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L15: QuickSort

❖ Recall this image from last lecture, describing MergeSort:

❖ How many times is mergeSort() invoked for:

▪ this 8-element array?

▪ an n-element array? Assume that n is a power of 2 (ie, n = 2k for some k)

❖ Bonus: How many ways can you order {a, b, c}?
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Announcements

❖ Quiz 1 grades released; we’ll let regrade requests “cool off” 
before attending to them

❖ P2 CP2 due next week (sorry for the confusion!)
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Lecture Outline

❖ Comparison-based Sorting

▪ Review

▪ Fanciest algorithm using Divide-and-Conquer: QuickSort

▪ External Sorting

▪ Theoretical lower bound
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Sorting with Divide and Conquer

❖ Two great sorting methods are divide-and-conquer!

▪ MergeSort:

• Sort the left half of the elements (recursively)

• Sort the right half of the elements (recursively)

• Merge the two sorted halves into a sorted whole

▪ QuickSort:

• Pick a “pivot” element

• Partition elements into those less-than pivot and those greater-than pivot

• Sort the less-than elements (recursively)

• Sort the greater-than the elements (recursively)

• All done!  Answer is [sorted-less-than] [pivot] [sorted-greater-than]
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QuickSort vs MergeSort (1 of 2)

❖ MergeSort:

▪ Execution

• Does its work “on the way up”

– i.e., in the merge, after the 
recursive call returns

• Uses its auxiliary space very 
effectively:

– Works well on linked lists

– Linear merges minimize disk 
accesses

▪ Time: always O(n log n)
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❖ QuickSort:

▪ Execution:

• Does its work “on the way 
down”

– i.e., in the partition, before the 
recursive call

• Doesn’t need auxiliary space

▪ Runtime: O(n log n) in best 
and randomized cases ☺

• But O(n2) worst-case 

Different algorithms, same problem

Demo: https://docs.google.com/presentation/d/1h-
gS13kKWSKd_5gt2FPXLYigFY4jf5rBkNFl3qZzRRw/present

https://docs.google.com/presentation/d/1h-gS13kKWSKd_5gt2FPXLYigFY4jf5rBkNFl3qZzRRw/present
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QuickSort vs MergeSort (2 of 2)

❖ Asymptotic Runtime:

▪ QuickSort is O(n log n) in best and randomized cases, but O(n2) 
worst-case

▪ MergeSort is always O(n log n)

❖ Constants Matter!

▪ QuickSort does fewer copies and more comparisons, so it depends 
on the relative cost of these two operations

▪ Typically, cost of copies is higher so QuickSort really is the “quickest”

7



CSE332, Spring 2021L15: QuickSort

Lecture Outline

❖ Comparison-based Sorting

▪ Review

▪ Fanciest algorithm using Divide-and-Conquer: QuickSort

▪ External Sorting

▪ Theoretical lower bound

8



CSE332, Spring 2021L15: QuickSort

QuickSort Steps

1. Pick the pivot value(s)

▪ Any choice is correct; data will end up sorted

▪ For efficiency, these value(s) ought to approximate the median

2. Partition all the values into:

a. The values less than the pivot(s)

b. The pivot(s)

c. The values greater than the pivot(s)

d. .. In linear time?  In-place?  Stably?

3. Recursively QuickSort(A) and QuickSort(C)

✨TA-DA!✨
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QuickSort Intuition: Set Partitioning
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Recursive Call (1 of 3)

❖ After partitioning on 5:

▪ 5 is in its “correct place” (ie, where it’d be if the array were sorted)

▪ Can now sort two halves separately (eg, through recursive use of 
partitioning)

5 3 2 1 7 8 4 6

3 2 1 4 5 7 8 6

3 2 1 4 7 8 6

1 2 3 4 6 7 8

Note: for the remainder of this 
section, our pivot-selection algorithm 

is “first item in the subarray”
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Recursive Call (2 of 3)
5 3 2 1 7 8 4 6

3 2 1 4 5 7 8 6

3 2 1 4 7 8 6

1 2 3 4 6 7 8

1 2 4 6 8

1 2

2
13
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1 2 3 4 5 7 8 6

Recursive Call (3 of 3)

1 2 3 4 6 7 8

1 2 4 6 8

2
14
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QuickSort Steps

1. Pick the pivot value(s)

▪ Any choice is correct; data will end up sorted

▪ For efficiency, these value(s) ought to approximate the median

2. Partition all the values into:

a. The values less than the pivot(s)

b. The pivot(s)

c. The values greater than the pivot(s)

d. … In linear time?  In-place?  Stably?

3. Recursively QuickSort(A) and QuickSort(C)

✨TA-DA!✨
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Pivot Selection: Pivot is the Median

T(0) = T(1) = c1

T(n) = 2T(n/2) + c2 n
(partition is linear-time)

Same recurrence as 
MergeSort:

O(n log n)Only size 1 problems remain, so we’re done.

16



CSE332, Spring 2021L15: QuickSort

Pivot Selection: Pivot is the Min/Max

T(0) = T(1) = c1

T(n) = T(n-1) + c2n

Basically same recurrence as 
SelectionSort: O(n2)
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Pivot Selection: Pivot is Random

❖ Suppose pivot always ends up at least 10% from either edge

❖ Work at each level: O(N) and Runtime is O(NH)

▪ Height is approximately log 10/9 N = O(log N)

❖ Runtime: O(N log N)

▪ See proof in text

N

N/10 9N/10

N/100 9N/100 9N/100 81N/100
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Pivot Selection Dictates Runtime!

❖ If pivot lands “somewhere good”, Quicksort is Θ(N log N)  🥂

❖ However, the very rare Θ(N2) cases do happen in practice   👎

▪ Bad ordering: Array already in (almost-)sorted order and pivot is first 
or last index

▪ Bad elements: Array with all duplicates

❖ Three philosophies for avoiding worst-case behavior:

1. Randomness: pick a random pivot; shuffle before sorting

• Elegant, but (pseudo)random number generation can be slow

2. Smarter Pivot Selection: calculate or approximate the median

• Median-of-3: median of arr[lo], arr[hi-1], arr[(hi+lo)/2]

3. Introspection: switch to safer sort if recursion goes too deep
19
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Avoiding Worst-Case Pivots

❖ Example worst-cases:

▪ Bad ordering: Array already in (almost-)sorted order and pivot is first 
or last index

▪ Bad elements: Array with all duplicates

❖ Three philosophies for avoiding worst-case behavior:

1. Randomness: pick a random pivot; shuffle before sorting

• Elegant, but (pseudo)random number generation can be slow

2. Smarter Pivot Selection: calculate or approximate the median

• Median-of-3: median of arr[lo], arr[hi-1], arr[(hi+lo)/2]

3. Introspection: switch to safer sort if recursion goes too deep

• … what algorithm might be safer in the presence of badly-ordered elements?
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QuickSort Steps

1. Pick the pivot value(s)

▪ Any choice is correct; data will end up sorted

▪ For efficiency, these value(s) ought to approximate the median

2. Partition all the values into:

a. The values less than the pivot(s)

b. The pivot(s)

c. The values greater than the pivot(s)

d. … In linear time?  In-place?  Stably?

3. Recursively QuickSort(A) and QuickSort(C)

✨TA-DA!✨
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Partitioning: Problem Statement

❖ Given an array of elements and the 0th value as the pivot, write 
pseudocode that partitions the array

❖ Constraints:

▪ Must complete in O(N log N) time, but ideally Θ(N)

▪ Must use O(N) space, but ideally Θ(1)

▪ May use any data structure (eg, BSTs, stacks/queues, etc)

▪ Ideally, preserves the elements’ relative ordering (“stable”)

❖ Conceptually simple, but hardest part to code up correctly!
22

6 8 3 1 2 7 4

3 1 2 4 6 8 7
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Partitioning: Option 1: Three-Pass

❖ Overview:

▪ Copy “less than”s, then copy pivot(s), finally copy “greater-than”s

▪ Demo: 
https://docs.google.com/presentation/d/16pOLboxhtJlaDxF7iRT5Xclt
DKmwab_wbvjZ4wPmJYk/edit

❖ Stable!  ☺

❖ Constants aren’t great; very slow 
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https://docs.google.com/presentation/d/16pOLboxhtJlaDxF7iRT5XcltDKmwab_wbvjZ4wPmJYk/edit
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Partitioning: Option 2: Hoare Partitioning (1 of 2)

❖ As published in Hoare’s original QuickSort paper!

❖ Intuition:
▪ L loves small items (i.e., <pivot) and R loves large items (i.e., >pivot)
▪ Walk towards eachother, swapping anything they don’t like

❖ Algorithm:
1. Swap pivot with arr[lo] (“move it out of the way”)
2. Start i at lo, and j at hi-1
3. Move j leftward until we hit value <pivot (“belongs on left”)
4. Move i rightward until we hit value >pivot (“belongs on right”)
5. Swap arr[i] and arr[j]
6. When they meet, swap

arr[lo] and arr[i]
(“put pivot in correct
place”)

24

while (i < j)

if (arr[j] > pivot) j--;

else if (arr[i] <= pivot) i++;

else swap(arr[i], arr[j])
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Partitioning: Option 2: Hoare Partitioning (2 of 2)

❖ Unstable 

❖ Good constants: single-pass and in-place ☺

❖ Demo: 
https://docs.google.com/presentation/d/1zmoLw5stDFxRLYSrY
JP4BzExZZJWkLLHQhYIOBUy70o/edit

25

https://docs.google.com/presentation/d/1zmoLw5stDFxRLYSrYJP4BzExZZJWkLLHQhYIOBUy70o/edit
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L15: QuickSort

❖ Partition the following array using Hoare’s partitioning algorithm

▪ The pivot, 5, has already been moved to the front

▪ Sort only by the numbers (eg, 1); the extra letter (eg, 1a) is to help you 
determine stability 
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while (i < j)

if (arr[j] > pivot) j--;

else if (arr[i] <= pivot) i++;

else swap(arr[i], arr[j])

Swap pivot with arr[lo] (“move it out of the way”)
Start i at lo+1, and j at hi-1

Move j rightward until we hit value <pivot (“belongs on left”)
Move i leftward until we hit value >pivot (“belongs on right”)
Swap arr[i] and arr[j]

When they meet, swap arr[0] and arr[i] (“put pivot in correct place”)

5 1a 6 9 3 7 2 4a 4b 1b
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Partitioning: Option 3: Three-Way

❖ Pick two pivots

▪ Same intuition as median-of-three: it’s hard to pick multiple bad 
pivots simultaneously

❖ Like Hoare Partitioning, use two pointers walking to the middle

▪ But split array into three pieces, not two

▪ Good constants: single-pass and in-place; log3N vs log2N   ☺

▪ Still an unstable sort  

❖ Used in Java’s Arrays.sort(), Python’s unstable sort, etc

▪ Basically the de-facto partition algorithm circa 2020
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QuickSort Steps

1. Pick the pivot value(s)

▪ Any choice is correct; data will end up sorted

▪ For efficiency, these value(s) ought to approximate the median

2. Partition all the values into:

a. The values less than the pivot(s)

b. The pivot(s)

c. The values greater than the pivot(s)

d. … In linear time?  In-place?  Stably?

3. Recursively QuickSort(A) and QuickSort(C)

✨TA-DA!✨
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QuickSort: End-to-end Example (1 of 3)

1. Pick pivot (we’ll use median-of-3)

2. Partition (we’ll use Hoare Partitioning)

▪ Move pivot to the beginning position

▪ Let lo = 1 and hi = 9; loop until we find “swappable” values

29

8 1 4 9 0 3 5 2 7 6

6 1 4 9 0 3 5 2 7 8

6 1 4 9 0 3 5 2 7 8

6 1 4 9 0 3 5 2 7 8

6 1 4 9 0 3 5 2 7 8



CSE332, Spring 2021L15: QuickSort

QuickSort: End-to-end Example (2 of 3)

▪ Swap lo = 3 and hi = 7

▪ Keep looping

▪ Done!  Swap pivot into position

30

6 1 4 2 0 3 5 9 7 8

6 1 4 2 0 3 5 9 7 8

6 1 4 2 0 3 5 9 7 8

6 1 4 2 0 3 5 9 7 8

5 1 4 2 0 3 6 9 7 8
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QuickSort: End-to-end Example (3 of 3)

3. Recursively sort left (0 to lo-1 = 5)

4. Recursively sort right (hi+1 = 7 to arr.length)

5. Sorted!

31

0 1 2 3 4 5 6 9 7 8

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9
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QuickSort Optimization: Cutoffs (1 of 2)

❖ For small n, recursion tends to cost more than a quadratic sort

▪ Remember: asymptotic complexity applies to large n

▪ Recursive calls add overhead (which “isn’t worth it” for small n)

❖ Recursive calls for small n are the most common (“leaf calls”)

▪ Calls for small n are the vast majority of the recursive calls!

32
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QuickSort Optimization: Cutoffs (2 of 2)

❖ So, switch algorithms for subproblems below a cutoff size

▪ Eg, Java 12 uses InsertionSort for primitive types when n < 47

❖ Switching algorithms after a cutoff is a common technique!

▪ E.g. parallel algorithms switch to sequential after a certain cutoff

▪ E.g. MergeSort also uses cutoffs to switch to InsertionSort

❖ Does not affect asymptotic complexity, just the constants
33

void quickSort(int[] arr, int lo, int hi) {

if (hi – lo < CUTOFF)

insertionSort(arr, lo, hi);

else

…

}
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Lecture Outline

❖ Comparison-based Sorting

▪ Review

▪ Fanciest algorithm using Divide-and-Conquer: QuickSort

▪ External Sorting

▪ Theoretical lower bound
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Sorting Linked Lists

❖ We defined the sorting problem as over an array, but 
sometimes you want to sort linked lists

❖ One approach:

▪ Convert to array: O(n)

▪ Sort: O(n log n)

▪ Convert back to list: O(n)

❖ Or: MergeSort works very nicely on linked lists directly

▪ HeapSort and QuickSort does not

▪ InsertionSort and SelectionSort do, but they’re slower

35
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Sorting Massive Data: External Sorting (1 of 2)

❖ Need sorting algorithms that minimize disk access?

▪ QuickSort and HeapSort jump all over the array; their random disk 
accesses don’t utilize special locality effectively

▪ MergeSort scans linearly through arrays, leading to (relatively) 
efficient sequential disk access

❖ MergeSort is the algorithm of choice for external sorting!

36
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Sorting Massive Data: External Sorting (2 of 2)

❖ Can we make MergeSort even more efficient?   Yes!

▪ Load one page of elements into memory, sort, store this “run” on 
disk/tape

▪ Use the merge() routine to merge successively larger runs

▪ Repeat until you have only one run

❖ MergeSort can leverage multiple disks; see Weiss
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Comparison-based Sorts: Summary

Best-
Case 
Time

Worst-
Case 
Time

Randomized 
Case

In-
Place?

Stable? Notes

InsertionSort Θ(N) Θ(N2) Θ(N2) Yes Yes
Fastest for small 

or partially-
sorted input

SelectionSort Θ(N2) Θ(N2) Θ(N2) Yes No

In-Place 
HeapSort

Θ(N) Θ(N log N) Θ(N log N) Yes No Slow in practice

MergeSort Θ(N log N) Θ(N log N) Θ(N log N) No Yes
Fastest stable 

sort

QuickSort
(1st-element pivot + 

3-pass partition)

Θ(N log N) Θ(N2) Θ(N log N) No Yes
>=2x slower than 

MergeSort

QuickSort
(Median-of-three 

pivot + Hoare 
partition + cutoffs)

Ω(N) O(N2) Θ(N log N) Yes No
Fastest 

comparison sort
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Lecture Outline

❖ Comparison-based Sorting

▪ Review

▪ Fanciest algorithm using Divide-and-Conquer: QuickSort

▪ External Sorting

▪ Theoretical lower bound
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A Different View of Sorting

❖ Assume we have n elements, none are equal (no duplicates)

❖ Sorting is like finding one specific ordering out of all possible 
ordering of elements!

❖ How many permutations (possible orderings) of the elements?

▪ Example, n=3

▪ n choices for least element, then n-1 for next, then n-2 for next, …

▪ n(n-1)(n-2)…(2)(1) = n! possible orderings

40

a < b < c a < c < b b < a < c b < c < a c < a < b c < b < a
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Describing Every Comparison Sort

❖ A different way of thinking about sorting is that it “finds” the 
right answer among the n! possible answers

▪ Starts “knowing nothing”; “anything is possible”

▪ Each comparison gains information, eliminating some possibilities

• Comparisons are binary: a < b or b < a

• Intuition: each comparison eliminates (at most) half of remaining 
possibilities

▪ In the end, narrows down to a single possibility

❖ Where are the comparisons in:

▪ InsertionSort?

▪ QuickSort?
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Representing Comparison Sorts

❖ Let’s represent these binary comparisons as a binary tree!

❖ Called a Decision Tree

▪ Nodes contain “set of remaining possible orderings”

▪ The root contains all possible orderings; anything is possible

▪ The leaves contain exactly one specific ordering

▪ Edges are “answers from a comparison”

We are not actually building the tree; it’s what our proof uses to 
represent “the most the algorithm could know so far”

42
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One Decision Tree for n=3

43

a < b < c,   b < c < a,
a < c < b,   c < a < b,
b < a < c,   c < b < a 

a < b < c
a < c < b
c < a < b

b < a < c 
b < c < a
c < b < a

a < b < c
a < c < b

c < a < b

a < b < c a < c < b

b < a < c 
b < c < a

c < b < a

b < c < a b < a < c 

a < b a > b

a > ca < c

b < c b > c

b < c b > c 

c < a c > a

• The leaves contain all the possible orderings of a, b, c
• A different algorithm would lead to a different tree

possible orders

actual order


