QuickSort CSE 332 Spring 2021

Instructor: Hannah C. Tang

Teaching Assistants:

Aayushi Modi Khushi Chaudhari Aashna Sheth Kris Wong Frederick Huyan Logan Milandin Hamsa Shankar Nachiket Karmarkar Patrick Murphy Richard Jiang Winston Jodjana

Ill gradescope

gradescope.com/courses/256241

Recall this image from last lecture, describing MergeSort:

- How many times is mergeSort() invoked for:
 - this 8-element array?
 - an n-element array? Assume that n is a power of 2 (ie, n = 2^k for some k)
- Bonus: How many ways can you order {a, b, c}?

Announcements

- Quiz 1 grades released; we'll let regrade requests "cool off" before attending to them
- P2 CP2 due next week (sorry for the confusion!)

Lecture Outline

- Comparison-based Sorting
 - Review
 - Fanciest algorithm using Divide-and-Conquer: QuickSort
 - External Sorting
 - Theoretical lower bound

Sorting with Divide and Conquer

- Two great sorting methods are divide-and-conquer!
 - MergeSort:
 - Sort the left half of the elements (recursively)
 - Sort the right half of the elements (recursively)
 - Merge the two sorted halves into a sorted whole
 - QuickSort:
 - Pick a "pivot" element
 - Partition elements into those less-than pivot and those greater-than pivot

neigesort

- Sort the less-than elements (recursively)
- Sort the greater-than the elements (recursively)
- All done! Answer is [sorted-less-than] [pivot] [sorted-greater-than]

QuickSort vs MergeSort (1 of 2)

Different algorithms, same problem

- MergeSort:
 - Execution
 - Does its work "on the way up"
 - i.e., in the merge, after the recursive call returns
 - Uses its auxiliary space very effectively:
 - Works well on linked lists
 - Linear merges minimize disk accesses
 - Time: always O(n log n)

Demo: <u>https://docs.google.com/presentation/d/1h-</u> gS13kKWSKd_5gt2FPXLYigFY4jf5rBkNFl3qZzRRw/present

QuickSort:

- Execution:
 - Does its work "on the way down"
 - i.e., in the partition, before the recursive call
 - Doesn't need auxiliary space

- <u>Runtime</u>: O(n log n) in best and randomized cases [©]
 - But O(n²) worst-case ⊗

QuickSort vs MergeSort (2 of 2)

- Asymptotic Runtime:
 - QuickSort is O(n log n) in best and randomized cases, but O(n²) worst-case
 - MergeSort is always O(n log n)

- Constants Matter!
 - QuickSort does fewer copies and more comparisons, so it depends on the relative cost of these two operations
 - Typically, cost of copies is higher so QuickSort really is the "quickest"

Lecture Outline

- Comparison-based Sorting
 - Review
 - Fanciest algorithm using Divide-and-Conquer: QuickSort
 - External Sorting
 - Theoretical lower bound

QuickSort Steps

- 1. Pick the pivot value(s)
 - Any choice is correct; data will end up sorted
 - For efficiency, these value(s) ought to approximate the median
- 2. Partition all the values into:
 - a. The values less than the pivot(s)
 - b. The pivot(s)
 - c. The values greater than the pivot(s)
 - d. .. In linear time? In-place? Stably?
- 3. Recursively QuickSort(A) and QuickSort(C)

QuickSort Steps

- 1. Pick the pivot value(s)
 - Any choice is correct; data will end up sorted
 - For efficiency, these value(s) ought to approximate the median
- 2. Partition all the values into:
 - a. The values less than the pivot(s)
 - b. The pivot(s)
 - c. The values greater than the pivot(s)
 - d. ... In linear time? In-place? Stably?

3. Recursively QuickSort(A) and QuickSort(C)

QuickSort Intuition: Set Partitioning

Recursive Call (1 of 3)

Note: for the remainder of this section, our pivot-selection algorithm is "first item in the subarray"

- After partitioning on 5:
 - 5 is in its "correct place" (ie, where it'd be if the array were sorted)

Can now sort two halves separately (eg, through recursive use of partitioning)

Recursive Call (2 of 3)

Recursive Call (3 of 3)

QuickSort Steps

- 1. Pick the pivot value(s)
 - Any choice is correct; data will end up sorted
 - For efficiency, these value(s) ought to approximate the median
- 2. Partition all the values into:
 - a. The values less than the pivot(s)
 - b. The pivot(s)
 - c. The values greater than the pivot(s)
 - d. ... In linear time? In-place? Stably?

3. Recursively QuickSort(A) and QuickSort(C)

Pivot Selection: Pivot is the Median

$$T(0) = T(1) = c_1$$

$$T(n) = 2T(n/2) + c_2 n$$

(partition is linear-time)

Same recurrence as MergeSort: O(n log n)

Pivot Selection: Pivot is the Min/Max

$$T(0) = T(1) = c_1$$
 still partitioning
 $T(n) = T(n-1) + c_2 n$

Basically same recurrence as SelectionSort: $O(n^2)$

Pivot Selection: Pivot is Random

* Suppose pivot always ends up at least 10% from either edge

- Work at each level: O(N) and Runtime is O(NH)
 - Height is approximately log 10/9 N = O(log N)
- Runtime: O(N log N)
 - See proof in text

Pivot Selection Dictates Runtime!

- * However, the very rare $\Theta(N^2)$ cases do happen in practice ∇
 - Bad ordering: Array already in (almost-)sorted order and pivot is first or last index
 - Bad elements: Array with all duplicates
- Three philosophies for avoiding worst-case behavior:
 - 1. Randomness: pick a random pivot; shuffle before sorting
 - Elegant, but (pseudo)random number generation can be slow
 - 2. Smarter Pivot Selection: calculate or approximate the median
 Median-of-3: median of arr[lo], arr[hi-1], arr[(hi+lo)/2]
 - 3. Introspection: switch to safer sort if recursion goes too deep

Avoiding Worst-Case Pivots

- Example worst-cases:
 - Bad ordering: Array already in (almost-)sorted order and pivot is first or last index
 - Bad elements: Array with all duplicates
- Three philosophies for avoiding worst-case behavior:
 - 1. Randomness: pick a random pivot; shuffle before sorting
 - Elegant, but (pseudo)random number generation can be slow
 - 2. Smarter Pivot Selection: calculate or approximate the median
 - Median-of-3: median of arr[lo], arr[hi-1], arr[(hi+lo)/2]
 - **3.** Introspection: switch to safer sort if recursion goes too deep
 - ... what algorithm might be safer in the presence of badly-ordered elements?

QuickSort Steps

- 1. Pick the pivot value(s)
 - Any choice is correct; data will end up sorted
 - For efficiency, these value(s) ought to approximate the median

2. Partition all the values into:

- a. The values less than the pivot(s)
- b. The pivot(s)
- c. The values greater than the pivot(s)
- d. ... In linear time? In-place? Stably?
- 3. Recursively QuickSort(A) and QuickSort(C)

Partitioning: Problem Statement

 Given an array of elements and the 0th value as the pivot, write pseudocode that partitions the array

- Constraints:
 - Must complete in O(N log N) time, but ideally O(N)
 - Must use O(N) space, but ideally O(1)
 - May use any data structure (eg, BSTs, stacks/queues, etc)
 - Ideally, preserves the elements' relative ordering ("stable")
- Conceptually simple, but hardest part to code up correctly!

Partitioning: Option 1: Three-Pass

- Overview:
 - Copy "less than"s, then copy pivot(s), finally copy "greater-than"s
 - Demo:

https://docs.google.com/presentation/d/16pOLboxhtJlaDxF7iRT5Xclt DKmwab_wbvjZ4wPmJYk/edit

- ♦ Constants aren't great; very slow ☺

Partitioning: Option 2: Hoare Partitioning (1 of 2)

- As published in Hoare's original QuickSort paper!
- Intuition:
 - L loves small items (i.e., <pivot) and R loves large items (i.e., >pivot)
 - Walk towards eachother, swapping anything they don't like
- Algorithm:
 - 1. Swap pivot with **arr[lo]** ("move it out of the way")
 - 2. Start i at lo, and j at hi-1
 - 3. Move j leftward until we hit value <pivot ("belongs on left")
 - 4. Move i rightward until we hit value >pivot ("belongs on right")
 - 5. Swap arr[i] and arr[j]
 - When they meet, swap arr[lo] and arr[i] ("put pivot in correct place")

```
while (i < j)
if (arr[j] > pivot) j--;
else if (arr[i] <= pivot) i++;
else swap(arr[i], arr[j])</pre>
```

Partitioning: Option 2: Hoare Partitioning (2 of 2)

- ✤ Unstable ☺
- st Good constants: single-pass and in-place \bigcirc
- Demo:

https://docs.google.com/presentation/d/1zmoLw5stDFxRLYSrY JP4BzExZZJWkLLHQhYIOBUy70o/edit

...Il gradescope

gradescope.com/courses/256241

- Partition the following array using Hoare's partitioning algorithm
 - The pivot, 5, has already been moved to the front
 - Sort only by the numbers (eg, 1); the extra letter (eg, 1a) is to help you determine stability

```
Swap pivot with arr[lo] ("move it out of the way")
Start i at lo+1, and j at hi-1
Move j rightward until we hit value <pivot ("belongs on left")
Move i leftward until we hit value >pivot ("belongs on right")
Swap arr[i] and arr[j]
When they meet, swap arr[0] and arr[i] ("put pivot in correct place")
```

```
while (i < j)
  if (arr[j] > pivot) j--;
  else if (arr[i] <= pivot) i++;
  else swap(arr[i], arr[j])</pre>
```

Partitioning: Option 3: Three-Way

- Pick two pivots
 - Same intuition as median-of-three: it's hard to pick multiple bad pivots simultaneously
- * Like Hoare Partitioning, use two pointers walking to the middle
 - But split array into three pieces, not two
 - Good constants: single-pass and in-place; log₃N vs log₂N ☺
 - Still an unstable sort 🙁
- Source Strate Strate
 - Basically the de-facto partition algorithm circa 2020

QuickSort Steps

- 1. Pick the pivot value(s)
 - Any choice is correct; data will end up sorted
 - For efficiency, these value(s) ought to approximate the median
- 2. Partition all the values into:
 - a. The values less than the pivot(s)
 - b. The pivot(s)
 - c. The values greater than the pivot(s)
 - d. ... In linear time? In-place? Stably?
- 3. Recursively QuickSort(A) and QuickSort(C)

QuickSort: End-to-end Example (1 of 3)

1. Pick pivot (we'll use median-of-3)

8	1	4	9	0	3	5	2	7	6
---	---	---	---	---	---	---	---	---	---

- 2. Partition (we'll use Hoare Partitioning)
 - Move pivot to the beginning position

6 1	4	9	0	3	5	2	7	8
-----	---	---	---	---	---	---	---	---

Let lo = 1 and hi = 9; loop until we find "swappable" values

QuickSort: End-to-end Example (2 of 3)

Keep looping

Done! Swap pivot into position

QuickSort: End-to-end Example (3 of 3)

3. Recursively sort left (0 to 1o-1 = 5)

4. Recursively sort right (hi+1 = 7 to arr.length)

5. Sorted!

QuickSort Optimization: Cutoffs (1 of 2)

- ✤ For small n, recursion tends to cost more than a quadratic sort
 - Remember: asymptotic complexity applies to large n
 - Recursive calls add overhead (which "isn't worth it" for small n)
- Recursive calls for small n are the most common ("leaf calls")
 - Calls for small n are the vast majority of the recursive calls!

QuickSort Optimization: Cutoffs (2 of 2)

- * So, switch algorithms for subproblems below a cutoff size
 - Eg, Java 12 uses InsertionSort for primitive types when n < 47</p>

```
void quickSort(int[] arr, int lo, int hi) {
    if (hi - lo < CUTOFF)
        insertionSort(arr, lo, hi);
    else
        ...
}</pre>
```

- Switching algorithms after a cutoff is a common technique!
 - E.g. *parallel* algorithms switch to sequential after a certain cutoff
 - E.g. MergeSort also uses cutoffs to switch to InsertionSort
- Does not affect asymptotic complexity, just the constants

Lecture Outline

- Comparison-based Sorting
 - Review
 - Fanciest algorithm using Divide-and-Conquer: QuickSort
 - External Sorting
 - Theoretical lower bound

Sorting Linked Lists

- We defined the sorting problem as over an array, but sometimes you want to sort linked lists
- ✤ One approach:
 - Convert to array: O(n)
 - Sort: O(n log n)
 - Convert back to list: O(n)
- Or: MergeSort works very nicely on linked lists directly
 - HeapSort and QuickSort does not
 - InsertionSort and SelectionSort do, but they're slower

Sorting Massive Data: External Sorting (1 of 2)

- Need sorting algorithms that minimize disk access?
- QuickSort and HeapSort jump all over the array; their random disk accesses don't utilize special locality effectively
- MergeSort scans linearly through arrays, leading to (relatively) efficient sequential disk access
- MergeSort is the algorithm of choice for external sorting!

Sorting Massive Data: External Sorting (2 of 2)

- Can we make MergeSort even more efficient? Yes!
 - Load one page of elements into memory, sort, store this "run" on disk/tape
 - Use the merge () routine to merge successively larger runs
 - Repeat until you have only one run
- MergeSort can leverage multiple disks; see Weiss

Comparison-based Sorts: Summary

	Best- Case Time	Worst- Case Time	Randomized Case	In- Place?	Stable?	Notes
InsertionSort	Θ(N)	Θ(N²)	Θ(N²)	Yes	Yes	Fastest for small or partially- sorted input
SelectionSort	Θ(N²)	Θ(N ²)	Θ(N ²)	Yes	No	
In-Place HeapSort	Θ(N)	Θ(N log N)	Θ(N log N)	Yes	No	Slow in practice
MergeSort	Θ(N log N)	Θ(N log N)	Θ(N log N)	No	Yes	Fastest stable sort
QuickSort (1st-element pivot + 3-pass partition)	Θ(N log N)	Θ(N²)	Θ(N log N)	No	Yes	>=2x slower than MergeSort
QuickSort (Median-of-three pivot + Hoare partition + cutoffs)	Ω(N)	O(N²)	Θ(N log N)	Yes	No	Fastest comparison sort

Lecture Outline

- Comparison-based Sorting
 - Review
 - Fanciest algorithm using Divide-and-Conquer: QuickSort
 - External Sorting
 - Theoretical lower bound

A Different View of Sorting

- Assume we have n elements, none are equal (no duplicates)
- Sorting is like finding one specific ordering out of all possible ordering of elements!
- How many *permutations* (possible orderings) of the elements?

Example, n=3

a<b<c a<c<b b<a<c b<c<a c<a<b c<b<a>c<a<b c<b<a
c<b<a
c<b<c<a c<b<c
c<b<c
c<b<c
c<b<c
c<b<c
c<b<c
c<b<c
c
c<br/c
c<br/c
c<br/c
c<br/c
c<br/c
c<br/c
c<br/c
c<br/c
c<br/c
c<br/c
c<br/c
c<br/c
c<br/c
c<br/c
c<br/c
c<br/c
c<br/c
c<br/c
c<br/c
c<br/c
c<br/c
c<br/c
c<br/c
c<br/c
c<br/c
c
c<br/c
c
c
c<br/c
c
c<br/c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c<

- n choices for least element, then n-1 for next, then n-2 for next, ...
- n(n-1)(n-2)...(2)(1) = <u>n! possible orderings</u>

Describing Every Comparison Sort

- A different way of thinking about sorting is that it "finds" the right answer among the n! possible answers
 - Starts "knowing nothing"; "anything is possible"
 - Each comparison gains information, eliminating some possibilities
 - Comparisons are binary: a < b or b < a
 - Intuition: each comparison eliminates (at most) half of remaining possibilities
 - In the end, narrows down to a single possibility
- Where are the comparisons in:
 - InsertionSort?
 - QuickSort?

Representing Comparison Sorts

- Let's represent these binary comparisons as a binary tree!
- Called a Decision Tree
 - Nodes contain "set of remaining possible orderings"
 - The root contains all possible orderings; anything is possible
 - The leaves contain exactly one specific ordering
 - Edges are "answers from a comparison"

We are not actually building the tree; it's what our *proof* uses to represent "the most the algorithm could know so far"

- The leaves contain all the possible orderings of a, b, c
- A different algorithm would lead to a different tree