to a different tree

possible orders

actual order

CSE332, Spring 2021L15: Beyond Comparison Sorts

Another Decision Tree for n=3

8

a < b < c, b < c < a,
a < c < b, c < a < b,
b < a < c, c < b < a

a < b < c
a < c < b
c < a < b

b < a < c
b < c < a
c < b < a

a < b < c
a < c < b

c < a < b

a < b < c a < c < b

b < a < c
b < c < a

c < b < a

b < c < a b < a < c

a < b a > b

a > ca < c

b < c b > c

b < c

c < a c > ab > c

c < a < b

b < c < a

a > b

b > c

CSE332, Spring 2021L15: Beyond Comparison Sorts

What the Decision Tree Tells Us

❖ Because any order is possible, any algorithm needs to ask
enough questions to produce all n! leaves (ie, orderings)

▪ Each answer/ordering may lead to a different leaf

▪ So the binary tree must be big enough to have n! leaves

❖ Running any algorithm on any input will at best correspond to
a root-to-leaf path in some decision tree with n! leaves

▪ Path length is the number of comparison operations needed

▪ So no algorithm can have worst-case running time better than the
height of a tree with n! leaves

• Because the worst-case number-of-comparisons for an algorithm is an input
that yields to a longest path in algorithm’s decision tree

9

CSE332, Spring 2021L15: Beyond Comparison Sorts

Lower Bound on Height (1 of 2)

❖ A binary tree of height h has at most how many leaves?
L ≤ ______________

❖ A binary tree with L leaves has height at least:
h ≥ ______________

❖ The decision tree has how many leaves: _______

❖ So the decision tree has height:
h ≥ ______________

10

CSE332, Spring 2021L15: Beyond Comparison Sorts

Lower Bound on Height (2 of 2)

❖ The height of a binary tree with L leaves is at least log2 L

❖ So the height of our decision tree, h:

h  log2 (n!) property of binary trees

= log2 (n*(n-1)*(n-2)…(2)(1)) definition of factorial

= log2 n + log2 (n-1) + … + log2 1 property of logarithms

 log2 n + log2 (n-1) + … + log2 (n/2) keep first n/2 terms

 (n/2) log2 (n/2) each of the n/2 terms
left is  log2 (n/2)

= (n/2)(log2 n - log2 2) property of logarithms

= (1/2)n log2 n – (1/2)n arithmetic

“=“  (n log n)

12

CSE332, Spring 2021L15: Beyond Comparison Sorts

Lecture Outline

❖ Comparison-based Sorting

▪ Theoretical lower bound

❖ Beyond Comparison Sorts

▪ BucketSort

▪ RadixSort

❖ Sorting Conclusion

❖ Changing Another Major Assumption

▪ Definitions: Parallelism vs Concurrency

13

CSE332, Spring 2021L15: Beyond Comparison Sorts

BucketSort (a.k.a. BinSort)

❖ If all values to be sorted are known to be integers between 1
and K (or any small range),

▪ Create an array of size K, put each element in its bucket (a.ka. bin)

▪ If data is only integers, can store count of how many times that
bucket has been used

❖ Output result via linear pass through array of buckets

14

count array

1

2

3

4

5

• Example:

K=5

Input: (5,1,3,4,3,2,1,1,5,4,5)

Output: 1,1,1,2,3,3,4,4,5,5,5

What is the running time?
How did the model change?

CSE332, Spring 2021L15: Beyond Comparison Sorts

Analyzing BucketSort

❖ Overall: O(n+K)

▪ Linear in n, but also linear in K

▪ (n log n) doesn’ t apply because this is not a comparison sort

❖ Good when range, K, is smaller (or not much larger) than n

▪ We don’t spend time doing lots of comparisons of duplicates!

❖ Bad when K is much larger than n

▪ Wasted space; wasted time during final linear O(K) pass

15

CSE332, Spring 2021L15: Beyond Comparison Sorts

BucketSort with Data

❖ Most real lists aren’t just #’s; we have data too

▪ Make each bucket is a list (say, linked list)

▪ To add to a bucket, place at end O(1) (keep pointer to last element)

count array

1

2

3

4

5

• Example: movie ratings (1=bad, … 5=excellent)

• Input=

5: Citizen Kane

3: Harry Potter movies

1: Star Wars I

5: Star Wars IV

• Output= Star Wars I, Harry Potter movies, Citizen Kane, Star Wars IV

Star Wars IV

Harry Potter

Citizen Kane Star Wars IV

CSE332, Spring 2021L15: Beyond Comparison Sorts

Lecture Outline

❖ Comparison-based Sorting

▪ Theoretical lower bound

❖ Beyond Comparison Sorts

▪ BucketSort

▪ RadixSort

❖ Sorting Conclusion

❖ Changing Another Major Assumption

▪ Definitions: Parallelism vs Concurrency

17

CSE332, Spring 2021L15: Beyond Comparison Sorts

RadixSort

❖ Radix = “the base of a number system”

▪ Examples will use 10 because we are used to that

▪ Implementations may use larger numbers

• For example, for ASCII strings, might use 128

❖ Idea:

▪ Bucket sort on one digit at a time

• Number of buckets = radix

• Starting with least significant digit, sort with Bucket Sort

• Keeping sort stable

▪ Do one pass per digit

❖ Invariant: After k passes, the last k digits are sorted

❖ Aside: Origins go back to the 1890 U.S. census 18

CSE332, Spring 2021L15: Beyond Comparison Sorts

RadixSort: Example (1 of 6)

Input: 333

143

591

65

332

491

First pass:
1. BucketSort by ones digit

2. Iterate thru and collect into a list

• List is sorted by first digit

0 1 2 3 4 5 6 7 8 9

19

CSE332, Spring 2021L15: Beyond Comparison Sorts

RadixSort: Example (2 of 6)

Input: 333

143

591

65

332

491

First pass:
1. BucketSort by ones digit

2. Iterate thru and collect into a list

• List is sorted by first digit

591
491
332
333
143
65

Order is now:

0 1 2 3 4 5 6 7 8 9

591
491

332 333
143

65

20

CSE332, Spring 2021

gradescope.com/courses/256241

L16: Beyond Comparison Sorts

Input: 333

143

591

65

332

491

0 1 2 3 4 5 6 7 8 9

591
491

332 333
143

65

Second pass:
1. BucketSort by tens digit, stably

Order is now:

21

CSE332, Spring 2021L15: Beyond Comparison Sorts

Input: 333

143

591

65

332

491

22

0 1 2 3 4 5 6 7 8 9

332
333

143 65 591
491

Second pass:
1. BucketSort by tens digit, stably

Notice: if we chop off the 100’s place,
these are now sorted

332
333
143
65

591
491

Order is now:

0 1 2 3 4 5 6 7 8 9

591
491

332 333
143

65

CSE332, Spring 2021L15: Beyond Comparison Sorts

Input: 333

143

591

65

332

491

0 1 2 3 4 5 6 7 8 9

Third pass:
1. BucketSort by hundreds digit, stably

Order is now:

0 1 2 3 4 5 6 7 8 9

332
333

143 65 591
491

23

CSE332, Spring 2021L15: Beyond Comparison Sorts

Input: 333

143

591

65

332

491

0 1 2 3 4 5 6 7 8 9

65 143 332
333

491
591

Third pass:
1. BucketSort by hundreds digit, stably

🎉 Only 3 digits; we’re done!🎉

65
143
332
333
491
591

Order is now:

0 1 2 3 4 5 6 7 8 9

332
333

143 65 591
491

24

CSE332, Spring 2021L15: Beyond Comparison Sorts

Analysis of Radix Sort

❖ Performance depends on:

▪ Input size: n

▪ Number of buckets = Radix: K

• e.g. Base 10 #: 10; binary #: 2; Alpha-numeric char: 62

▪ Number of passes = “Digits”: P

• e.g. Ages of people: 3; Phone #: 10; Person’s name: ?

❖ Work per pass is 1 BucketSort: ___________

▪ Each pass is a BucketSort!

❖ Total work is _____________

▪ We do ‘P’ passes, each of which is a BucketSort!

25

CSE332, Spring 2021L15: Beyond Comparison Sorts

Comparison to Comparison Sorts

❖ Compared to comparison sorts, radix sorts are sometimes a
win, but often not

❖ Example: Strings of English letters up to length 15

▪ Approximate run-time: 15*(52 + n)

▪ This is less than n log n only if n > 33,000

▪ Of course, cross-over point depends on constant factors of the
implementations plus P and B

• And radix sort can have poor locality properties

❖ Not really practical for many classes of keys

▪ Strings: Lots of buckets

26

CSE332, Spring 2021L15: Beyond Comparison Sorts

Lecture Outline

❖ Comparison-based Sorting

▪ Theoretical lower bound

❖ Beyond Comparison Sorts

▪ BucketSort

▪ RadixSort

❖ Sorting Conclusion

❖ Changing Another Major Assumption

▪ Definitions: Parallelism vs Concurrency

27

CSE332, Spring 2021L15: Beyond Comparison Sorts

Features of Sorting Algorithms

❖ In-place

▪ Sorted items occupy the same space as the original items. (No
copying required, only O(1) extra space if any.)

❖ Stable

▪ Items in input with the same value end up in the same order as when
they began.

28

CSE332, Spring 2021L15: Beyond Comparison Sorts

Sorting: Summary (1 of 3)

❖ Simple O(n2) sorts can be fastest for small n

▪ SelectionSort, InsertionSort:

• The latter is linear for mostly-sorted!

• Good for “below a cut-off” to help divide-and-conquer sorts

❖ “Fancy” O(n log n) sorts

▪ HeapSort: not parallelizable

▪ MergeSort: works as external sort

▪ QuickSort: O(n2) in worst-case; cost of comparisons/copies often
makes it fastest

29

CSE332, Spring 2021L15: Beyond Comparison Sorts

Sorting : Summary (2 of 3)

❖  (n log n) is worst-case and average lower-bound for sorting
by comparisons

❖ Non-comparison sorts

▪ Bucket sort good for small number of key values

▪ Radix sort uses fewer buckets and more phases

❖ Best way to sort? It depends!

30

CSE332, Spring 2021L15: Beyond Comparison Sorts

Sorting: Summary (3 of 3)
Best-
Case

Worst-
Case

Randomized
Case

In-
Place?

Stable? Notes

InsertionSort Θ(N) Θ(N2) Θ(N2) Yes Yes
Fastest for small

or partially-
sorted input

SelectionSort Θ(N2) Θ(N2) Θ(N2) Yes No

In-Place
HeapSort

Θ(N) Θ(N log N) Θ(N log N) Yes No Slow in practice

MergeSort Θ(N log N) Θ(N log N) Θ(N log N) No Yes
Fastest stable

sort

QuickSort
(1st-element pivot +

3-pass partition)

Θ(N log N) Θ(N2) Θ(N log N) No Yes
>=2x slower than

MergeSort

QuickSort
(Median-of-three

pivot + Hoare
partition + cutoffs)

Ω(N) O(N2) Θ(N log N) Yes No
Fastest

comparison sort

BucketSort Θ(N+K) Θ(N+K) Θ(N+K) No Yes

RadixSort Θ(P(B+N)) Θ(P(B+N)) Θ(P(B+N)) No Yes
31

CSE332, Spring 2021L15: Beyond Comparison Sorts

Lecture Outline

❖ Comparison-based Sorting

▪ Theoretical lower bound

❖ Beyond Comparison Sorts

▪ BucketSort

▪ RadixSort

❖ Sorting Conclusion

❖ Changing Another Major Assumption

▪ Definitions: Parallelism vs Concurrency

32

CSE332, Spring 2021L15: Beyond Comparison Sorts

Sequential Programming: A Major Assumption

❖ So far, most / all of your study has assumed:

One thing happened at a time

❖ This is sequential programming: everything in one sequence

❖ Removing this assumption creates major challenges &
opportunities

▪ Programming: How to divide work among threads of execution and
coordinate (synchronize) among them

▪ Algorithms: How to utilize parallel activity to gain speed

• More throughput: work done per unit time

▪ Data structures: May need to support concurrent access

• ie, multiple threads operating on data at the same time
33

CSE332, Spring 2021L15: Beyond Comparison Sorts

A Simplified View of Computing History

❖ Writing correct and efficient multithreaded code is much more
difficult than for sequential code

▪ Especially in common languages like Java and C

❖ Roughly 1980-2005, computers got exponentially faster

▪ Sequentially-written programs doubled in speed every couple years

▪ So there was little motivation to write non-sequential code

❖ But nobody knows how to continue making computers faster

▪ Increasing clock rate generates too much heat

▪ Relative cost of memory access is too high

❖ But we can continue “making wires exponentially smaller”
(“Moore’s ‘Law’”)

▪ Result: multiple processors on the same chip (“multicore”)
34

CSE332, Spring 2021L15: Beyond Comparison Sorts

What to do with Multiple Processors/Cores?

❖ Next computer you buy will likely have 4 cores

▪ Wait a few years and it will be 8, 16, 32, …

▪ The chip companies have decided to do this (not a “law”)

❖ What can you do with these processors?

▪ Run multiple, totally different, programs at the same time

• Already do that? It certainly appears that way, thanks to time-slicing

▪ Run multiple, possibly different, tasks at the same time in one single
program

• Our focus for the next few lectures; it’s more difficult!

• Requires rethinking everything from asymptotic complexity to how to
implement data-structure operations

35

CSE332, Spring 2021L15: Beyond Comparison Sorts

Lecture Outline

❖ Comparison-based Sorting

▪ Theoretical lower bound

❖ Beyond Comparison Sorts

▪ BucketSort

▪ RadixSort

❖ Changing Another Major Assumption

▪ Definitions: Parallelism vs Concurrency

❖ Shared Memory with Threads

36

CSE332, Spring 2021L15: Beyond Comparison Sorts

Parallelism vs. Concurrency

❖ Note: Terms not yet standard but precision here is essential

▪ (many programmers confuse these concepts)

❖ There is some connection (confusion!) between them:

▪ We commonly use threads for both parallelism and concurrency

▪ If parallel computations access shared resources, the concurrency
needs to be managed

37

Parallelism: Use extra executors
to solve a problem faster

executors

Concurrency: Manage access to
shared resources

executorswork

resource

CSE332, Spring 2021L15: Beyond Comparison Sorts

Parallelism vs Concurrency: An Analogy

❖ Sequential: A program is like a cook making dinner

▪ One cook: Makes gravy and stuffing one at a time!

❖ Parallelism: “Extra executors gets the job done faster!”

▪ Multiple cooks: One cook in charge of the gravy (and its onions),
another in charge of the stuffing (and its onions)

• Increase throughput via simultaneous execution!

• Too many cooks means you spend all your time coordinating

❖ Concurrency: “We need to manage a shared resource”

▪ Multiple cooks: One cook per dish, but only one cutting board

• Correctness: Don’t want spills or ingredient mixing

• Efficiency: Who should use the boards and in what order?

38

CSE332, Spring 2021L15: Beyond Comparison Sorts

Parallelism Example

❖ Parallelism: Using extra executors to solve a problem faster

❖ Pseudocode for summing an array:

▪ No such ‘FORALL’ construct, but we’ll see something similar

▪ Bad style, but with 4 processors may get roughly 4x speedup

39

int sum(int[] arr) {
int[] res = new int[4];
int len = arr.length;
FORALL (i=0; i < 4; i++) { // parallel iterations
res[i] = sumRange(arr, i*len/4,(i+1)*len/4);

}
return res[0] + res[1] + res[2] + res[3];

}

int sumRange(int[] arr, int lo, int hi) {

int result = 0;

for(int j=lo; j < hi; j++)

result += arr[j];

return result;

}

