QuickSort
CSE 332 Spring 2021

Instructor: Hannah C. Tang

Teaching Assistants:
Aayushi Modi, Khushi Chaudhari, Patrick Murphy
Aashna Sheth, Kris Wong, Richard Jiang
Frederick Huyan Logan Milandin, Winston Jodjana
Hamsa Shankar, Nachiket Karmarkar
Recall this image from last lecture, describing MergeSort:

\[
\begin{array}{cccccc}
8 & 2 & 9 & 4 & 5 & 3 & 1 & 6 \\
\hline
\text{Divide} & \begin{array}{cccc}
8 & 2 & 9 & 4 \\
5 & 3 & 1 & 6 \\
\end{array} \\
\text{Divide} & \begin{array}{cccc}
8 & 2 & 9 & 4 \\
5 & 3 & 1 & 6 \\
\end{array} \\
\text{One Element} & \begin{array}{cccc}
8 & 2 & 9 & 4 \\
5 & 3 & 1 & 6 \\
\end{array} \\
\text{(done recurring!)} & \begin{array}{cccc}
8 & 2 & 9 & 4 \\
5 & 3 & 1 & 6 \\
\end{array} \\
\text{Merge} & \begin{array}{cccc}
2 & 8 & 4 & 9 \\
3 & 5 & 1 & 6 \\
\end{array} \\
\text{Merge} & \begin{array}{cccc}
2 & 4 & 8 & 9 \\
1 & 3 & 5 & 6 \\
\end{array} \\
\hline
1 & 2 & 3 & 4 & 5 & 6 & 8 & 9 \\
\end{array}
\]

How many times is \texttt{mergeSort()} invoked for:

- this 8-element array?
- an \(n \)-element array? Assume that \(n \) is a power of 2 (i.e., \(n = 2^k \) for some \(k \))

Bonus: How many ways can you order \{a, b, c\}?
Announcements

- Quiz 1 grades released; we’ll let regrade requests “cool off” before attending to them

- P2 CP2 due *next week* (sorry for the confusion!)
Lecture Outline

❖ Comparison-based Sorting
 ▪ Review
 ▪ Fanciest algorithm using Divide-and-Conquer: QuickSort
 ▪ External Sorting
 ▪ Theoretical lower bound
Sorting with Divide and Conquer

❖ Two great sorting methods are divide-and-conquer!

▪ MergeSort:
 • Sort the left half of the elements (recursively)
 • Sort the right half of the elements (recursively)
 • Merge the two sorted halves into a sorted whole

▪ QuickSort:
 • Pick a “pivot” element
 • Partition elements into those less-than pivot and those greater-than pivot
 • Sort the less-than elements (recursively)
 • Sort the greater-than the elements (recursively)
 • All done! Answer is [sorted-less-than] [pivot] [sorted-greater-than]
QuickSort vs MergeSort (1 of 2)

Different algorithms, same problem

❖ MergeSort:
 ▪ Execution
 • Does its work “on the way up”
 – i.e., in the merge, after the recursive call returns
 • Uses its auxiliary space very effectively:
 – Works well on linked lists
 – Linear merges minimize disk accesses
 ▪ Time: always \(O(n \log n)\)

❖ QuickSort:
 ▪ Execution:
 • Does its work “on the way down”
 – i.e., in the partition, before the recursive call
 • Doesn’t need auxiliary space
 ▪ Runtime: \(O(n \log n)\) in best and randomized cases 😊
 • But \(O(n^2)\) worst-case ☹

Demo: https://docs.google.com/presentation/d/1h-gS13kKWSKd_5gt2FPXLYigFY4jf5rBkNFl3qZzRRw/present
QuickSort vs MergeSort (2 of 2)

❖ Asymptotic Runtime:
 ▪ QuickSort is $O(n \log n)$ in best and randomized cases, but $O(n^2)$ worst-case
 ▪ MergeSort is always $O(n \log n)$

❖ Constants Matter!
 ▪ QuickSort does fewer copies and more comparisons, so it depends on the relative cost of these two operations
 ▪ Typically, cost of copies is higher so QuickSort really is the “quickest”
Lecture Outline

❖ Comparison-based Sorting
 ▪ Review
 ▪ Fanciest algorithm using Divide-and-Conquer: QuickSort
 ▪ External Sorting
 ▪ Theoretical lower bound
QuickSort Steps

1. Pick the pivot value(s)
 - Any choice is correct; data will end up sorted
 - For efficiency, these value(s) ought to approximate the median

2. Partition all the values into:
 a. The values less than the pivot(s)
 b. The pivot(s)
 c. The values greater than the pivot(s)
 d. In linear time? In-place? Stably?

3. Recursively QuickSort(A) and QuickSort(C)

✨ TA-DA! ✨
QuickSort Steps

1. Pick the pivot value(s)
 - Any choice is correct; data will end up sorted
 - For efficiency, these value(s) ought to approximate the median

2. Partition all the values into:
 a. The values less than the pivot(s)
 b. The pivot(s)
 c. The values greater than the pivot(s)
 d. ... In linear time? In-place? Stably?

3. Recursively QuickSort(A) and QuickSort(C)

✨ TA-DA! ✨
QuickSort Intuition: Set Partitioning

Select pivot value

Partition S

QuickSort(S₁) and QuickSort(S₂)

Presto! S is sorted
After partitioning on 5:

- 5 is in its “correct place” (ie, where it’d be if the array were sorted)
- Can now sort two halves separately (eg, through recursive use of partitioning)

Note: for the remainder of this section, our pivot-selection algorithm is “first item in the subarray”
Recursive Call (2 of 3)
Recursive Call (3 of 3)

1 2 3 4 5 7 8 6
QuickSort Steps

1. **Pick the pivot value(s)**
 - Any choice is correct; data will end up sorted
 - For efficiency, these value(s) ought to approximate the median

2. **Partition all the values into:**
 - a. The values less than the pivot(s)
 - b. The pivot(s)
 - c. The values greater than the pivot(s)
 - d. ... In linear time? In-place? Stably?

3. **Recursively QuickSort(A) and QuickSort(C)**

✨ TA-DA! ✨
Pivot Selection: Pivot is the Median

T(0) = T(1) = c_1
T(n) = 2T(n/2) + c_2 n
(partition is linear-time)

Same recurrence as MergeSort:
\(O(n \log n) \)
Pivot Selection: Pivot is the Min/Max

T(0) = T(1) = c_1
T(n) = T(n-1) + c_2n

Basically same recurrence as SelectionSort: $O(n^2)$
Pivot Selection: Pivot is Random

- Suppose pivot always ends up at least 10% from either edge

- Work at each level: $O(N)$ and Runtime is $O(NH)$
 - Height is approximately $\log_{\frac{10}{9}} N = O(\log N)$

- Runtime: $O(N \log N)$
 - See proof in text
Pivot Selection Dictates Runtime!

❖ If pivot lands “somewhere good”, Quicksort is $\Theta(N \log N)$

❖ However, the very rare $\Theta(N^2)$ cases do happen in practice

▪ Bad ordering: Array already in (almost-)sorted order and pivot is first or last index

▪ Bad elements: Array with all duplicates

❖ Three philosophies for avoiding worst-case behavior:

1. **Randomness**: pick a random pivot; shuffle before sorting
 - Elegant, but (pseudo)random number generation can be slow

2. **Smarter Pivot Selection**: calculate or approximate the median
 - Median-of-3: median of $arr[lo], arr[hi-1], arr[(hi+lo)/2]$

3. **Introspection**: switch to safer sort if recursion goes too deep
Avoiding Worst-Case Pivots

- Example worst-cases:
 - **Bad ordering**: Array already in (almost-)sorted order and pivot is first or last index
 - **Bad elements**: Array with all duplicates

- Three philosophies for avoiding worst-case behavior:
 1. **Randomness**: pick a random pivot; shuffle before sorting
 - Elegant, but (pseudo)random number generation can be slow
 2. **Smarter Pivot Selection**: calculate or approximate the median
 - Median-of-3: median of `arr[lo], arr[hi-1], arr[(hi+lo)/2]`
 3. **Introspection**: switch to safer sort if recursion goes too deep
 - ... what algorithm might be safer in the presence of badly-ordered elements?
QuickSort Steps

1. Pick the pivot value(s)
 - Any choice is correct; data will end up sorted
 - For efficiency, these value(s) ought to approximate the median

2. Partition all the values into:
 a. The values less than the pivot(s)
 b. The pivot(s)
 c. The values greater than the pivot(s)
 d. ... In linear time? In-place? Stably?

3. Recursively QuickSort(A) and QuickSort(C)
Partitioning: Problem Statement

❖ Given an array of elements and the 0th value as the pivot, write pseudocode that partitions the array

\[
\begin{array}{cccccccc}
6 & 8 & 3 & 1 & 2 & 7 & 4 \\
\end{array}
\]

\[
\begin{array}{cccccccc}
3 & 1 & 2 & 4 & 6 & 8 & 7 \\
\end{array}
\]

❖ Constraints:

- Must complete in $O(N \log N)$ time, but ideally $\Theta(N)$
- Must use $O(N)$ space, but ideally $\Theta(1)$
- May use any data structure (eg, BSTs, stacks/queues, etc)
- Ideally, preserves the elements’ relative ordering (“stable”)

❖ Conceptually simple, but hardest part to code up correctly!
Partitioning: Option 1: Three-Pass

- Overview:
 - Copy “less than”s, then copy pivot(s), finally copy “greater-than”s
 - Demo: https://docs.google.com/presentation/d/16pOLboxhtJlaDxF7iRT5XcltDKmwab_wbvjZ4wPmJYk/edit

- Stable! 😊

- Constants aren’t great; very slow 😞
Partitioning: Option 2: Hoare Partitioning (1 of 2)

❖ As published in Hoare’s original QuickSort paper!

❖ Intuition:
 ▪ L loves small items (i.e., <pivot) and R loves large items (i.e., >pivot)
 ▪ Walk towards each other, swapping anything they don’t like

❖ Algorithm:
 1. Swap pivot with arr[lo] (“move it out of the way”)
 2. Start i at lo, and j at hi-1
 3. Move j leftward until we hit value <pivot (“belongs on left”)
 4. Move i rightward until we hit value >pivot (“belongs on right”)
 5. Swap arr[i] and arr[j]
 6. When they meet, swap arr[lo] and arr[i] (“put pivot in correct place”)

```python
while (i < j)
    if (arr[j] > pivot) j--;
    else if (arr[i] <= pivot) i++;
    else swap(arr[i], arr[j])
```
Partitioning: Option 2: Hoare Partitioning (2 of 2)

- Unstable 😞

- Good constants: single-pass and in-place 😊

- Demo:
 https://docs.google.com/presentation/d/1zmoLw5stDFxRLYSrYJP4BzExZZJWkLLHQhYIOBUs70o/edit
Partition the following array using Hoare’s partitioning algorithm
 - The pivot, 5, has already been moved to the front
 - Sort only by the numbers (eg, 1); the extra letter (eg, 1a) is to help you determine stability

| 5 | 1a | 6 | 9 | 3 | 7 | 2 | 4a | 4b | 1b |

Swap pivot with arr[lo] (“move it out of the way”)
Start i at lo+1, and j at hi-1
 - Move j rightward until we hit value <pivot (“belongs on left”)
 - Move i leftward until we hit value >pivot (“belongs on right”)
 - Swap arr[i] and arr[j]
When they meet, swap arr[0] and arr[i] (“put pivot in correct place”)

while (i < j)
 if (arr[j] > pivot) j--;
 else if (arr[i] <= pivot) i++;
 else swap(arr[i], arr[j])
Partitioning: Option 3: Three-Way

❖ Pick *two* pivots
 ▪ Same intuition as median-of-three: it’s hard to pick multiple bad pivots simultaneously

❖ Like Hoare Partitioning, use two pointers walking to the middle
 ▪ But split array into three pieces, not two
 ▪ Good constants: single-pass and in-place; \(\log_3 N \) vs \(\log_2 N \) 😊
 ▪ Still an unstable sort 😞

❖ Used in Java’s Arrays.sort(), Python’s unstable sort, etc
 ▪ Basically the de-facto partition algorithm circa 2020
QuickSort Steps

1. Pick the pivot value(s)
 - Any choice is correct; data will end up sorted
 - For efficiency, these value(s) ought to approximate the median

2. Partition all the values into:
 a. The values less than the pivot(s)
 b. The pivot(s)
 c. The values greater than the pivot(s)
 d. ... In linear time? In-place? Stably?

3. Recursively QuickSort(A) and QuickSort(C)

TA-DA!
QuickSort: End-to-end Example (1 of 3)

1. Pick pivot (we’ll use median-of-3)

 | 8 | 1 | 4 | 9 | 0 | 3 | 5 | 2 | 7 | 6 |

2. Partition (we’ll use Hoare Partitioning)

 ▪ Move pivot to the beginning position

 | 6 | 1 | 4 | 9 | 0 | 3 | 5 | 2 | 7 | 8 |

 ▪ Let lo = 1 and hi = 9; loop until we find “swappable” values

 | 6 | 1 | 4 | 9 | 0 | 3 | 5 | 2 | 7 | 8 |

 | 6 | 1 | 4 | 9 | 0 | 3 | 5 | 2 | 7 | 8 |

 | 6 | 1 | 4 | 9 | 0 | 3 | 5 | 2 | 7 | 8 |
QuickSort: End-to-end Example (2 of 3)

- Swap $lo = 3$ and $hi = 7$

```
6 1 4 2 0 3 5 9 7 8
```

- Keep looping

```
6 1 4 2 0 3 5 9 7 8
```

```
6 1 4 2 0 3 5 9 7 8
```

```
6 1 4 2 0 3 5 9 7 8
```

- Done! Swap pivot into position

```
5 1 4 2 0 3 6 9 7 8
```
QuickSort: End-to-end Example (3 of 3)

3. Recursively sort left (0 to $10-1 = 5$)

 0 1 2 3 4 5 6 9 7 8

4. Recursively sort right ($hi+1 = 7$ to $arr.length$)

 0 1 2 3 4 5 6 7 8 9

5. Sorted!
QuickSort Optimization: Cutoffs (1 of 2)

- For small n, recursion tends to cost more than a quadratic sort
 - Remember: asymptotic complexity applies to large n
 - Recursive calls add overhead (which “isn’t worth it” for small n)

- Recursive calls for small n are the most common (“leaf calls”)
 - Calls for small n are the vast majority of the recursive calls!
QuickSort Optimization: Cutoffs (2 of 2)

- So, switch algorithms for subproblems below a cutoff size
 - Eg, Java 12 uses InsertionSort for primitive types when $n < 47$

```java
void quickSort(int[] arr, int lo, int hi) {
    if (hi - lo < CUTOFF)
        insertionSort(arr, lo, hi);
    else
        ...
}
```

- Switching algorithms after a cutoff is a common technique!
 - E.g. parallel algorithms switch to sequential after a certain cutoff
 - E.g. MergeSort also uses cutoffs to switch to InsertionSort

- Does not affect asymptotic complexity, just the constants
Lecture Outline

❖ Comparison-based Sorting
 ▪ Review
 ▪ Fanciest algorithm using Divide-and-Conquer: QuickSort
 ▪ External Sorting
 ▪ Theoretical lower bound
We defined the sorting problem as over an array, but sometimes you want to sort linked lists.

One approach:
- Convert to array: $O(n)$
- Sort: $O(n \log n)$
- Convert back to list: $O(n)$

Or: MergeSort works very nicely on linked lists directly
- HeapSort and QuickSort does not
- InsertionSort and SelectionSort do, but they’re slower
Sorting Massive Data: External Sorting (1 of 2)

❖ Need sorting algorithms that minimize disk access?
 □ QuickSort and HeapSort jump all over the array; their random disk accesses don’t utilize special locality effectively
 ✔ MergeSort scans linearly through arrays, leading to (relatively) efficient sequential disk access

❖ MergeSort is the algorithm of choice for external sorting!
Can we make MergeSort even more efficient? Yes!

- Load one page of elements into memory, sort, store this “run” on disk/tape
- Use the `merge()` routine to merge successively larger runs
- Repeat until you have only one run

MergeSort can leverage multiple disks; see Weiss
Comparison-based Sorts: Summary

<table>
<thead>
<tr>
<th>Sort Type</th>
<th>Best-Case Time</th>
<th>Worst-Case Time</th>
<th>Randomized Case</th>
<th>In-Place?</th>
<th>Stable?</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>InsertionSort</td>
<td>Θ(N)</td>
<td>Θ(N²)</td>
<td>Θ(N²)</td>
<td>Yes</td>
<td>Yes</td>
<td>Fastest for small or partially-sorted input</td>
</tr>
<tr>
<td>SelectionSort</td>
<td>Θ(N²)</td>
<td>Θ(N²)</td>
<td>Θ(N²)</td>
<td>Yes</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>In-Place HeapSort</td>
<td>Θ(N)</td>
<td>Θ(N log N)</td>
<td>Θ(N log N)</td>
<td>Yes</td>
<td>No</td>
<td>Slow in practice</td>
</tr>
<tr>
<td>MergeSort</td>
<td>Θ(N log N)</td>
<td>Θ(N log N)</td>
<td>Θ(N log N)</td>
<td>No</td>
<td>Yes</td>
<td>Fastest stable sort</td>
</tr>
<tr>
<td>QuickSort (1st-element pivot + 3-pass partition)</td>
<td>Θ(N log N)</td>
<td>Θ(N²)</td>
<td>Θ(N log N)</td>
<td>No</td>
<td>Yes</td>
<td>>=2x slower than MergeSort</td>
</tr>
<tr>
<td>QuickSort (Median-of-three pivot + Hoare partition + cutoffs)</td>
<td>Ω(N)</td>
<td>Ω(N²)</td>
<td>Θ(N log N)</td>
<td>Yes</td>
<td>No</td>
<td>Fastest comparison sort</td>
</tr>
</tbody>
</table>
Lecture Outline

❖ Comparison-based Sorting
 ▪ Review
 ▪ Fanciest algorithm using Divide-and-Conquer: QuickSort
 ▪ External Sorting
 ▪ Theoretical lower bound
A Different View of Sorting

- Assume we have n elements, none are equal (no duplicates)

- **Sorting** is like finding one specific ordering out of all possible ordering of elements!

- How many **permutations** (possible orderings) of the elements?
 - Example, $n=3$
 - n choices for least element, then $n-1$ for next, then $n-2$ for next, ...
 - $n(n-1)(n-2)...(2)(1) = n!$ possible orderings
Describing Every Comparison Sort

- A different way of thinking about sorting is that it “finds” the right answer among the n! possible answers
 - Starts “knowing nothing”; “anything is possible”
 - Each comparison gains information, eliminating some possibilities
 - Comparisons are binary: \(a < b \) or \(b < a \)
 - Intuition: each comparison eliminates (at most) half of remaining possibilities
 - In the end, narrows down to a single possibility

- Where are the comparisons in:
 - InsertionSort?
 - QuickSort?
Representing Comparison Sorts

- Let’s represent these binary comparisons as a binary tree!

- Called a Decision Tree
 - Nodes contain “set of remaining possible orderings”
 - The root contains all possible orderings; anything is possible
 - The leaves contain exactly one specific ordering
 - Edges are “answers from a comparison”

We are not actually building the tree; it’s what our \textit{proof} uses to represent “the most the algorithm could know so far”
One Decision Tree for n=3

- The leaves contain all the possible orderings of a, b, c
- A different algorithm would lead to a different tree