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+ Recall this image from last lecture, describing MergeSort:
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» How many times ismergeSort () invoked for:
® this 8-element array?

= an n-element array? Assume that n is a power of 2 (ie, n = 2k for some k)

» Bonus: How many ways can you order {a, b, c}?
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Announcements

« Quiz 1 grades released; we’ll let regrade requests “cool off”
before attending to them

« P2 CP2 due next week (sorry for the confusion!)
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Lecture Outline

« Comparison-based Sorting
= Review

® Fanciest algorithm using Divide-and-Conquer: QuickSort
= External Sorting

" Theoretical lower bound

CSE332, Spring 2021
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Sorting with Divide and Conquer

« Two great sorting methods are divide-and-conquer!
= MergeSort: /__/\"_\
g i IR

- Sort the left half of the elements (recursively) //\ j
E j\

- Sort the right half of the elements (recursively)
Merge the two sorted halves into a sorted whole ) +
erge the two sorted halves into a sorted whole m@gw

= QuickSort:
« Pick a “pivot” element
- Partition elements into those less-than pivot and those greater-than pivot
- Sort the less-than elements (recursively)
- Sort the greater-than the elements (recursively)
- All done! Answer is [sorted-less-than] [pivot] [sorted-greater-than]

%aid@r\—/? \

|
| K/%L&“l’\

5



YA UNIVERSITY of WASHINGTON L15: QuickSort CSE332, Spring 2021

QuickSort vs MergeSort (1 of 2)

Different algorithms, same problem

« MergeSort: « QuickSort:
" Execution " Execution:

« Does its work “on the way up” + Does its work “on the way

—i.e., in the merge, after the down”
recursive call returns —i.e., in the partition, before the
recursive call

- Uses its auxiliary space very - Doesn’t need auxiliary space

effectively:

— Works well on linked lists
— Linear merges minimize disk

accesses
= Time: always O(n log n) = Runtime: O(n log n) in best
and randomized cases ©
Demo: https://docs.google.com/presentation/d/1h- R Bu( O(nZ) W@st-case ®
gS13kKWSKd 5gt2FPXLYigFY4ifSrBkKNFI3gZzRRw/present 6
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QuickSort vs MergeSort (2 of 2)

+ Asymptotic Runtime:

= QuickSort is O(n log n) in best and randomized cases, but O(n?)
worst-case

= MergeSort is always O(n log n)

« Constants Matter!

= QuickSort does fewer copies and more comparisons, so it depends
on the relative cost of these two operations

= Typically, cost of copies is higher so QuickSort really is the “quickest”
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Lecture Outline

« Comparison-based Sorting
" Review

® Fanciest algorithm using Divide-and-Conquer: QuickSort
= External Sorting

" Theoretical lower bound

CSE332, Spring 2021
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QuickSort Steps

1. Pick the pivot value(s)
= Any choice is correct; data will end up sorted
=  For efficiency, these value(s) ought to approximate the median

2. Partition all the values into:
a. The values less than the pivot(s)
b. The pivot(s)
C. Thevalues greater than the pivot(s)
d. ..Inlineartime? In-place? Stably?

3. Recursively QuickSort(A) and QuickSort(C)

¥ TA-DAI %>
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QuickSort Steps

3. Recursively QuickSort(A) and QuickSort(C)

10
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QuickSort Intuition: Set Partitioning

Select pivot value

Sy
Partition S
1
0 |13 |26 |31 |43 |57 75 | 81| 92 QuickSort(S;) and QuickSort(S,)
S
0 13 (26 [ 31 (43 | 57| 65| 75| 81 | 92 Presto! Sis sorted

[Weiss] 11
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Note: for the remainder of this

. section, our pivot-selection algorithm
Recu rSIVE Ca " (1 Of 3) is “first item in the subarray”

<« After partitioning on 5:

" 5isinits “correct place” (ie, where it’d be if the array were sorted)

5 3 2 1 7 8 4 6

= Can now sort two halves separately (eg, through recursive use of
partitioning)

12
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Recursive Call (2 of 3)

5

3 2 1 7 8 | 4 6

\
\
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=
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Recursive Call (3 of 3)

1 2 3 4 5 7 8 6

I I

1 2 3 4 6 7 8
I I 1T 1
1 2 4 6 8

14
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QuickSort Steps

1. Pick the pivot value(s)
= Any choice is correct; data will end up sorted
= For efficiency, these value(s) ought to approximate the median

3. Recursively QuickSort(A) and QuickSort(C)

15
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Pivot Selection: Pivot is the Median
partater™

— T(0) =T(1) = ¢, J/

T Tln) = 21(0/2) {e,1)

ﬁ ﬁ (partition is linear-time)
Same recurrence as
. . . MergeSort:

Only size 1 problems remain, so we’re done. O(n |Og n)

16
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Pivot Selection: Pivot is the Min/Max

_éjﬂ\‘ ])0(%'\4\0/\\}3

T(n) = T(n- 1) @

Basically same recurrence as
SelectionSort: O(n?)

17
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Pivot Selection: Pivot is Random

+ Suppose pivot always ends up at least 10% from either edge

N

\
\I N/I{ N/10
i]:lﬁ N/mﬂloo 9N/100 || 81N/100

« Work at each level: O(N) and Runtime is O(NH)
" Height is approximately log 150 N = O(log N)

< Runtime: O(N log N)
= See proof in text

18
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Pivot Selection Dictates Runtime!

+ If pivot lands “somewhere good”, Quicksort is O(N log N)
» However, the very rare\O(N2) cases do happen in practice &/

» Bad ordering: Array already in (almost-)sorted order and pivot is first
or last index

= Bad elements: Array with all duplicates

« Three philosophies for avoiding worst-case behavior:
1. Randomness: pick a random pivot; shuffle before sorting
Elegant, but (pseudo)random number generation can be slow
2. Smarter Pivot Selection: calculate or approximate the median

@dian ofarr[lo], arr[hi-1], arr[ (hi+lo) /2]

3. Introspection: switch to safer sort if recursion goes too deep

19
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Avoiding Worst-Case Pivots

+ Example worst-cases:

» Bad ordering: Array already in (almost-)sorted order and pivot is first
or last index

= Bad elements: Array with all duplicates

+ Three philosophies for avoiding worst-case behavior:
1. Randomness: pick a random pivot; shuffle before sorting
+ Elegant, but (pseudo)random number generation can be slow
2. Smarter Pivot Selection: calculate or approximate the median
« Median-of-3: median of arr[lo], arr[hi-1], arr[ (hi+lo) /2]
3. Introspection: switch to safer sort if recursion goes too deep
- ... what algorithm might be safer in the presence of badly-ordered elements?

20
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QuickSort Steps

1. Pick the pivot value(s)
= Any choice is correct; data will end up sorted

=  For efficiency, these value(s) ought to approximate the median

2. Partition all the values into:
a. The values less than the pivot(s)
b. The pivot(s)
c. The values greater than the pivot(s)
d. .. Inlinear time? In-place? Stably?

3. Recursively QuickSort(A) and QuickSort(C)

21
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Partitioning: Problem Statement

+ Given an array of elements and the 0" value as the pivot, write
pseudocode that partitions the array

6 8 3 1 2 7 4

!

3 1 2 4 6 8 7

« Constraints:
= Must complete in O(N log N) time, but ideally ©(N)
= Must use O(N) space, but ideally ©(1)
= May use any data structure (eg, BSTs, stacks/queues, etc)
= |deally, preserves the elements’ relative ordering (“stable”)

+ Conceptually simple, but hardest part to code up correctly!

22
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Partitioning: Option 1: Three-Pass

« QOverview:
= Copy “less than”s, then copy pivot(s), finally copy “greater-than”s

® Demo:
https://docs.google.com/presentation/d/16p0OLboxhtJlaDxF7iRT5Xclt
DKmwab wbvjZ4wPmlJYk/edit

+ Stable! ©

+ Constants aren’t great; very slow ®

23
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Partitioning: Option 2:

L15: QuickSort

Hoare Partitioning (1 of 2)

« As published in Hoare’s original QuickSort paper!

< Intuition:

= | loves small items (i.e., <pivot) and R loves large items (i.e., >pivot)
= Walk towards eachother, swapping anything they don’t like

+ Algorithm:

Startiatlo,and jathi-1
Move j leftward until we hit

Swaparr[i] andarr[j]

ok, wWwN PR

Swap pivot with arr[lo] (“

move it out of the way”)

value <pivot (“belongs on left”)

Move i rightward until we hit value >pivot (“belongs on right”)

CSE332, Spring 2021

When they meet, swap
arr[lo] andarr[i]
(“put pivot in correct
place”)

while (1 < 7J)
if (arr([j] > pivot) j--;
else if (arr[i] <= pivot) i++;

else swap(arr[i], arr[3]])

24
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Partitioning: Option 2: Hoare Partitioning (2 of 2)

+ Unstable ®

+ Good constants: single-pass and in-place ©

<~ Demo:

https://docs.google.com/presentation/d/1zmolLw5stDFXRLYSrY
JPABzExZZJWkLLHQhYIOBUy700/edit

25
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» Partition the following array using Hoare’s partitioning algorithm
® The pivot, 5, has already been moved to the front

= Sort only by the numbers (eg, 1); the extra letter (eg, 1a) is to help you
determine stability

5 |1la | 6 9 3 7 2 [ 4a | 4b | 1b

Swap pivot with arr[1o] (“move it out of the way”)

Startiatlo+1,and jathi-1
Move j rightward until we hit value <pivot (“belongs on left”)
Move i leftward until we hit value >pivot (“belongs on right”)
Swaparr[i] andarr[j]

When they meet, swap arr[0] and arr [1] (“put pivot in correct place”)

while (i < 3J)
if (arr[j] > pivot) j--;
else if (arr[i] <= pivot) i++;
else swap(arr[i], arr[]j]) 2
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Partitioning: Option 3: Three-Way

<+ Pick two pivots

= Same intuition as median-of-three: it’s hard to pick multiple bad
pivots simultaneously

+ Like Hoare Partitioning, use two pointers walking to the middle
= But split array into three pieces, not two

" Good constants: single-pass and in-place; Io@\l vs log,N ©
= Still an unstable sort ®

« Used in Java’s Arrays.sort(), Python’s unstable sort, etc
= Basically the de-facto partition algorithm circa 2020

27
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QuickSort Steps

1. Pick the pivot value(s)
= Any choice is correct; data will end up sorted

=  For efficiency, these value(s) ought to approximate the median

2. Partition all the values into:
a. The values less than the pivot(s)
b. The pivot(s)
c. Thevalues greater than the pivot(s)
d. ..Inlineartime? In-place? Stably?

3. Recursively QuickSort(A) and QuickSort(C)

®-TA-DA! ¥

28
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QuickSort: End-to-end Example (1 of 3)

1. Pick pivot (we’ll use median-of-3)
8|1|4|9|l0|3|5]|2]|7/|6

2. Partition (we’ll use Hoare Partitioning)

" Move pivot to the beginning position

6 (1 (4 (9|03 (527|388

" let 1o =1and hi =9; loop until we find “swappable” values

6| 1|49 |03 (5|2 (7]38

29
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QuickSort: End-to-end Example (2 of 3)

" Swaplo=3andhi=7

6 | 1|4 |2 ([0 3|5
1
= Keep looping

6 | 1|42 (0|3 (|5

| ]

6 | 1|42 (0|3 (|5

1

6 | 1|42 (0|3 (|5

" Done! Swap pivot into position

i

5

1

4

2

0| 3

CSE332, Spring 2021

30
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QuickSort: End-to-end Example (3 of 3)

3. Recursively sort left (0 to Lo-1 =5)
6
i

2. Recursively sortright (hi+1 =7 to arr.length)

o123 ]|4]5

O(1|2]|3]|4]5 71819

i

5. Sorted!

31
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QuickSort Optimization: Cutoffs (1 of 2)

« For small n, recursion tends to cost more than a quadratic sort
= Remember: asymptotic complexity applies to large n
= Recursive calls add overhead (which “isn’t worth it” for small n)

+ Recursive calls for small n are the most common (“leaf calls”)
= Calls for small n are the vast majority of the recursive calls!

[elafofefs[afe]e]

e [s]afofe] [l=fze]

e [s]2] [5]+] [5]3] [1]s]
ons recumngi|_® | 2 ]
(done recurring!) g

veee  [2]e]| [e]s] [s]s] [2]e]

= EICEE (RN

[of= = afa]ofc o]
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QuickSort Optimization: Cutoffs (2 of 2)

+ So, switch algorithms for subproblems below a cutoff size

® Eg, Java 12 uses InsertionSort for primitive types when n <47

void quickSort(int[] arr,
if (hi - lo < CUTOFF)

insertionSort (arr, lo, hi);
else

int lo, int hi) {

« Switching algorithms after a cutoff is a common technique!

= E.g. parallel algorithms switch to sequential after a certain cutoff
= E.g. MergeSort also uses cutoffs to switch to InsertionSort

« Does not affect asymptotic complexity, just the constants

33
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Lecture Outline

« Comparison-based Sorting
" Review
® Fanciest algorithm using Divide-and-Conquer: QuickSort
= External Sorting
" Theoretical lower bound

34
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Sorting Linked Lists

+ We defined the sorting problem as over an array, but
sometimes you want to sort linked lists

« One approach:
= Convert to array: O(n)
= Sort: O(n log n)
= Convert back to list: O(n)

« Or: MergeSort works very nicely on linked lists directly
® HeapSort and QuickSort does not
" InsertionSort and SelectionSort do, but they’re slower

35
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Sorting Massive Data: External Sorting (1 of 2)

+ Need sorting algorithms that minimize disk access?

X ® QuickSort and HeapSort jump all over the array; their random disk
accesses don’t utilize special locality effectively

= MergeSort scans linearly through arrays, leading to (relatively)
efficient sequential disk access

« MergeSort is the algorithm of choice for external sorting!

36
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Sorting Massive Data: External Sorting (2 of 2)

+» Can we make MergeSort even more efficient? Yes!

® Load one page of elements into memory, sort, store this “run” on
disk/tape

= Use themerge () routine to merge successively larger runs

= Repeat until you have only one run

« MergeSort can leverage multiple disks; see Weiss

37
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Comparison-based Sorts: Summary

Randomized

Case

Fastest for small
InsertionSort O(N) O(N?) O(N?) Yes Yes or partially-
sorted input

SelectionSort O(N?) O(N?) O(N?) Yes No
In-Place . .
HeapSort O(N) O(N log N) O(N log N) Yes No Slow in practice
MergeSort O(NlogN) O(NlogN) O(N log N) No Yes Fastess(:ritable
QuickSort >=2x slower than
(1st-element pivot O(N log N) O(N?) O(N log N) No Yes
Z-peaiﬁ" :(:r’tipt;ZZ) ’ MergeSort
QuickSort S
s e Q(N) O(N?) O(N log N) Yes No

pivot + Hoare

comparison sort
partition + cutoffs)

38
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Lecture Outline

« Comparison-based Sorting
" Review

® Fanciest algorithm using Divide-and-Conquer: QuickSort
= External Sorting

® Theoretical lower bound

CSE332, Spring 2021
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A Different View of Sorting

« Assume we have n elements, none are equal (no duplicates)

+ Sorting is like finding one specific ordering out of all possible
ordering of elements!

<« How many permutations (possible orderings) of the elements?
= Example, n=3

a<b<c a<c<b b<a<c b<c<a c<a<b c<b<a

® n choices for least element, then n-1 for next, then n-2 for next, ...
= n(n-1)(n-2)...(2)(1) = n! possible orderings

40
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Describing Every Comparison Sort

« A different way of thinking about sorting is that it “finds” the
right answer among the n! possible answers

= Starts “knowing nothing”; “anything is possible”

= Each comparison gains information, eliminating some possibilities
- Comparisons are binary:a < borb < a

« Intuition: each comparison eliminates (at most) half of remaining
possibilities

" In the end, narrows down to a single possibility
« Where are the comparisons in:

" |nsertionSort?
® QuickSort?

41
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Representing Comparison Sorts

/7
0.0

Let’s represent these binary comparisons as a binary tree!

/7
0.0

Called a Decision Tree

= Nodes contain “set of remaining possible orderings”

® The root contains all possible orderings; anything is possible
" The leaves contain exactly one specific ordering

® Edges are “answers from a comparison”

We are not actually building the tree; it’s what our proof uses to
represent “the most the algorithm could know so far”

42
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One Decision Tree for n=3

a<b<c b<cx<ay,
a<c<b, c<a<hb,

a<b a>b
b<a<c c<bx<a

a<bx<c b<a<c

a<c<b b<c<a

c<a<b c<b<a
ai/\>c bi/\i>c
a<b<c c<a<b b<a<c c<b<a

a<c<b b<c<a
big///\\\gfc ci}///\\\ﬁfa
a<b<c a<c<b b<c<a b<ax<c

* The leaves contain all the possible orderings of a, b, ¢
« Adifferent algorithm would lead to a different tree
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